
ABACUS

A Branch-And-CUt System

Version 3.0

User’s Guide and Reference Manual

2007

ABACUS 3.0 Documentation

For use with Version 3.0 of theABACUS Library

The information in this document is subject to change without notice.

Contents

1 Preface 1

2 Installation 5

2.1 Obtaining ABACUS . 5

2.2 Platforms . 5

2.3 BuildingABACUS . 5

2.4 Compiling and Linking. 6

2.5 Environment Variables. 6

2.6 Contact . 6

2.7 Mailing List . 7

3 New Features 9

3.1 New Features of ABACUS 3.0. 9

3.1.1 Open Solver Interface. 9

3.1.2 Compilers. 9

3.1.3 Library creation by the user. 9

3.1.4 Documentation System. 9

3.1.5 Approximate solver. 10

3.1.6 Memory management. 10

3.1.7 Preprocessor Flags and Include Paths. 10

3.2 New Features of ABACUS 2.3. 10

3.2.1 Version macro . 10

3.2.2 New classes for separation. 10

3.2.3 Rank for constraints/variables. 10

3.3 New Features of ABACUS 2.2. 10

3.3.1 Lp-Solver Xpress. 11

3.3.2 Lp-Solver Cplex . 11

3.3.3 Lp-Methods. 11

iv CONTENTS

3.3.4 New Compilers. 11

3.3.5 Library Architectures. 11

3.3.6 Library Creation by the User. 11

3.3.7 New or Changed Preprocessor Flags. 13

3.3.8 Templates. 13

3.3.9 New LP Master Classes. 13

3.3.10 HTML Documentation. 14

3.3.11 Parameter Handling. 14

3.3.12 Name changings. 14

3.4 New Features of ABACUS 2.1. 15

3.4.1 Elimination of Constraints and Variables. 15

3.4.2 Cplex 5.0. 15

3.4.3 Templates. 15

3.4.4 Bug Fixes. 15

3.5 New Features of ABACUS 2.0. 15

3.5.1 LP-Solver Soplex. 16

3.5.2 Naming Conventions. 16

3.5.3 Include File Path. 16

3.5.4 Advanced Control of the Tailing Off Effect. 17

3.5.5 Problem Specific Fathoming. 17

3.5.6 Problem Specific Branching. 17

3.5.7 Generalized Strong Branching. 17

3.5.8 Pool without Constraint Duplication. 17

3.5.9 Visual C++ Compiler . 17

3.5.10 Compiler Preprocessor Flag. 18

3.5.11 LP-Solver Preprocessor Flag. 18

3.5.12 Parameters of Configuration File. 18

3.5.13 New Functions. 18

3.5.14 Miscellaneous . 19

4 Design 21

4.1 Basics . 21

4.1.1 Application Base Classes. 22

4.1.2 Pure Kernel Classes. 22

4.1.3 Auxiliaries . 23

4.2 Details. 23

4.2.1 The Root of the Class-Tree. 23

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

CONTENTS v

4.2.2 The Master. 24

4.2.3 The Subproblem. 26

4.2.4 Constraints and Variables. 29

4.2.5 Constraint and Variable Pools. 32

4.2.6 Linear Programs. 34

4.2.7 Auxiliary Classes for Branch-and-Bound. 37

4.2.8 Basic Generic Data Structures. 40

4.2.9 Other Basic Data Structures. 42

4.2.10 Tools . 43

5 Using ABACUS 45

5.1 Basics . 45

5.1.1 Constraints and Variables. 46

5.1.2 The Master. 47

5.1.3 The Subproblem. 49

5.1.4 Starting the Optimization. 55

5.2 Advanced Features. 56

5.2.1 Using other Pools. 56

5.2.2 Pool without Multiple Storage of Items. 57

5.2.3 Constraints and Variables. 57

5.2.4 Infeasible Linear Programs. 59

5.2.5 Other Enumeration Strategies. 60

5.2.6 Selection of the Branching Variable. 60

5.2.7 Using other Branching Strategies. 61

5.2.8 Strong Branching. 64

5.2.9 Activating and Deactivating a Subproblem. 66

5.2.10 Calling ABACUS Recursively. 67

5.2.11 Selecting the LP-Method. 67

5.2.12 Generating Output. 67

5.2.13 Memory Management. 68

5.2.14 Eliminating Constraints. 68

5.2.15 Eliminating Variables. 69

5.2.16 Adding Constraints/Variables in General. 69

5.2.17 Fixing and Setting Variables by Logical Implications . 71

5.2.18 Loading an Initial Basis. 71

5.2.19 Integer Objective Functions. 72

5.2.20 An Entry Point at the End of the Optimization. 72

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

vi CONTENTS

5.2.21 Output of Statistics. 73

5.2.22 Accessing Internal Data of the LP-Solver. 73

5.2.23 Problem Specific Fathoming Criteria. 73

5.2.24 Enforcing a Branching Step. 73

5.2.25 Advanced Tailing Off Control. 74

5.2.26 System Parameters. 74

5.2.27 Solver Parameters. 84

5.2.28 Parameter Handling. 84

5.3 Using the ABACUS Templates. 87

6 Reference Manual 89

6.1 Application Base Classes. 89

6.2 ABA_ABACUSROOT Class Reference. 90

6.2.1 Detailed Description. 91

6.2.2 Member Enumeration Documentation. 91

6.2.3 Constructor & Destructor Documentation. 91

6.2.4 Member Function Documentation. 91

6.3 ABA_GLOBAL Class Reference. 92

6.3.1 Detailed Description. 95

6.3.2 Constructor & Destructor Documentation. 95

6.3.3 Member Function Documentation. 96

6.3.4 Friends And Related Function Documentation. 103

6.3.5 Member Data Documentation. 103

6.4 ABA_MASTER Class Reference. 104

6.4.1 Detailed Description. 115

6.4.2 Member Enumeration Documentation. 115

6.4.3 Constructor & Destructor Documentation. 119

6.4.4 Member Function Documentation. 120

6.4.5 Friends And Related Function Documentation. 148

6.4.6 Member Data Documentation. 148

6.5 ABA_SUB Class Reference. 159

6.5.1 Detailed Description. 167

6.5.2 Member Enumeration Documentation. 167

6.5.3 Constructor & Destructor Documentation. 168

6.5.4 Member Function Documentation. 169

6.5.5 Friends And Related Function Documentation. 204

6.5.6 Member Data Documentation. 205

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

CONTENTS vii

6.6 ABA_CONVAR Class Reference. 210

6.6.1 Detailed Description. 213

6.6.2 Constructor & Destructor Documentation. 213

6.6.3 Member Function Documentation. 214

6.6.4 Friends And Related Function Documentation. 218

6.6.5 Member Data Documentation. 219

6.7 ABA_CONSTRAINT Class Reference. 221

6.7.1 Detailed Description. 222

6.7.2 Constructor & Destructor Documentation. 222

6.7.3 Member Function Documentation. 223

6.7.4 Friends And Related Function Documentation. 227

6.7.5 Member Data Documentation. 227

6.8 ABA_VARIABLE Class Reference . 228

6.8.1 Detailed Description. 229

6.8.2 Constructor & Destructor Documentation. 229

6.8.3 Member Function Documentation. 230

6.8.4 Member Data Documentation. 234

6.9 ABA_LPSOLUTION< BaseType, CoType> Class Template Reference. 235

6.9.1 Detailed Description. 236

6.9.2 Constructor & Destructor Documentation. 236

6.9.3 Member Function Documentation. 237

6.9.4 Friends And Related Function Documentation. 238

6.9.5 Member Data Documentation. 239

6.10 ABA_SEPARATOR< BaseType, CoType> Class Template Reference. 239

6.10.1 Detailed Description. 241

6.10.2 Constructor & Destructor Documentation. 241

6.10.3 Member Function Documentation. 242

6.10.4 Member Data Documentation. 244

6.11 System Classes. 245

6.12 ABA_OPTSENSE Class Reference. 245

6.12.1 Detailed Description. 246

6.12.2 Member Enumeration Documentation. 246

6.12.3 Constructor & Destructor Documentation. 247

6.12.4 Member Function Documentation. 247

6.12.5 Friends And Related Function Documentation. 248

6.12.6 Member Data Documentation. 248

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

viii CONTENTS

6.13 ABA_CSENSE Class Reference. 249

6.13.1 Detailed Description. 250

6.13.2 Member Enumeration Documentation. 250

6.13.3 Constructor & Destructor Documentation. 250

6.13.4 Member Function Documentation. 251

6.13.5 Friends And Related Function Documentation. 252

6.13.6 Member Data Documentation. 252

6.14 ABA_VARTYPE Class Reference. 253

6.14.1 Detailed Description. 253

6.14.2 Member Enumeration Documentation. 254

6.14.3 Constructor & Destructor Documentation. 254

6.14.4 Member Function Documentation. 254

6.14.5 Friends And Related Function Documentation. 255

6.14.6 Member Data Documentation. 256

6.15 ABA_FSVARSTAT Class Reference. 256

6.15.1 Detailed Description. 257

6.15.2 Member Enumeration Documentation. 257

6.15.3 Constructor & Destructor Documentation. 258

6.15.4 Member Function Documentation. 259

6.15.5 Friends And Related Function Documentation. 261

6.15.6 Member Data Documentation. 261

6.16 ABA_LPVARSTAT Class Reference. 262

6.16.1 Detailed Description. 263

6.16.2 Member Enumeration Documentation. 263

6.16.3 Constructor & Destructor Documentation. 264

6.16.4 Member Function Documentation. 265

6.16.5 Friends And Related Function Documentation. 265

6.16.6 Member Data Documentation. 266

6.17 ABA_SLACKSTAT Class Reference. 266

6.17.1 Detailed Description. 267

6.17.2 Member Enumeration Documentation. 267

6.17.3 Constructor & Destructor Documentation. 268

6.17.4 Member Function Documentation. 268

6.17.5 Friends And Related Function Documentation. 269

6.17.6 Member Data Documentation. 269

6.18 ABA_LP Class Reference. 270

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

CONTENTS ix

6.18.1 Detailed Description. 275

6.18.2 Member Enumeration Documentation. 276

6.18.3 Constructor & Destructor Documentation. 277

6.18.4 Member Function Documentation. 277

6.18.5 Friends And Related Function Documentation. 292

6.18.6 Member Data Documentation. 293

6.19 ABA_OSIIF Class Reference. 294

6.19.1 Member Enumeration Documentation. 298

6.19.2 Constructor & Destructor Documentation. 299

6.19.3 Member Function Documentation. 299

6.19.4 Member Data Documentation. 308

6.20 ABA_LPSUB Class Reference. 311

6.20.1 Detailed Description. 313

6.20.2 Constructor & Destructor Documentation. 313

6.20.3 Member Function Documentation. 314

6.20.4 Friends And Related Function Documentation. 321

6.20.5 Member Data Documentation. 321

6.21 ABA_LPSUBOSI Class Reference. 322

6.21.1 Constructor & Destructor Documentation. 323

6.21.2 Member Function Documentation. 323

6.22 ABA_LPMASTER Class Reference. 324

6.22.1 Detailed Description. 324

6.22.2 Constructor & Destructor Documentation. 324

6.22.3 Member Function Documentation. 325

6.22.4 Member Data Documentation. 325

6.23 ABA_LPMASTEROSI Class Reference. 325

6.23.1 Constructor & Destructor Documentation. 326

6.23.2 Member Function Documentation. 326

6.23.3 Friends And Related Function Documentation. 327

6.24 ABA_BRANCHRULE Class Reference. 327

6.24.1 Detailed Description. 328

6.24.2 Constructor & Destructor Documentation. 328

6.24.3 Member Function Documentation. 328

6.24.4 Member Data Documentation. 330

6.25 ABA_SETBRANCHRULE Class Reference. 330

6.25.1 Detailed Description. 331

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

x CONTENTS

6.25.2 Constructor & Destructor Documentation. 331

6.25.3 Member Function Documentation. 332

6.25.4 Friends And Related Function Documentation. 333

6.25.5 Member Data Documentation. 333

6.26 ABA_BOUNDBRANCHRULE Class Reference. 334

6.26.1 Detailed Description. 335

6.26.2 Constructor & Destructor Documentation. 335

6.26.3 Member Function Documentation. 335

6.26.4 Friends And Related Function Documentation. 336

6.26.5 Member Data Documentation. 337

6.27 ABA_VALBRANCHRULE Class Reference. 337

6.27.1 Detailed Description. 338

6.27.2 Constructor & Destructor Documentation. 339

6.27.3 Member Function Documentation. 339

6.27.4 Friends And Related Function Documentation. 340

6.27.5 Member Data Documentation. 340

6.28 ABA_CONBRANCHRULE Class Reference. 341

6.28.1 Detailed Description. 342

6.28.2 Constructor & Destructor Documentation. 342

6.28.3 Member Function Documentation. 342

6.28.4 Friends And Related Function Documentation. 343

6.28.5 Member Data Documentation. 344

6.29 ABA_POOL< BaseType, CoType> Class Template Reference. 344

6.29.1 Detailed Description. 345

6.29.2 Member Enumeration Documentation. 345

6.29.3 Constructor & Destructor Documentation. 346

6.29.4 Member Function Documentation. 346

6.29.5 Member Data Documentation. 347

6.30 ABA_STANDARDPOOL< BaseType, CoType> Class Template Reference. 348

6.30.1 Detailed Description. 349

6.30.2 Constructor & Destructor Documentation. 349

6.30.3 Member Function Documentation. 350

6.30.4 Friends And Related Function Documentation. 353

6.30.5 Member Data Documentation. 353

6.31 ABA_NONDUPLPOOL< BaseType, CoType> Class Template Reference. 354

6.31.1 Detailed Description. 355

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

CONTENTS xi

6.31.2 Constructor & Destructor Documentation. 355

6.31.3 Member Function Documentation. 355

6.31.4 Member Data Documentation. 357

6.32 ABA_POOLSLOT< BaseType, CoType> Class Template Reference. 358

6.32.1 Detailed Description. 359

6.32.2 Constructor & Destructor Documentation. 359

6.32.3 Member Function Documentation. 360

6.32.4 Friends And Related Function Documentation. 361

6.32.5 Member Data Documentation. 363

6.33 ABA_POOLSLOTREF< BaseType, CoType> Class Template Reference. 364

6.33.1 Detailed Description. 365

6.33.2 Constructor & Destructor Documentation. 365

6.33.3 Member Function Documentation. 366

6.33.4 Friends And Related Function Documentation. 367

6.33.5 Member Data Documentation. 367

6.34 ABA_ROW Class Reference. 368

6.34.1 Detailed Description. 369

6.34.2 Constructor & Destructor Documentation. 369

6.34.3 Member Function Documentation. 370

6.34.4 Friends And Related Function Documentation. 371

6.34.5 Member Data Documentation. 372

6.35 ABA_COLUMN Class Reference. 372

6.35.1 Detailed Description. 373

6.35.2 Constructor & Destructor Documentation. 373

6.35.3 Member Function Documentation. 374

6.35.4 Friends And Related Function Documentation. 376

6.35.5 Member Data Documentation. 376

6.36 ABA_NUMCON Class Reference. 377

6.36.1 Detailed Description. 377

6.36.2 Constructor & Destructor Documentation. 378

6.36.3 Member Function Documentation. 378

6.36.4 Friends And Related Function Documentation. 379

6.36.5 Member Data Documentation. 379

6.37 ABA_ROWCON Class Reference. 379

6.37.1 Detailed Description. 380

6.37.2 Constructor & Destructor Documentation. 380

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

xii CONTENTS

6.37.3 Member Function Documentation. 381

6.37.4 Member Data Documentation. 382

6.38 ABA_NUMVAR Class Reference. 382

6.38.1 Detailed Description. 383

6.38.2 Constructor & Destructor Documentation. 383

6.38.3 Member Function Documentation. 384

6.38.4 Friends And Related Function Documentation. 384

6.38.5 Member Data Documentation. 384

6.39 ABA_SROWCON Class Reference. 385

6.39.1 Detailed Description. 386

6.39.2 Constructor & Destructor Documentation. 386

6.39.3 Member Function Documentation. 386

6.40 ABA_COLVAR Class Reference. 387

6.40.1 Detailed Description. 388

6.40.2 Constructor & Destructor Documentation. 388

6.40.3 Member Function Documentation. 389

6.40.4 Friends And Related Function Documentation. 390

6.40.5 Member Data Documentation. 391

6.41 ABA_ACTIVE< BaseType, CoType> Class Template Reference. 391

6.41.1 Detailed Description. 392

6.41.2 Constructor & Destructor Documentation. 392

6.41.3 Member Function Documentation. 393

6.41.4 Friends And Related Function Documentation. 395

6.41.5 Member Data Documentation. 396

6.42 ABA_CUTBUFFER< BaseType, CoType> Class Template Reference. 397

6.42.1 Detailed Description. 398

6.42.2 Constructor & Destructor Documentation. 398

6.42.3 Member Function Documentation. 398

6.42.4 Friends And Related Function Documentation. 401

6.42.5 Member Data Documentation. 401

6.43 ABA_INFEASCON Class Reference. 402

6.43.1 Detailed Description. 403

6.43.2 Member Enumeration Documentation. 403

6.43.3 Constructor & Destructor Documentation. 403

6.43.4 Member Function Documentation. 404

6.43.5 Member Data Documentation. 404

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

CONTENTS xiii

6.44 ABA_OPENSUB Class Reference. 405

6.44.1 Detailed Description. 406

6.44.2 Constructor & Destructor Documentation. 406

6.44.3 Member Function Documentation. 406

6.44.4 Friends And Related Function Documentation. 408

6.44.5 Member Data Documentation. 408

6.45 ABA_FIXCAND Class Reference. 409

6.45.1 Detailed Description. 410

6.45.2 Constructor & Destructor Documentation. 410

6.45.3 Member Function Documentation. 410

6.45.4 Friends And Related Function Documentation. 411

6.45.5 Member Data Documentation. 411

6.46 ABA_TAILOFF Class Reference. 412

6.46.1 Detailed Description. 413

6.46.2 Constructor & Destructor Documentation. 413

6.46.3 Member Function Documentation. 414

6.46.4 Friends And Related Function Documentation. 415

6.46.5 Member Data Documentation. 415

6.47 ABA_HISTORY Class Reference. 416

6.47.1 Detailed Description. 416

6.47.2 Constructor & Destructor Documentation. 417

6.47.3 Member Function Documentation. 417

6.47.4 Friends And Related Function Documentation. 417

6.47.5 Member Data Documentation. 418

6.48 Basic Data Structures. 419

6.49 ABA_SPARVEC Class Reference. 419

6.49.1 Detailed Description. 420

6.49.2 Constructor & Destructor Documentation. 421

6.49.3 Member Function Documentation. 422

6.49.4 Friends And Related Function Documentation. 425

6.49.5 Member Data Documentation. 425

6.50 ABA_SET Class Reference. 426

6.50.1 Detailed Description. 427

6.50.2 Constructor & Destructor Documentation. 427

6.50.3 Member Function Documentation. 427

6.50.4 Member Data Documentation. 428

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

xiv CONTENTS

6.51 ABA_FASTSET Class Reference. 429

6.51.1 Detailed Description. 429

6.51.2 Constructor & Destructor Documentation. 429

6.51.3 Member Function Documentation. 430

6.51.4 Member Data Documentation. 430

6.52 ABA_STRING Class Reference. 430

6.52.1 Detailed Description. 432

6.52.2 Constructor & Destructor Documentation. 432

6.52.3 Member Function Documentation. 433

6.52.4 Friends And Related Function Documentation. 435

6.52.5 Member Data Documentation. 436

6.53 Templates. 437

6.54 ABA_ARRAY< Type> Class Template Reference. 437

6.54.1 Detailed Description. 438

6.54.2 Constructor & Destructor Documentation. 438

6.54.3 Member Function Documentation. 440

6.54.4 Friends And Related Function Documentation. 443

6.54.5 Member Data Documentation. 443

6.55 ABA_BUFFER< Type> Class Template Reference. 443

6.55.1 Detailed Description. 445

6.55.2 Constructor & Destructor Documentation. 445

6.55.3 Member Function Documentation. 445

6.55.4 Friends And Related Function Documentation. 448

6.55.5 Member Data Documentation. 448

6.56 ABA_LISTITEM< Type> Class Template Reference. 449

6.56.1 Detailed Description. 449

6.56.2 Constructor & Destructor Documentation. 450

6.56.3 Member Function Documentation. 450

6.56.4 Friends And Related Function Documentation. 450

6.56.5 Member Data Documentation. 451

6.57 ABA_LIST< Type> Class Template Reference. 451

6.57.1 Detailed Description. 452

6.57.2 Constructor & Destructor Documentation. 452

6.57.3 Member Function Documentation. 453

6.57.4 Friends And Related Function Documentation. 454

6.57.5 Member Data Documentation. 455

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

CONTENTS xv

6.58 ABA_DLISTITEM< Type> Class Template Reference. 455

6.58.1 Detailed Description. 456

6.58.2 Constructor & Destructor Documentation. 456

6.58.3 Member Function Documentation. 457

6.58.4 Friends And Related Function Documentation. 457

6.58.5 Member Data Documentation. 457

6.59 ABA_DLIST< Type> Class Template Reference. 458

6.59.1 Detailed Description. 459

6.59.2 Constructor & Destructor Documentation. 459

6.59.3 Member Function Documentation. 460

6.59.4 Friends And Related Function Documentation. 461

6.59.5 Member Data Documentation. 462

6.60 ABA_RING< Type> Class Template Reference. 462

6.60.1 Detailed Description. 463

6.60.2 Constructor & Destructor Documentation. 463

6.60.3 Member Function Documentation. 464

6.60.4 Friends And Related Function Documentation. 466

6.60.5 Member Data Documentation. 467

6.61 ABA_BSTACK< Type> Class Template Reference. 467

6.61.1 Detailed Description. 468

6.61.2 Constructor & Destructor Documentation. 468

6.61.3 Member Function Documentation. 469

6.61.4 Friends And Related Function Documentation. 470

6.61.5 Member Data Documentation. 471

6.62 ABA_BHEAP< Type, Key> Class Template Reference. 471

6.62.1 Detailed Description. 472

6.62.2 Constructor & Destructor Documentation. 472

6.62.3 Member Function Documentation. 473

6.62.4 Friends And Related Function Documentation. 475

6.62.5 Member Data Documentation. 475

6.63 ABA_BPRIOQUEUE< Type, Key> Class Template Reference. 476

6.63.1 Detailed Description. 477

6.63.2 Constructor & Destructor Documentation. 477

6.63.3 Member Function Documentation. 477

6.63.4 Member Data Documentation. 479

6.64 ABA_HASH< KeyType, ItemType> Class Template Reference. 479

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

xvi CONTENTS

6.64.1 Detailed Description. 481

6.64.2 Constructor & Destructor Documentation. 481

6.64.3 Member Function Documentation. 482

6.64.4 Friends And Related Function Documentation. 485

6.64.5 Member Data Documentation. 485

6.65 ABA_DICTIONARY< KeyType, ItemType> Class Template Reference. 486

6.65.1 Detailed Description. 487

6.65.2 Constructor & Destructor Documentation. 487

6.65.3 Member Function Documentation. 488

6.65.4 Friends And Related Function Documentation. 488

6.65.5 Member Data Documentation. 489

6.66 Tools. 489

6.67 ABA_SORTER< ItemType, KeyType> Class Template Reference. 490

6.67.1 Detailed Description. 491

6.67.2 Constructor & Destructor Documentation. 491

6.67.3 Member Function Documentation. 491

6.67.4 Member Data Documentation. 494

6.68 ABA_TIMER Class Reference. 494

6.68.1 Detailed Description. 496

6.68.2 Constructor & Destructor Documentation. 496

6.68.3 Member Function Documentation. 496

6.68.4 Friends And Related Function Documentation. 498

6.68.5 Member Data Documentation. 498

6.69 ABA_CPUTIMER Class Reference. 499

6.69.1 Detailed Description. 500

6.69.2 Constructor & Destructor Documentation. 500

6.69.3 Member Function Documentation. 501

6.69.4 Member Data Documentation. 501

6.70 ABA_COWTIMER Class Reference. 501

6.70.1 Detailed Description. 502

6.70.2 Constructor & Destructor Documentation. 502

6.70.3 Member Function Documentation. 503

6.70.4 Member Data Documentation. 503

6.71 ABA_OSTREAM Class Reference. 503

6.71.1 Detailed Description. 505

6.71.2 Constructor & Destructor Documentation. 505

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

CONTENTS xvii

6.71.3 Member Function Documentation. 506

6.71.4 Friends And Related Function Documentation. 509

6.71.5 Member Data Documentation. 510

6.72 Preprocessor Flags. 511

7 Warranty and Copyright 513

7.1 Warranty. 513

7.2 Copyright . 513

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

xviii CONTENTS

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

Chapter 1

Preface

Preface to Release 3.0

Major enhancements inABACUS 3.0 include the new solver interface to Osi, the ability to solve LPs with the
Volume Algorithm and support for state-of-the-art GNU compilers. The documentation system has been changed
from cweb to doxygen and the build process has been simplified. ABACUS 3.0 is released under the Gnu Lesser
General Public License (LGPL). See section3.1for details.
We thank the members of Michael Jünger’s group for many stimulating discussions and valuable insights that
helped improve the current release. Special thanks go to Christoph Buchheim, Frauke Liers, Thomas Lange (all
University of Cologne) and Markus Chimani (University of Dortmund).

Köln, August 2007 Frank Baumann, Mark SprengerandAndrea Wagner

Preface to Release 2.3

ABACUS 2.3 is the first commercial release ofABACUS distributed by the newly founded company Oreas
GmbH. The changes made involve mainly some bug fixes and a new licensing mechanism, which allows to dis-
tribute also 30-days evaluation licenses.

Köln, December 1999 Matthias ElfandCarsten Gutwenger
Oreas GmbH

Preface to Release 2.2

ABACUS is a software system for the implementation of linear-programming based branch-and-bound algo-
rithms, i.e., branch-and-cut algorithms, branch-and-price algorithms, and their combination. It applies the con-
cepts of object oriented programming (programming language C++). An implementation of a problem specific
algorithm is obtained by deriving some classes from abstract base classes ofABACUS in order to embed problem
specific functions.

2 Preface

Based on our earlier work on non-object oriented branch-and-cut frameworks, Stefan Thienel developedABA-

CUS 1.0 in his PhD thesis that was defended in December 1995. Since January 1996 he developed the public re-
leasesABACUS 1.2 to 2.1 with the partial support of ESPRIT LTR Project no. 20244 (ALCOM-IT) and H.C.M.
Institutional Grant no. ERBCHBGCT940710 (DONET). Stefan Thienel laid the foundations ofABACUS with
great dedication and enthusiasm. We regret that he decided to leave the Universität zu Köln in spring 1998. Very
much to our satisfaction, Max Böhm and Thomas Christof immediately took over the responsibility forABA-

CUS. We are very glad thatABACUS is again in competent hands and future development and maintenance is
guaranteed.

Köln, August 1998 Michael Jünger
Heidelberg, August 1998 Gerhard Reinelt

ABACUS 2.1 was left ready for release in February 1998 by Stefan Thienel. After Stefan Thienel left university
and we took over the responsibility forABACUS, we decided not to release ABACUS 2.1, but to add some new
features to the software. The major enhancements of the resulting version 2.2 are the interface to the LP solver
Xpress and the compilation ofABACUS with different native compilers. In addition, we introduced some new
functions for easier parameter handling and improved the HTML version of the Reference Manual. A complete
presentation of all modifications can be found in Section3.3.

We are very grateful to Stefan Thienel for his efforts involved in the development, documentation and support of
ABACUS, and wish him the very best for his future. For the users ofABACUS, we hope that this transition in
responsibility will be almost invisible to them.

Köln, August 1998 Max Böhm
Athens, GA, August 1998 Thomas Christof

Preface to Release 2.1

The main purpose of version 2.1 ofABACUS is the provision of some bug fixes. However, there are also a few
new features that are explained in Section3.4.

Köln, February 1998 Stefan Thienel

Preface to Release 2.0

During its first year of public availabilityABACUS reached a rather active community of users, which is growing
slowly but constantly. Many of them contributed to makingABACUS more reliable. I want to thank all of them
for their helpful feedback. In particular, I want to mentionMax Böhm, who pointed me to several improvement
possibilities.

But not only the users worked withABACUS, also its development continued such that it is now ready fora
second release.ABACUS 2.0 offers besides many minor extensions four major new features:

• the interface to the new LP-solver SoPlex

• the support of the Visual C++ compiler

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

3

• a generalized strong branching method

• increased safety against name collisions

In particular, I am very happy that the abstract LP-interface proved its usefulness during the integration of the
LP-solver SoPlex. Since the adaption of the framework to theVisual C++ compiler could be performed, I am
optimistic that also other compilers can be supported in thefuture.

Users who want to upgrade from version 1.2.x find the new features and the differences to previous versions in
Section3.

Köln, August 1997 Stefan Thienel

Preface to Release 1.2

While the Chapters 1 to 4 of this manual are a user’s guide describing the installation, design, and application
of ABACUS the last chapter contains the reference manual. Chapter2 explains howABACUS is installed on
your computer system and what hardware and software environment is required. In order to simplify the user
understandingABACUS I describe in Chapter4 the design of the software framework. While I recommend
to study in any case the basic concepts outlined in Section4.1 before beginning with the implementation of an
application, it should be sufficient to return to Section4.2only for rather advanced usage. Also Chapter5 is split
into two sections. The first one, Section5.1, explains the first steps that have to be performed to implement an
application. This section should be studied together with the example included in theABACUS distribution. The
second one, Chapter5.2, shows how default strategies ofABACUS can be modified and outlines some additional
features of the system. The reference manual of Chapter6 is complemented by the index that simplifies finding a
certain class or one of its members.

This manual is both available in Postscript and HTML format.The HTML form turns out to be quite useful for
finding members of the reference manual.

This user’s guide is not intended to teach the concepts of linear-programming based branch-and-bound, but I as-
sume that the reader of this manual and the user ofABACUS is familiar with these algorithms. For an introduction
to branch-and-cut I refer to [JRT95], for an introduction to branch-and-price algorithms I recommend to [BJN+97].
Both approaches are described in [Thi95].

Moreover, I also assume that the user ofABACUS is familiar with the concepts of object oriented programming.
For the reader who is unexperienced in object oriented programming I refer to [KM90] for a good brief introduction
and to [Boo94] for a detailed description. There are many books about the programming language C++. The
classical introduction is [Str93]. Very useful reference manuals are [ES92] and the current working paper of the
C++ standardization committee [ASC95].

ABACUS originates from the dissertation of its author [Thi95] and has since then been tested, slightly modi-
fied and improved. Here, I would like to thank all initial testers, in particular Thomas Christof, Meinrad Funke,
and François Margot for their bug reports and helpful comments. I am very grateful to Joachim Kupke for care-
fully proofreading an earlier version. I also want to thank Denis Naddef, LMC-IMAG, Grenoble, France, for his
hospitality while writing the major part of this manual.

Despite these successful tests I considerABACUS still as an experimental system. Therefore, feedback of the
users is appreciated. Some parts of the user’s guide were adapted from [Thi95], while the reference manual has
been compiled for the first time. Therefore, I also encouragethe reader to send me error reports and improvement
suggestions for the user’s guide and the reference manual.

I am aware that neither the software nor its documentation isperfect, but I think it is time to dare a first public
release.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

4 Preface

Grenoble, August 1996 Stefan Thienel

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

Chapter 2

Installation

2.1 Obtaining ABACUS

ABACUS can be obtained from

http://www.informatik.uni-koeln.de/abacus/ .

Please note thatABACUS requires a working installation of the Open Solver Interface (Osi) provided by The
Computational Infrastructure for Operations Research (COIN-OR) project. Please see Section2.3 for details. If
you have any questions aboutABACUS please send a mail to

abacus@informatik.uni-koeln.de .

2.2 Platforms

ABACUS is currently available forlinux. If you are interested in a version for another platform please contact
us directly.

2.3 Building ABACUS

ABACUS can be compiled with theGNU-C++ compilersg++ 3.3.5 - 4.1.2.

ABACUS provides a general interface to linear programming solvers. The current release supports the LP-solvers
supported by COIN Osi version 0.96. Not all of them might be useful in combination withABACUS though.
Before compiling ABACUS 3.0 make sure that COIN Osi is installed. For more information on the installation of
COIN Osi see Seehttps://projects.coin-or.org/Osi for details.

Set the paths at the top of the Makefile to the include directories of COIN Osi and the LP solvers installed on your
system.

Settings for different compilers are stored in the directory Make-settings. Which settings file is used is determined
by the variable ABACUS_MAKE_SETTINGS. To compile ABACUS with g++-4.1, for example, do:

make abacus ABACUS_MAKE_SETTINGS=linux20-gcc41

To install abacus to a specific location instead of the base directory set the variables ABACUS_INSTALL_LIBDIR
and ABACUS_INSTALL_HEADERDIR in the Makefile and run, for example:

6 Installation

make install ABACUS_MAKE_SETTINGS=linux20-gcc41

For information on how to produce the documentation, pleaserun:

make

2.4 Compiling and Linking

For compiling your files usingABACUS add theabacus/include directory either to your include directory
path or specify it explicitly with the-I compiler option. Furthermore, add the include file paths of the LP-solvers
you want to use. The flag for the C++ compiler can be defined at compilation time using the-D switch of the
compiler (e.g.,-DABACUS_COMPILER_GCC41) or specified in theMakefile. See table2.1for valid settings.
It might be helpful to consult theMakefile of the example included in theABACUS distribution.

compiler preprocessor flags
Linux g++ 4.1 ABACUS_COMPILER_GCC41 or ABACUS_COMPILER_GCC
Linux g++ 3.4 ABACUS_COMPILER_GCC34
Linux g++ 3.3 ABACUS_COMPILER_GCC33
SUN C++ 4.2 ABACUS_COMPILER_SUN

Table 2.1: compilers

2.5 Environment Variables

The environment variableABACUS_DIR has to be set to the directory containing the general configuration file
.abacus. A master version of this configuration file is provided in thebase directory of theABACUS dis-
tribution. It is recommended that every user makes a privatecopy of the file.abacus and setsABACUS_DIR
accordingly.

To set the environment variable to/home/yourhome, for example, using the C-shell or its relatives, do:

setenv ABACUS_DIR /home/yourhome

If the Bourne-shell is used do:

export ABACUS_DIR=/home/yourhome

Usually it is convenient to add these instructions to the personal.login file.

2.6 Contact

Feedback from the users is highly appreciated. Please report your experiences and make your suggestions. Also
comments on this user manual are appreciated. Report all problems and suggestions by e-mail to:

abacus@informatik.uni-koeln.de

Before reporting a bug, please make sure that it does not comefrom an incorrect usage of the programming
language C++.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

2.7 Mailing List 7

2.7 Mailing List

There is a mailing list available forABACUS. To subscribe to this service, please register at

https://lists.uni-koeln.de/mailman/listinfo/abacus-forum .

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

8 Installation

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

Chapter 3

New Features

This section summarizes all new features that have been introduced successively.

3.1 New Features of ABACUS 3.0

3.1.1 Open Solver Interface

ABACUS now supports the Open Solver Interface (Osi) developed by the COIN-OR
(COmputational INfrastructure for Operations Research) project. All interface classes
(|CPLEXIF|, |SOPLEXIF|, |XPRESSIF|) have been replaced bythe single new class |OSIIF|. This change has
the advantage that every solver supported by Osi can be used to solve LP relaxations. For the user only small
modifications (if any) to existing code should be necessary.The setting of parameters for specific solvers now has
to be implemented by the user in the problem specific derived class using Osi functions. For this we provide a new
virtual function |ABA_MASTER::setSolverParameters()| that can be redefined by the user.

3.1.2 Compilers

New supported compilers are theGNU-C++ compilersg++ 3.3 - 4.1. Support for some older compilers
has been dropped.

3.1.3 Library creation by the user

As there is now a single interface to all supported solvers, library creation is greatly simplified. Callingmake
andmake install after adapting theMakefile compiles the librarylibabacus-osi.a and installs the
header files to the specified location.

3.1.4 Documentation System

The reference manual is now extracted directly from thec++ source files using thedoxygen documentation
system.cweave andctangle are no longer needed to compile the library.

10 New Features

3.1.5 Approximate solver

ABACUS now can use approximate instead of exact methods for solvingLP relaxations. Currently, only the
Volume Algorithm is supported, as it is the only approximatemethod provided by Osi. The new parameter
|SolveApprox| and the virtual function |ABA_MASTER::solveApprox()| are provided to switch between exact
and approximate solvers. See Section5.2.11, the reference manual and the example included in theABACUS

distribution for details.

3.1.6 Memory management

The allocation and management of memory for the internal represantation of the LP is completely handled by Osi.
The correspondingABACUS functions are kept only for compatibility reasons.

3.1.7 Preprocessor Flags and Include Paths

A lot of preprocessor flags are no longer used. Especially theflagABACUS_OLD_INCLUDE introduced in version
2.0 is obsolete. To include the array header file, for example, do:

#include "abacus/array.h"

3.2 New Features of ABACUS 2.3

3.2.1 Version macro

The include fileabacusroot.h contains now a defineABACUS_VERSION with the version number of the
ABACUS release. It is set to230 in this release.

3.2.2 New classes for separation

New classes |ABA_LPSOLUTION| for storing an LP solution and|ABA_SEPARATOR| for implementing a sepa-
ration procedure facilitate encapsulation of the code. Moreover, the class |ABA_SEPARATOR| provides functions
for checking for duplication of generated constraints/variables.

3.2.3 Rank for constraints/variables

A new virtual function |ABA_CONVAR::rank()| allows to associate a rank with a constraint/variable. This
rank can be used for ranking the constraints/variables in the functions |ABA_STANDARDPOOL::separate()|,
|ABA_SUB::constraintPoolSeparation| and |ABA_SUB::variablePoolSeparation()|.

3.3 New Features of ABACUS 2.2

Version 2.2 includes a new interface to the Lp-Solver Xpressand Cplex 6.0 and it provides enhaced functionality
for parameter handling. Moreover, the library is now available for different native compilers. It can be configured
for any combination of supported LP-Solvers by the user.ABACUS now intensively uses inline functions to
improve performance.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

3.3 New Features of ABACUS 2.2 11

3.3.1 Lp-Solver Xpress

In addition to the LP-Solvers Cplex and Soplex ABACUS now also provides an interface to the LP-Solver Xpress-
MP Version 10. The Xpress librarieslibxosl.a andlibmp-opt.a have both to be linked.

Xpress-MP is a commercial product by Dash Associates. You find further information about Xpress at
http://www.dash.co.uk/.

3.3.2 Lp-Solver Cplex

Cplex 6.0 is now supported.

In addition, a new parameterCplexHoldEnvironment is introduced. If this parameter is true, then the Cplex
environment is held open during the branch-and-cut optimization. This reserves a Cplex license for the complete
time of optimization.

3.3.3 Lp-Methods

The solution method for linear programsLP::Barrier is replaced by the methods
LP::BarrierAndCrossover andLP::BarrierNoCrossover.

3.3.4 New Compilers

New supported compilers are theGNU C++ compiler gcc 2.8 and theSun WorkShop Compiler
C++ 4.2. We now provide 32 and 64 bit versions of theABACUS library compiled with theSGI MIPSpro
7.2 C++ compiler.

3.3.5 Library Architectures

The ABACUS library is provided for different combinations ofhardware, operating systems and
compilers. These combinations are identified by an<arch> name. Some architectures are shown in table
3.1.

3.3.6 Library Creation by the User

The library archive fileabacus-<version>-<arch>.tar.gz contains the basicABACUS library and
libraries for each supportedInterface to an LP-Solver. Currently supported Interfaces are shown in table3.2.

You can createABACUS libraries for any combination of supported LP-Solvers by yourself. Downloaded and un-
pack the library ditribution archive with the right <arch> in the installation root directiry (e.g. /usr/local/abacus). A
directoryabacus-<version/lib/<arch>/stuff is created which contains all required files to build spe-
cific ABACUS libraries. Then create LP-Solver specific ABACUS librariesby using the commandmake-lib
in the directorylib/<arch> for any desired combination of different LP-solvers.

For example if you want to haveABACUS libraries for Solaris compiled with gcc 2.8 download the file
abacus-2.2-solaris-gcc28.tar.gz.

gunzip abacus-2.2-solaris-gcc28.tar.gz
tar xvf abacus-2.2-solaris-gcc28.tar

To create libraries with interfaces for Cplex 6.0, Soplex, Xpress and all three together type

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

12 New Features

Hardware Operating System Compiler <arch>
SUN SPARC SUN-OS 4.1.3 GNU C++ Compiler 2.8.1 sunos-gcc28
SUN SPARC SUN-OS 5.6 GNU C++ Compiler 2.8.1 solaris-gcc28
SUN SPARC SUN-OS 5.6 GNU C++ Compiler 2.7.2 solaris-gcc27
SUN SPARC SUN-OS 5.6 SUN WorkShop Compiler C++ 4.2 solaris-CC
IBM RS6000 AIX 4.1.5 GNU C++ Compiler 2.8.1 aix4-gcc28
IBM RS6000 AIX 4.1.5 GNU C++ Compiler 2.7.2 aix4-gcc27
DEC ALPHA OSF 3.2 GNU C++ Compiler 2.8.1 osf-gcc28
DEC ALPHA OSF 3.2 GNU C++ Compiler 2.7.2 osf-gcc27
SILICON GRAPHICS Irix 6.2 GNU C++ Compiler 2.7.2 irix6-gcc27
SILICON GRAPHICS Irix 6.2 MIPSpro 7.2 C++ compiler 32 Bit, irix6-CCn32

mips4
SILICON GRAPHICS Irix 6.2 MIPSpro 7.2 C++ compiler 64 Bit, irix6-CC64

mips4
HP 9000 HP-UX 10.20 GNU C++ Compiler 2.8.1 hpux10-gcc28
PC Linux 2.0.27 GNU C++ Compiler 2.8.1 linux20-gcc28
PC Linux 2.0.27 GNU C++ Compiler 2.7.2 linux20-gcc27
PC Windows NT MS Visual C++ 5.0 winnt

Table 3.1: Architecture names.

Interface name LP-Solver
cplex22 Cplex 2.2
cplex30 Cplex 3.0
cplex40 Cplex 4.0
cplex50 Cplex 5.0
cplex60 Cplex 6.0
soplex Soplex 1.0
xpress Xpress-MP 10

Table 3.2: Interface names.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

3.3 New Features of ABACUS 2.2 13

cd abacus-2.2/lib/solaris-gcc28
make-lib cplex60
make-lib soplex
make-lib xpress
make-lib cplex60-soplex-xpress

Themake-lib <interfaces> command creates the file
abacus-<version>/lib/solaris-gcc28/libabacus-<interfaces>.a,

where<interfaces> is an interface string or a combination of interface stringsconcatenated by the character
-.

3.3.7 New or Changed Preprocessor Flags

A list of preprocessor flags with new or changed meaning follows:

Preprocessor Flag Meaning
ABACUS_COMPILER_GCC28 GNU C++ compiler 2.8
ABACUS_COMPILER_GCC27 GNU C++ compiler 2.7
ABACUS_COMPILER_GCC defaults to ABACUS_COMPILER_GCC28
ABACUS_COMPILER_SUN SUN WorkShop C++ Compiler 4.2
ABACUS_EXPLICIT_TEMPLATES no longer needed
ABACUS_CPP_MATH no longer needed
ABACUS_SYS_xxxxxx no longer needed
ABACUS_LP_SOPLEX no longer needed
ABACUS_LP_CPLEXxx needed only if lpmastercplex.h or cplexif.h is included.

See the updated Makefile of the TSP example inabacus-2.2/example/Makefile for a description of the
valid compiler and linker flags. This file also explains how tolink an application with more than one LP solver.

3.3.8 Templates

It is no longer needed to include template definition files (*.inc). These files are now automatically included by the
coresponding header files (*.h).

If you are using gcc 2.8 no special flags for template instatiation need to be defined. If you are using gcc 2.7
we recommended to define the compilerflag-fno-implicit-templates and to manually instantiate the
templates which are needed, but not contained in the ABACUS library as described in section5.3.

3.3.9 New LP Master Classes

There is a new abstract classABA_LPMASTER and subclasses ABA_LPMASTERCPLEX,
ABA_LPMASTERSOPLEX and ABA_LPMASTERXPRESS. These classes handle LP solver specific parame-
ters and global data. As a consequence some LP solver specificfunctions which were located in ABA_MASTER
are now located in one of these classes. If you are using such afunction you have to change your code as shown
in the example below:

master->cplexOutputLevel(level);

should be changed to

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

14 New Features

ABA_LPMASTERCPLEX *cplexMaster = master->lpMasterCplex();
lpMasterCplex->cplexOutputLevel(level);

or simply

master->lpMasterCplex()->cplexOutputLevel(level);

The corresponding header files areabacus/lpmastercplex.h, abacus/lpmastersoplex.h, and
abacus/lpmasterxpress.h.

3.3.10 HTML Documentation

In the HTML version of the Reference Manual (Section6), we added links in the declaration part of the class
which point to other classes and to the descriptions of the class members.

3.3.11 Parameter Handling

The system parameter table and the functions for handling parameters moved from classABA_MASTER to its
base classABA_GLOBAL. Now, it is possible to use the parameter concept ofABACUS even without generating
an object ofABA_MASTER. (This might be useful when writing some experimental code using the Tools and
Templates ofABACUS, but not writting an complete branch-and-cut-application.)

In addition to the overloaded functionsABA_GLOBAL::getParameter(), we now provide the over-
loaded functionsABA_GLOBAL::assignParameter() and ABA_GLOBAL::findParameter() with
enhanched functionality. The new functions test for the existence of a parameter in the table, compare the cur-
rent setting with feasible settings and allow for termination of the program if a required paramter is not found, or
if it is found but if its setting is not feasible.

Moreover, a branch-and-cut-optimization can be started without reading the parameter file.abacus.

See section5.2.28for further details on using parameters.

3.3.12 Name changings

This version contains some changings of names that seemed reasonable to us. Most changings were guided by the
principle that we want to have the feasible values of theABACUS parameters coinciding with the enumerators
of the corresponding enumeration type. (As all enumeratorsin one class have to be different, an exception to that
rule is the parameter valueNone which is feasible for different paramaters.)

In addition, we changed in general inSoPlex the upperP to a lower one.

Table3.3 summarizes the changings. We provide Perl scripts for performing the changings on yourABACUS

application. For a parameter file, use

upd-parameter-2.2 <parameter-file>

and apply

upd-sources-2.2 <code-filse>

to your C++ code files.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

3.4 New Features of ABACUS 2.1 15

Location Old New
ParameterEnumerationStrategy Best BestFirst
ParameterEnumerationStrategy Depth DepthFirst
ParameterEnumerationStrategy Breadth BreadthFirst
ABA_MASTER::PRIMALBOUNDMODE OptimalPrimalBound Optimum
ABA_MASTER::PRIMALBOUNDMODE OptimalOnePrimalBound OptimumOne

ABA_MASTER::VBCMODE None NoVbcLog
various SoPlex Soplex

ABA_LP::METHOD Barrier BarrierAndCrossover

Table 3.3: Name changings.

3.4 New Features of ABACUS 2.1

In version 2.1 we added a few new features, fixed some bugs, andimproved the performance of some functions.

3.4.1 Elimination of Constraints and Variables

So far a constraint or variable was eliminated from the set ofactive items as soon as the criterion for elimination
hold. Now the number of iterations the criterion must hold until the elimination is performed can be specified in
the configuration file.abacus (see Section5.2.26).

3.4.2 Cplex 5.0

Cplex 5.0 is now supported byABACUS.

3.4.3 Templates

In addition to the explicit instantiation of templates,ABACUS now also supports the implicit instantiation (see
Section5.3).

3.4.4 Bug Fixes

3.4.4.1 Constraint and Variable Selection

The selection of constraints and variables with highest rank from the buffers of generated constraints and variables
is now performed correctly again.

3.4.4.2 Variable Generation

We have tested the dymanic variable generation ofABACUS more intensively and could fix some so far unknown
bugs.

3.5 New Features of ABACUS 2.0

This section summarizes all new features that have been introduced since the release ofABACUS 1.2.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

16 New Features

3.5.1 LP-Solver Soplex

Besides CplexABACUS provides now an interface to the LP-Solver Soplex [Wun97].

If Soplex is used as LP-solver, it might be required to switchto the new include file structure (see Section3.5.3) in
order to avoid name conflicts. Both Soplex andABACUS provide include files with the nametimer.h.

3.5.2 Naming Conventions

The previous version did not use any prefix for all globally visible names in order to avoid name collisions with
other libraries since the C++ concept of namespaces should make this technique redundant. Unfortunately, it
turned out that the GNU C++ compiler does still not support namespaces. The G++-FAQ mentions that even in
the next release 2.8 this concept might not be supported.

In order to provide the possibility of avoiding name collisions without namespaces, we added to all globally visible
names the prefixABA_. There are two possibilities for reusing your old codes together with the new name concept.

The first method is to include the fileoldnames.h into every file usingABACUS names without the prefix
ABA_. In the compilation the preprocessor flagABACUS_OLD_NAMES must be set. With preprocessor definitions
the old names are converted to new names. You should be aware that this technique can have dangerous side
effects. Therefore, this procedure shouldnot be applied if you combineABACUS with any other library in your
application.

The second method is the better method and is not much more work than the first one. In thetools subdirectory
of theABACUS distribution you can find the Perl scriptupd-names-2.0. If you apply this script to all source
files of yourABACUS application by calling

upd-names-2.0 <files>

a copy of each file given in<files> is made in the subdirectorynew-files and the old names are replaced by
the new names.

3.5.3 Include File Path

Another problem are header files of different libraries withthe same name. It can happen that due to the inclusion
structure it is not possible to avoid these conflicts by the order of the include file search paths. Therefore, every
ABACUS include file (*.h and*.inc) is included now from the subdirectoryabacus. You can continue using
the old include file structure by setting the preprocessor flag ABACUS_OLD_INCLUDE. Here is an example how
anABACUS file includes otherABACUS files:

#ifdef ABACUS_OLD_INCLUDE
#include "array.h"
#else
#include "abacus/array.h"
#endif

We strongly recommend the use of the new include file structure. In combination with the LP-solver Soplex the
new include file structure is sometimes required (it dependswhichABACUS and which Soplex files you include).
There may be name conflicts since both systems have a filetimer.h.

Due to this concept also the directory structure of theABACUS distribution has changed. All include files are
now in the subdirectoryinclude/abacus.

A conversion can be performed with the help of the Perl scripttools/upd-includes-2.0. Calling

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

3.5 New Features of ABACUS 2.0 17

upd-includes-2.0 <files>

makes a copy of all<files> into the subdirectorynew-includes and adapts them to the new include structure,
e.g.,

#include "master.h"

is replaced by

#include "abacus/master.h"

in the new files.

3.5.4 Advanced Control of the Tailing Off Effect

ABACUS automatically controls the tailing off effect according tothe parametersTailOffNLps and
TailOffPercent of the configuration file.abacus. Solutions of LP-relaxations can be skipped in this control
by calling the functionignoreInTailingOff() (see Section5.2.25).

3.5.5 Problem Specific Fathoming

Problem specific fathoming criteria can be added by the redefinition of the virtual functionABA_SUB::excep-
tionFathom() (see Section5.2.23).

3.5.6 Problem Specific Branching

A problem specific branching step can be enforced by the redefinition of the virtual functionABA_SUB::ex-
ceptionBranch() (see Section5.2.24).

3.5.7 Generalized Strong Branching

Generalized strong branching is the possibility of evaluating different branching rules and selecting the best ones.
If branching on variables is performed, e.g., the first linear programs of the (potential) sons for various branching
variables are solved, in order to find the most promising variable. Together with the built-in branching strategies
this feature can be controlled with the new entryNBranchingVariableCandidates of the configuration
file (Section5.2.26). Moreover, also other branching strategies can be evaluated as explained in Section5.2.8.

3.5.8 Pool without Constraint Duplication

One problem in usingABACUS can be the large number of generated constraints and variables that use a lot of
memory. In order to reduce the memory usage we provide a new pool classABA_NONDUPLPOOL that avoids the
multiple storage of the same constraint or variable in the same pool. The details are explained in Section5.2.2.

3.5.9 Visual C++ Compiler

In addition to the GNU C++ compiler on UNIX operating systems,ABACUS is now also available on Windows
NT in combination with the Visual C++ compiler. Further details for usingABACUS in this new environment
can be found in Section2

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

18 New Features

3.5.10 Compiler Preprocessor Flag

In the compilation of anABACUS-application the used compiler must be specified by a preprocessor flag (see
Section2.1).

3.5.11 LP-Solver Preprocessor Flag

The LP-solvers that are used have to be specified by a preprocessor flag (see Section2.3). Also the flags for the
LP-solver Cplex changed.

3.5.12 Parameters of Configuration File

Three new parameters have been added to the configuration file.abacus.

3.5.12.1 NBranchingVariableCandidates

The parameterNBranchingVariableCandidates can be used to control the number of tested branching
variables if our extended strong branching concept is used (see Section5.2.8).

3.5.12.2 DefaultLpSolver

An other new parameter isDefaultLpSolver allows to choose eitherCplex or Soplex as default LP-solver
for the solution of the LP-relaxations.

3.5.12.3 SoPlexRepresentation

Soplex works internally either with column or a row basis. This basis representation can be selected with the
parameterSoPlexRepresentation. Our tests show that only the row basis works stable in Soplex1.0. Further
details are explained in Section5.2.26.

3.5.13 New Functions

We implemented several new functions. Some of them might be also interesting for the users ofABACUS. For
the detailed documentation we refer to the reference manual.

• ABA_BPRIOQUEUE::getMinKey()

• ABA_BHEAP::getMinKey()

• bool ABA_GLOBAL::isInteger(double x)

• In addition to the function

void MASTER::initializePools(ABA_BUFFER<ABA_CONSTRAINT*> &constraints,
ABA_BUFFER<ABA_VARIABLE*> &Variables,
int varPoolSize,
int cutPoolSize,
bool dynamicCutPool = false);

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

3.5 New Features of ABACUS 2.0 19

the function

void MASTER::initializePools(ABA_BUFFER<ABA_CONSTRAINT*> &constraints,
ABA_BUFFER<ABA_CONSTRAINT*> &cuts,
ABA_BUFFER<ABA_VARIABLE*> &Variables,
int varPoolSize,
int cutPoolSize,
bool dynamicCutPool = false);

also allows the insertion of some initial cuts into the cut pool.

• Manipulators for setting the width and the precision ofABA_OSTREAM have been added that work like the
corresponding manipulators of the classostream.

ABA_OSTREAM_MANIP_INT setWidth(int w);
ABA_OSTREAM_MANIP_INT setPrecision(int p);

• ABA_OSTREAM::setFormatFlag(fmtflags)

• The objective function sense can be changed in the ABA_LP classes with the function

void ABA_LP::sense(const ABA_OPTSENSE &newSense).

• The != operator is now available for the classABA_STRING.

3.5.14 Miscellaneous

Besides some bug fixes we made many minor improvements. The most important ones are listed here.

• The output for the output levelsSubProblem andLinearProgram is formatted in a nicer way.

• Besides those Cplex parameters that could be directly controlled byABACUS functions, it is now possible
to get or to modify any Cplex 4.0 and 5.0 parameter with the functions:

int CPLEXIF::CPXgetdblparam(int whichParam, double *value);
int CPLEXIF::CPXsetdblparam(int whichParam, double value);
int CPLEXIF::CPXgetintparam(int whichParam, int *value);
int CPLEXIF::CPXsetintparam(int whichParam, int value);

• If a linear program is solved with the barrier method, then usually a cross over to an optimal basic solution
is performed. The value of a variable in the optimal solutionof the barrier method before the cross over can
be obtained with the functiondouble barXVal(int i). If this “pre-cross over” solution is available,
can be checked with the functionSOLSTAT barXValStatus() const.

• The minimal required violation of a constraint or variablein a pool separation or pool pricing, respec-
tively, can be specified as a parameter of the functionsABA_SUB::constraintPoolSeparation
andABA_SUB::variablePoolSeparation. The minimal violation is also a parameter of the func-
tion ABA_POOL::separate and of redefinitions of this function in derived classes.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

20 New Features

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

Chapter 4

Design

From a user’s point of view, who wants to implement a linear-programming based branch-and-bound algorithm,
ABACUS provides a small system of base classes from which the application specific classes can be derived.
All problem independent parts are “invisible” for the user such that he can concentrate on the problem specific
algorithms and data structures.

The basic ideas are pure virtual functions, virtual functions, and virtual dummy functions. A pure virtual function
has to be implemented in a class derived by the user of the framework, e.g., the initialization of the branch-and-
bound tree with a subproblem associated with the application. In virtual functions we provide default implementa-
tions, which are often useful for a big number of applications, but can be redefined if required, e.g., the branching
strategy. Finally, under a virtual dummy function we understand a virtual function that does nothing in its default
implementation, but can be redefined in a derived class, e.g., the separation of cutting planes. It is not a pure virtual
function as its definition is not required for the correctness of the algorithm.

Moreover, an application based onABACUS can be refined step by step. Only the derivation of a few new
classes and the definition of some pure virtual functions is required to get a branch-and-bound algorithm running.
Then, this branch-and-bound algorithm can be enhanced by the dynamic generation of constraints and/or variables,
primal heuristics, or the implementation of new branching or enumeration strategies.

Default strategies are available for numerous parts of the branch-and-bound algorithm, which can be controlled via
a parameter file. If none of the system strategies meets the requirements of the application, the default strategy can
simply be replaced by the redefinition of a virtual function in a derived class.

4.1 Basics

The inheritance graph of any set of classes in C++ must be a directed acyclic graph. Very often these inheritance
graphs form forests or trees. Also the inheritance graph ofABACUS is designed as a tree with a single exception
where we use multiple inheritance.

The following sections and Table4.1give a survey of the different classes ofABACUS. The details are outlined
in Section4.2.

Basically the classes ofABACUS can be divided in three different main groups. The application base classes
are the most important ones for the user. From these classes the user of the framework has to derive the classes
for his applications. The pure kernel classes are usually invisible for the user. To this group belong, e.g., classes
for supporting the branch-and-bound algorithm, for the solution of linear programs, and for the management of
constraints and variables. Finally, there are the auxiliaries, i.e., classes providing basic data structures and tools,
which can optionally be used for the implementation of an application.

22 Design

ABACUS
Pure Kernel Application Base Auxiliaries
Linear Program Master Basic Data Structures
Pool Subproblem Tools
Branch & Bound Constraints

Variables

Table 4.1: The classes ofABACUS.

4.1.1 Application Base Classes

The following classes are usually involved in the derivation process for the implementation of a new application.

4.1.1.1 The Master

The classABA_MASTER is one of the central classes of the framework. It controls the optimization process and
stores global data structures for the optimization. For each new application a class has to be derived from the class
ABA_MASTER.

4.1.1.2 The Subproblem

The classABA_SUB represents a subproblem of the implicit enumeration, i.e.,a node of the branch-and-bound
tree. The subproblem optimization is performed by the solution of linear programming relaxations. Usually, most
running time is spent within the member functions of this class. Also from the classABA_SUB a new class has to be
derived for each new application. By redefining virtual functions in the derived class problem specific algorithms
as, e.g., cutting plane or column generation, can be embedded.

4.1.1.3 The Constraints and Variables

ABACUS provides some default concepts for the representation of constraints and variables. However,
it still might be necessary that for a new application special classes have to be derived from the classes
ABA_CONSTRAINT andABA_VARIABLE, which then implement application specific methods and storage for-
mats.

4.1.2 Pure Kernel Classes

This group covers classes that are required for the implementation of the kernel ofABACUS but usually of no
direct importance for the user of the framework.

4.1.2.1 The Root of the Class Tree

All classes ofABACUS have the common base classABA_ABACUSROOT.

4.1.2.2 The Linear Program

The part of the inheritance graph related to the solution of linear programs contains several classes. There is
a general interface to the linear program from which a class for the solution of linear programming relaxations

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

4.2 Details 23

within our branch-and-bound algorithm is derived. Both classes are independent from the used LP-solver, which
can be plugged in via a separate class. Currently, we supportthe LP-solvers supported by the Open Solver Interface
(Osi). In theory all these solvers can be used to solve the LP relaxations. We have testedABACUS with CPLEX,
Clp and Glpk.

4.1.2.3 The Pool

Constraints and variables are stored in pools. We provide anabstract base class for the representation of pools and
derive from this class a standard realization of a pool. Several other classes are required for a safe management of
active and inactive constraints and variables.

4.1.2.4 The Branch-and-Bound Auxiliary Classes

Various classes are required to support the linear-programming based branch-and-bound algorithm, e.g., for the
management of the branch-and-bound tree, for the storage ofthe active and inactive constraints, special buffers
for newly generated constraints and variables, for the control of the tailing off effect, and for fixing variables by
reduced costs. An important part of the inheritance graph inthis context is formed by the various branching rules,
which allow a very flexible implementation of branching strategies.

4.1.3 Auxiliaries

We use the following classes for the implementation of otherclasses withinABACUS, but they might also be
useful for the implementation of new applications.

4.1.3.1 The Basic Data Structures

ABACUS is complemented by a set of basic data structures. Most of them are implemented as generic classes
(templates).

4.1.3.2 The Tools

Finally, we also provide some useful tools, e.g., for generating output, measuring time, and sorting.

4.2 Details

In this section we describe the different subtrees in the class hierarchy and their classes. We give this description
not in the form of a manual by describing each member of the class (this is later done partially in Chapter5 and in
detail in the reference manual), but we try to explain the problems, our ideas, why we designed the class hierarchy
and the single classes as we did, and discuss also some alternatives.

4.2.1 The Root of the Class-Tree

It is well known that global variables, constants, or functions can cause a lot of problems within a big software
system. This is even worse for frameworks such asABACUS that are used by other programmers and may be
linked together with other libraries. Here, name conflicts and undesired side effects are almost inevitable. Since
global variables can also make a future parallelization more difficult we have avoided them completely.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

24 Design

We have embedded functions and enumerations that might be used by all other classes in the class
ABA_ABACUSROOT. We use this class as a base class for all classes within our systems. Since the class
ABA_ABACUSROOT contains no data members, objects of derived classes are notblown up.

Currently,ABA_ABACUSROOT implements only an enumeration with the different exit codes of the framework
and implements some public member functions. The most important one of them is the functionexit(), which
calls the system functionexit(). This construction turns out to be very helpful for debugging purposes.

4.2.2 The Master

In an object oriented implementation of a linear-programming based branch-and-bound algorithm we require one
object that controls the optimization, in particular the enumeration and resource limits, and stores data that can
be accessed from any other object involved in the optimization of a specific instance. This task is performed by
the classABA_MASTER, which is not identical with the root node of the enumerationtree. For each application
of ABACUS we have to derive a class fromABA_MASTER implementing problem specific “global” data and
functions.

Every object, which requires access to this “global” information, stores a pointer to the corresponding object of
the classABA_MASTER. This holds for almost all classes of the framework. For example the classABA_SUB,
implementing a subproblem of the branch-and-bound tree, has as a member a pointer to an object of the class
ABA_MASTER (other members of the classABA_SUB are omitted):

class ABA_SUB {
ABA_MASTER *master_;

};

Then, we can access within a member function of the classABA_SUB, e.g., the global upper bound by calling

master_->upperBound();

whereupperBound() is a member function of the classABA_MASTER.

Encapsulating this global information in a class is also important, if more than one linear-programming based
branch-and-bound is solved within one application. If the pricing problem within a branch-and-price algorithm is
again solved with the help ofABACUS, e.g., then separate master objects with different global data are used.

4.2.2.1 The Base Class Global

Within a specific application there are always some global data members as the output and error streams, zero
tolerances, a big number representing “infinity”, and some functions related with these data. For the same reasons
we discussed already in the description of the classABA_ABACUSROOT we should avoid storing these data in
global variables. It is also not reasonable to add these datato the classABA_ABACUSROOT, because it would
blow up every derived class ofABA_ABACUSROOT and it is neither necessary nor desired to have extra output
streams, zero tolerances, etc., for every object.

Instead of implementing this data directly in the classABA_MASTER we designed an extra classABA_GLOBAL,
from which the classABA_MASTER is derived. The reason is that there are several classes, especially some
basic data structures, which might be useful in programs that are not branch-and-bound algorithms. To simplify
their reuse these classes have a pointer to an object of the classABA_GLOBAL instead of one to an object of the
classABA_MASTER.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

4.2 Details 25

4.2.2.2 Branch-and-Bound Data and Functions

The classABA_MASTER augments the data inherited from the classABA_GLOBALwith specific data members and
functions for branch-and-bound. It has objects of classes as members that store the list of subproblems which still
have to be processed in the implicit enumeration (classABA_OPENSUB), and that store the variables which might
be fixed by reduced cost criteria in later iterations (classABA_FIXCAND). Moreover, the solution history, timers
for parts of the optimization, and a lot of other statisticalinformation is stored within the classABA_MASTER.

The classABA_MASTER also provides default implementations of pools for the storage of constraints and vari-
ables. We explain the details in Section4.2.5.

A branch-and-bound framework requires also a flexible way for defining enumeration strategies. The correspond-
ing virtual functions are defined in the classABA_MASTER, but for a better understanding we explain this concept
in Section4.2.7, when we discuss the data structure for the open subproblems.

4.2.2.3 Limits on the Optimization Process

The control of limits on the optimization process, e.g., theamounts of CPU time and wall-clock time, and the size
of the enumeration tree are performed by members of the classABA_MASTER during the optimization process.
Also the guarantee of the solution is monitored by the classABA_MASTER.

4.2.2.4 The Initialization of the Branch-and-Bound Tree

When the optimization is started, the root node of the branch-and-bound tree has to be initialized with an object
of the classABA_SUB. However, the classABA_SUB is an abstract class, from which a class implementing the
problem specific features of the subproblem optimization has to be derived. Therefore, the initialization of the root
node is performed by a pure virtual function returning a pointer to a class derived from the classABA_SUB. This
function has to be defined by a problem specific class derived from the classABA_MASTER.

4.2.2.5 The Sense of the Optimization

For simplification often programs that can be used for minimization and maximization problems use internally
only one sense of the optimization, e.g., maximization. Within a framework this strategy is dangerous, because
if we access internal results, e.g., the reduced costs, froman application, we might misinterpret them. Therefore,
ABACUS also works internally with the true sense of optimization. The value of the best known feasible solution
is denotedprimal bound, the value of a linear programming relaxation is denoteddual boundif all variables
price out correctly. The functionslowerBound() andupperBound() interpret the primal or dual bound,
respectively, depending on the sense of the optimization. An equivalent method is also used for the local bounds
of the subproblems.

4.2.2.6 Reading Parameters

Computer programs in a UNIX environment often use configuration files for the control of certain parameters.
Usually, these parameters are stored in the home directory of the user or the directory of the program and start with
a ‘.’. We use a similar concept for reading the parameters ofABACUS. These parameters are read from the file
.abacus.

However, asABACUS is a framework for the implementation of different algorithms, there are further require-
ments for the parameter concept. First, there should be a simple way for reading problem specific parameters. An
extendable parameter format should relieve the user of opening and reading his own parameter files. Second, a user
of our system might have several applications. It should be possible to specify parameters for different applications
and to redefine application dependent parameters defined in the file.abacus.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

26 Design

Therefore, we provide the following parameter concept. Allparameters read from the file.abacus are written
into a dictionary. Application specific parameters can be specified in extra parameter files following a very simple
format. For files using our parameter format we provide already an input function. The parameters read by this
input function are also written to the parameter dictionary. Hence, parameters of the file.abacus can be easily
redefined. Moreover, we also provide simple functions to extract the values of the parameters from the dictionary.

The parameters in.abacus include limits on the resources of the optimization process, control of various strate-
gies (e.g., the enumeration strategy, the branching strategy, zero tolerances for various decisions, the amount of
output, parameters for the LP-solver). A detailed list of parameters can be found in Section5.2.26.

4.2.3 The Subproblem

The classABA_SUB represents a subproblem of the implicit enumeration, i.e.,a node of the branch-and-bound
tree. The class subproblem is an abstract class, from which aproblem specific subproblem has to be derived. In
this derivation process problem specific functions can be added, e.g., for the generation of variables or constraints.

4.2.3.1 The Root Node of the Branch-and-Bound Tree

For the root node of the optimization the constraint and variable sets can be initialized explicitly. As in many
applications the initial variable and constraint sets are in a one-to-one correspondence with the items of the initial
variable and constraint pools, we provide this default initialization mechanism. By default, the first linear program
is solved with the barrier method followed by a crossover to abasic solution, but we provide a flexible mechanism
for the selection of the LP-method (see Section5.2.11).

4.2.3.2 The Other Nodes of the Branch-and-Bound Tree

As long as only globally valid constraints and variables areused it would be correct to initialize the constraint and
variable system of a subproblem with the system of the previously processed subproblem. However,ABACUS is
designed also for locally valid constraints and variables.Therefore, each subproblem inherits the final constraint
and variable system of the father node in the enumeration tree. This system might be modified by the applied
branching rule. Moreover, this approach avoids also tedious recomputations and makes sure that heuristically
generated constraints do not get lost.

If conventional branching strategies, like setting a binary variable, changing the bounds of an integer variable, or
even adding a branching constraint are applied, then the basis of the last solved linear program of the father is still
dual feasible. As we store the basis status of the variables and slack variables we can avoid phase 1 of the simplex
method if we use the dual simplex method.

If due to another branching method, e.g., for branch-and-price algorithms, the dual feasibility of the basis is lost,
another LP-method can be used.

4.2.3.3 Branch-and-Bound

A linear-programming based branch-and-bound algorithm inits simpliest form is obtained if linear programming
relaxations in each subproblem are solved that are neither enhanced by the generation of cutting planes nor by the
dynamic generation of variables. Such an algorithm requires only two problem specific functions: one to check if
a given LP-solution is a feasible solution of the optimization problem, and one for the generation of the sons.

The first function is problem specific, because, if constraints of the integer programming formulation are violated,
the condition that all discrete variables have integer values is not sufficient. Therefore, for safety this function is
declared pure virtual.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

4.2 Details 27

The second required problem specific function is usually only a one-liner, which returns the problem specific
subproblem generated by a branching rule.

Hence, the implementation of a pure branch-and-bound algorithm does not require very much effort.

4.2.3.4 The Optimization of the Subproblem

The core of the classABA_SUB is its optimization by a cutting plane algorithm. As dynamically generated vari-
ables are dual cuts we also use the notion cutting plane algorithm for a column generation algorithm. By default,
the cutting plane algorithm only solves the LP-relaxation and tries to fix and set variables by reduced costs. Within
the cutting plane algorithm four virtual dummy functions for the separation of constraints, for the pricing of vari-
ables, for the application of primal heuristics, and for fixing variables by logical implications are called. In a
problem specific class derived from the classABA_SUB these virtual functions can be redefined. Motivated by
duality theory (see [Thi95]), we handle constraint and variable generation equivalently. If both constraints and
variables are generated, then by default constraints are generated. In addition to the mandatory pricing phase be-
fore the fathoming of a subproblem, we price out the inactivevariables everyk iterations. The value ofk can
be controlled by a parameter. By the redefinition of a virtualfunction other strategies for the separation/pricing
decision can be implemented.

4.2.3.5 Adding Constraints

Cutting planes may not only be generated in the functionseparate() but also in other functions of the cutting
plane phase. For the maximum cut problem, e.g., it is advantageous if the generation of cutting planes is also
possible in the functionimprove(), in which usually primally feasible solutions are computedheuristically.
If not all constraints of the integer programming formulation are active, then it might be necessary to solve a
separation problem also for the feasibility test. Therefore, we allow the generation of cutting planes in every
subroutine of the cutting plane algorithm.

4.2.3.6 Adding Variables

Like for constraints, we also allow the generation of variables during the complete subproblem optimization.

4.2.3.7 Buffering New Constraints and Variables

New constraints and variables are not immediately added to the subproblem, but stored in buffers and added at the
beginning of the next iteration. We present the details of this concept in Section4.2.7.

4.2.3.8 Removing Constraints and Variables

In order to avoid corrupting the linear program and the sets of active constraints and variables, and to allow the
removal of variables and constraints in any subroutine of the cutting plane phase, we also buffer these variables
and constraints. The removal is executed before constraints and variables are added at the beginning of the next
iteration of the cutting plane algorithm.

Moreover, we provide default functions for the removal of constraints according to the value or the basis status of
the slack variables. Variables can be removed according to the value of the reduced costs. These operations can
be controlled by parameters and the corresponding virtual functions can be redefined if other criteria should be
applied. We try to remove constraints also before a branching step is performed.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

28 Design

4.2.3.9 The Active Constraints and Variables

In order to allow a flexible combination of constraint and variable generation, every subproblem has its own set of
active constraints and variables, which are represented bythe generic classABA_ACTIVE. By default, the variables
and the constraints of the last solved linear program of the father of the subproblem are inherited. Therefore, the
local constraint and variable sets speed up the optimization. The disadvantage of these local copies is that more
memory is allocated per subproblem. However, this local storage of the active constraints and variables will
simplify a future parallelization of the framework.

Together with the active constraints and variables we also store in every subproblem the LP-statuses of the variables
and slack variables, the upper and lower bounds of the variables, and if a variable is fixed or set.

4.2.3.10 The Linear Program

As for active constraints and variables also every subproblem has its own linear program, which is only set up for
an active subproblem. Of course, the initialization at the beginning and the deletion of the linear program at the
end of the subproblem optimization costs some running time compared to a global linear program, which could be
stored in the master. However, a local linear program in every subproblem will again simplify the implementation
of a parallel version ofABACUS. Our current computational experience shows that this overhead is not too big.
However, if in future computational experiments it turns out that these local linear programs slow down the overall
running time significantly, the implementation of a specialsequential version of the code with one global linear
program will not be too difficult, whereas the opposite direction would be harder to realize.

4.2.3.11 The LP-Method

Currently, three different methods are available in state-of-the-art LP-solvers: the primal simplex method, the dual
simplex method, and the barrier method in combination with crossing over techniques for the determination of an
optimal basic solution. The choice of the method can be essential for the performance of solution of the linear
program. If a primal feasible basis is available, the primalsimplex method is often the right choice. If a dual
feasible basis is available, the dual simplex method is usually preferred. And finally, if no basis is known, or the
linear programs are very large, often the barrier methods yields the best running times.

Currently the Open Solver Interface used byABACUS does not support the barrier method. Nevertheless a
barrier method is provided for compatibility to older versions ofABACUSṪhis method outputs a warning
message and calls the primal simplex method. By default a linear program is solved by the primal simplex method,
and by the dual simplex method, if constraints have been added, or variables have been removed, or it is the first
linear program of a subproblem.

However, it should be possible to add problem specific decision criteria. Here, again a virtual function gives us
all flexibility. We keep control when this function is invoked, namely at the point when all decisions concerning
addition and removal of constraints and variables have beentaken. The function has as arguments the correct
numbers of added and removed constraints and variables. If we want to choose the LP-method problem specifically,
then we only have to redefine this function in a class derived from the classABA_SUB.

4.2.3.12 Generation of Non-Liftable Constraints

If constraint and variable generation are combined, then the active constraints must be lifted if a variable is added,
i.e., the column of the new variable must be computed. This lifting can not always be done in a straightforward
way, it can even require the solution of another optimization problem. Moreover, lifting is not only required when
a variable is added, but this problem has to be attacked already during the solution of the pricing problem.

In order to allow the usage of constraints that cannot be lifted or for which the lifting cannot be performed ef-
ficiently, we provide a management of non-liftable constraints. Each constraint has a flag if it is liftable. If the

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

4.2 Details 29

pricing routine is called and non-liftable constraints areactive, then all non-liftable constraints are removed, the
linear programming relaxation is solved again, and we continue with the cutting plane algorithm before we come
back to the pricing phase. In order to avoid an infinite repetition of this process we forbid the further generation of
non-liftable constraints during the rest of the optimization of this subproblem.

4.2.3.13 Reoptimization

If the root of the remaining branch-and-bound tree changes,but the new root has been processed earlier, then it
can be advantageous to optimize the corresponding subproblem again, in order to get improved conditions for
fixing variables by reduced costs. Therefore, we provide thereoptimization of a subproblem. The difference to the
ordinary optimization is that no branching is finally performed even if the subproblem is not fathomed. If it turns
out during the reoptimization that the subproblem is fathomed, then we can fathom all subproblems contained in
the subtree rooted at this subproblem.

4.2.3.14 Branching

Virtual functions for the flexible definition of branching strategies are implemented in the classABA_SUB. We
explain them together with the concept of branching rules inSection4.2.7.

If constraints are generated heuristically, then the concept of delayed branching can be advantageous. Instead
of generating the sons of a subproblem in a branching step, the subproblem is put back into the set of open
subproblems. There it stays several rounds dormant, i.e., other subproblems are optimized in the meantime, until
the subproblem is processed again. If between two successive optimizations of the subproblem good cutting planes
are generated that can be separated from the pool, then this technique can accelerate the optimization. The maximal
numbers of optimizations and the minimal number of dormant rounds can be controlled by parameters.

4.2.3.15 Memory Allocation

Since constraints and variables are added and removed dynamically, we also provide a dynamic memory man-
agement system, which requires no user interaction. If there is not enough memory already allocated to add a
constraint or variable, memory reallocations are performed automatically. As the reallocation of the local data, in
particular of the linear program, can require a lot of CPU time, if it is performed regularly, we allocate some extra
space for the addition of variables and constraints, and forthe nonzero entries of the matrix of the LP-solver.

4.2.3.16 Activation and Deactivation

In order to save memory we set up those data structures that are only required if the subproblem is active, e.g., the
linear program, at the beginning of the subproblem optimization and delete the memory again when the subproblem
becomes inactive. We observed that the additional CPU time required for these operations is negligible, but the
memory savings are significant.

4.2.4 Constraints and Variables

Constraints and variables are central items within linear-programming based branch-and-bound algorithms. As
ABACUS is a system for general mixed integer optimization problemsand combinatorial optimization problems
we require an abstract concept for the representation of constraints and variables. Linear programming duality
motivated us to embed common features of constraints and variables in a joint base class.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

30 Design

4.2.4.1 Constraint/Variable versus Row/Column

Usually, the notionsconstraintandrow, and the notionsvariableandcolumn, respectively, are used equivalently.

Within ABACUS constraints and rows are different items. Constraints are stored in the pool and a subproblem
has a set of active constraints. Only if a constraint is addedto the linear program, then the corresponding row is
computed. More precisely, a row is a representation of a constraint associated with a certain variable set.

The reasons for this differentiation can be explained with the subtour elimination constraints of the traveling
salesman problem, which are defined for subsetsW of the nodes of a graph asx(E(W)) ≤ |W | − 1. Storing this
inequality as it is added to the linear program would requireto store all edges (variables) with both endnodes in the
setW . Such a format would require O(|W |2) storage space. However, it would be also sufficient to store the node
setW requiring 0(|W |) storage space. Given the variablee associated with the edge(t, h), then the coefficient of
e in the subtour elimination constraint is 1 ift andh are contained inW , 0 otherwise.

For the solution of the traveling salesman problem we also want to apply sparse graph techniques. Therefore,
storing the coefficients of all active and inactive variables of a subtour elimination constraint would waste a lot of
memory. If we store only the coefficients of the variables that are active when the constraint is generated, then the
computation of the coefficient of an added variable would be difficult or even impossible. However, if we store all
nodes defining the constraint, then the coefficients of variables that are later added can be determined easily.

Efficient memory management and dynamic variable generation are the reason why we distinguish between con-
straints and rows. Each constraint must have a member function that returns the coefficient for a variable such that
we can determine the row corresponding to a set of variables.

In these considerations “constraint” can be also replaced by “variable” and “row” by “column”. A column is the
representation of a variable corresponding to a certain constraint set. Again, we use the traveling salesman problem
as example. A variable for the traveling salesman problem corresponds to an edge in a graph. Hence, it can be
represented by its end nodes. The column associated with this variable consists of the coefficients of the edge for
all active constraints.

We implemented these concepts in the classesABA_CONSTRAINT/ABA_VARIABLE, which are used for the
representation of active constraints and variables and forthe storage of constraints and variables in the pools, and
ABA_ROW/ABA_COLUMN, which are used in particular in the interface to the LP-solver.

This differentiation between constraints/variables and rows/columns is not used by any other system for the im-
plementation of linear-programming based branch-and-bound algorithms, because they are usually designed for
the solution of general mixed integer optimization problems, which do not necessarily require this distinction.
However, this concept is crucial for a practically efficientand simple application ofABACUS to combinatorial
optimization problems.

4.2.4.2 Common Features of Constraints and Variables

Constraints and variables have several common features, which we consider in a common base class.

A constraint/variable is active if it belongs to the constraint/variable set of an active subproblem. An active con-
straint/variable must not be removed from its pool. As in a parallel implementation ofABACUS there can be
several active subproblems, each constraint/variable hasa counter for the number of active subproblems, in which
it is active.

Besides being active there can be other reasons why a constraint/variable should not be deleted from its pool, e.g.,
if the constraint/variable has just been generated, then itis put into a buffer, but is not yet activated (we explain the
details in Section4.2.7). In such a case we want to set a lock on the constraint that it cannot be removed. Again,
in a parallel implementation, but also in a sequential one, we may want to set locks at the same time on the same
constraint for different reasons. Hence, we count the number of locks of each constraint/variable.

Constraints and variables can be locally or globally valid.Therefore, we provide a flag in the common base class
of constraints and variables. The functions to determine ifa local constraint or variable is valid for a certain

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

4.2 Details 31

subproblem are associated directly with the classes for constraints and variables, respectively.

It has been stated that the use of locally valid constraints and variables should be avoided as it requires a nasty
bookkeeping [PR91]. In order to free the user from this, we have embedded the management of local constraints
and variables inABACUS. The validity of a constraint/variable is automatically checked if it is regenerated from
the pool.

We also distinguish between dynamic variables/constraints and static ones. As soon as a static variable/constraint
becomes active it cannot be deactivated. An example for static variables are the variables in a general mixed
integer optimization problem, examples for static constraints are the constraints of the problem formulation of a
general mixed integer optimization problem or the degree constraints of the traveling salesman problem. Dynamic
constraints are usually cutting planes. In column generation algorithm variables can be dynamic, too.

A crucial point in the implementation of a special variable or constraint class is the tradeoff between performance
and memory usage. We have observed that a memory efficient storage format can be one of the keys to the
solutions of larger instances. Such formats are in general not very useful for the computation of the coefficient of
a single variable/constraint. Moreover, if the coefficients of a constraint for several variables or the coefficients of
a variable for several constraints have to be computed, e.g., when the row/column format of the constraint/variable
is generated in order to add it to the LP-solver, then these operations can become a bottleneck. However, given a
different format, using more memory, it might be possible toperform these operations more efficiently.

Therefore, we distinguish between the compressed format and the expanded format of a constraint/variable.
Before a bigger number of time consuming coefficient computations is performed, we try to generate the expanded
format, afterwards the constraint/variable is compressed.

Of course, both expanded and compressed formats are rather constraint/variable specific. But we provide the
bookkeeping already in the common base class and try to expand the constraint/variable, e.g., when it is added to
the linear program. Afterwards it is compressed again. The implementation of the expansion and compression is
optional.

We use again the subtour elimination constraint of the traveling salesman problem as an example for the com-
pressed and expanded format. For an inequalityx(E(W)) ≤ |W | − 1 we store the nodes of the setW in the
compressed format. The computation of the coefficient of an edge (t, h) requires O(|W |) time and space. As
expanded format we use an arrayinSubtour of typebool of lengthn (n is the number of nodes of the graph)
andinSubtour[v] is true if and only if v ∈ W . Now, we can determine the coefficient of an edge (variable)
in constant time.

4.2.4.3 Constraints

ABACUS provides all three different types of constraints: equations,≤-inequalities and≥-inequalities. The only
pure virtual function is the computation of a coefficient of avariable. We use this function to generate the row
format of a constraint, to compute the slack of an LP-solution, and to check if an LP-solution violates a constraint.
All these functions are declared virtual such that they can be redefined for performance reasons.

We distinguish between locally and globally valid constraints. By default, a locally valid constraint is considered
to be valid for the subproblem it was generated and for all subproblems in the tree rooted at this subproblem. This
criterion is implemented in a virtual function such that it can be redefined for special constraints.

If variables are generated dynamically, we distinguish between liftable and non-liftable constraints. Non-liftable
constraints have to be removed before the pricing problem can be solved (see Section4.2.3).

ABACUS provides a default non-abstract constraint class with the classABA_ROWCON, where a constraint is
represented by its row format, i.e., only the numbers of variables with nonzero coefficients and the corresponding
coefficients are stored. This format is useful, e.g., for constraints of general mixed integer optimization problems.
From the classABA_ROWCON we derive the classABA_SROWOCN, which implements some member functions
more efficiently as it assumes that the variable set is static, i.e., no variables are generated dynamically.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

32 Design

4.2.4.4 Variables

ABACUS supports continuous, integer, and binary variables in the classABA_VARIABLE. Each variable has a
lower and an upper bound, which can be set to plus/minus infinity if the variable is unbounded. We also memorize
if a variable is fixed.

The following functions have their dual analogons in the classABA_CONSTRAINT. The only pure virtual function
is now the function that returns a coefficient in a constraint. With this function the generation of the column format
and the computation of the reduced cost can be performed. We say a variable is violated if it does not price out
correctly.

Also variables can be locally or globally valid. A subproblem is by default associated with a locally valid variable.
The variable is then valid in all subproblems on the path fromthis subproblem to the root node. Of course, this
virtual function can be redefined for problem specific variables.

We provide already a non-abstract derived variable class. The classABA_COLVAR implements a variable that is
represented by the column format, i.e., only the nonzero coefficients together with the numbers of the correspond-
ing rows are stored.

4.2.5 Constraint and Variable Pools

Every constraint and variable either induced by the problemformulation or generated in a separation or pricing
step is stored in a pool. A pool is a collection of constraintsand variables. We will see later that it is advantageous
to keep separate pools for variables and constraints. Then,we will also discuss when it is useful to have also
different pools for different types of constraints or variables. But for simplicity we assume now that there is only
one variable pool and one constraint pool.

There are two reasons for the usage of pools: saving memory and an additional separation/pricing method.

A constraint or variable usually belongs to the set of activeconstraints or variables of several subproblems that
still have to be processed. Hence, it is advantageous to store in the sets of active constraints or variables only
pointers to each constraint or variable, which is stored at some central place, i.e., in a pool that is a member of
the corresponding master of the optimization. Our practical experiments show that this memory sensitive storage
format is of very high importance, since already this pool format uses a large amount of memory.

4.2.5.1 Pool Separation/Pricing

From the point of view of a single subproblem a pool may not only contain active but also inactive constraints
or variables. The inactive items can be checked in the separation or pricing phase, respectively. We call these
techniques pool separation and pool pricing. Again, motivated by duality theory we use the notion “separation”
also for the generation of variables, i.e., for pricing. Pool separation is advantageous in two cases. First, pool
separation might be faster than the direct generation of violated constraints or variables. In this case, we usually
check the pool for violated constraints or variables, and only if no item is generated, we use the more time con-
suming direct method. Second, pool separation turns out to be advantageous, if a class of constraints or variables
can be separated/priced out only heuristically. In this case, it can happen that the heuristic cannot generate the
constraint or variable although it is violated. However, earlier in the optimization process this constraint or vari-
able might have been generated. In this case the constraint or variable can be easily regenerated from the pool.
Computational experiments show that this additional separation or pricing method can decrease the running time
significantly [JRT94].

During the regeneration of constraints and variables from the pools we also have to take into account that a con-
straint or variable might be only locally valid.

The pool separation is also one reason for using different pools for variables and constraints. Otherwise, each
item would require an additional flag and a lot of unnecessarywork would have to be performed during the pool

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

4.2 Details 33

separation.

Pool separation is also one of the reasons why it can be advantageous to provide several constraint or variable
pools. Some constraints, e.g., might be more important during the pool separation than other constraints. In this
case, we might check this “important” pool first and only if wefail in generating any item we might proceed with
other pools or continue immediately with direct separationtechniques.

Other classes of constraints or variables might be less important in the sense that they cannot or can only very
seldomly be regenerated from the pool (e.g., locally valid constraints or variables). Such items could be kept in a
pool that immediately removes all items that do not belong tothe active constraint or variable set of any subproblem
which still has to be processed. A similar strategy might be required for constraints or variables requiring a big
amount of memory.

Finally, there are constraints for which it is advantageousto stay active in any case (e.g., the constraints of the
problem formulation in a general mixed integer optimization problem, or the degree constraints for the traveling
salesman problem). Also for these constraints separate pools are advantageous.

4.2.5.2 Garbage Collection

In any case, as soon as a lot of constraints or variables are generated dynamically we can observe that the pools
become very, very large. In the worst case this might cause anabnormal termination of the program if it runs out
of memory. But already earlier the optimization process might be slowed down since pool separation takes too
long. Of course, the second point can be avoided by limited strategies in pool separation, which we will discuss
later. But to avoid the first problem we require suitable cleaning up and garbage collection strategies.

The simplest strategy is to remove all items belonging not toany active variable or constraint set of any active or
open subproblem in a garbage collection process. The disadvantage of this strategy might be that good items are
removed that are accidentally momentarily inactive. A moresophisticated strategy might be counting the number
of linear programs or subproblems where this item has been active and removing initially only items with a small
counter.

Unfortunately, if the enumeration tree grows very large or if the number of constraints and variables that are active
at a single subproblem is high, then even the above brute force technique for the reduction of a pool turns out to be
insufficient.

Hence, we have to divide constraints and variables into two groups. On the one hand the items that must not be
removed from the pool, e.g., the constraints and variables of the problem formulation of a general mixed integer
optimization problem, and on the other hand those items thatcan either be regenerated in the pricing or separation
phase or are not important for the correctness of the algorithm, e.g., cutting planes. If we use the data structures
we will describe now, then we can remove safely an item of the second group.

4.2.5.3 Pool Slots

So far, we have assumed that the sets of active variables or constraints store pointers to variables or constraints,
respectively, which are stored in pools. If we would remove the variable or constraint, i.e., delete the memory we
have allocated for this object, then errors can occur if we access the removed item from a subproblem. These fatal
errors could be avoided if a message is sent to every subproblem where the deleted item is currently active. This
technique would require additional memory and running time. Therefore, we propose a data structure that can
handle this problem very simply and efficiently.

A pool is not a collection of constraints or variables, but a collection of pool slots (classABA_POOLSLOT). Each
slot stores a pointer to a constraint or variable or a 0-pointer if it is void. The sets of active constraints or variables
store pointers to the corresponding slots instead of storing pointers to the constraints or variables directly. So, if a
constraint or variable has been removed a 0-pointer will be found in the slot and the subproblem recognizes that
the constraint or variable must be eliminated since it cannot be regenerated. The disadvantage of this method is

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

34 Design

that finally our program may run out of memory since there are many useless slots.

In order to avoid this problem we add a version number as data member to each pool slot. Initially the version
number is 0 and becomes 1 if a constraint or variable is inserted in the slot. After an item in a slot is deleted a new
item can be inserted into the slot. Each time a new item is stored in the slot the version number is incremented.
The sets of active constraints and variables do not only store pointers to the corresponding slots but also the
version number of the slot when the pointer is initialized. If a member of the active constraints or variables is
accessed we compare its original and current version number. If these numbers are not equal we know that this
is not the constraint or variable we were originally pointing to and remove it from the active set. We call the
data structure storing the pointer to the pool slot and the original version number a reference to a pool slot (class
ABA_POOLSLOTREF). Hence, the sets of active constraints and variables are arrays of references to pool slots.
We present an example for this pool concept in Figure4.1. The numbers in the boxes are arbitraryly chosen version
numbers.

4.2.5.4 Standard Pool

The classABA_POOL is an abstract class, which does not specify the storage format of the collection of pool
slots. The simplest implementation is an array of pool slots. The set of free pool slots can be implemented by
a linked list. This concept is realized in the classABA_STANDARDPOOL. Moreover, aABA_STANDARDPOOL
can be static or dynamic. A dynamicABA_STANDARDPOOL is automatically enlarged, when it is full, an item is
inserted, and the cleaning up procedure fails. A staticABA_STANDARDPOOL has a fixed size and no automatic
reallocation is performed.

More sophisticated implementations might keep an order of the pool slots such that “important” items are detected
earlier in a pool separation such that a limited pool separation might be sufficient. A criterion for this order could
be the number of subproblems where this constraint or variable is active or has been active. We will consider such
a pool in a future release.

4.2.5.5 Default Pools

The number of the pools is very problem specific and depends mainly on the separation and pricing methods. Since
in many applications a pool for variables, a pool for the constraints of the problem formulation, and a pool for
cutting planes are sufficient, we implemented this default concept. If not specified differently, in the initialization
of the pools, in the addition of variables and constraints, and in the pool pricing and pool separation these default
pools are used. We use a staticABA_STANDARDPOOL for the default constraint and cutting planes pools. The
default variable pool is a dynamicABA_STANDARDPOOL, because the correctness of the algorithm requires that
a variable which does not price out correctly can be added in any case, whereas the loss of a cutting plane that
cannot be added due to a full pool has no effect on the correctness of the algorithm as long as it does not belong to
the integer programming formulation.

If instead of the default pool concept an application specific pool concept is implemented, then the user of the
framework must make sure that there is at least one variable pool and one constraint pool and these pools are
embedded in a class derived from the classABA_MASTER.

With this concept we provide a high flexibility: An easy to usedefault implementation, which can be changed by
the redefinition of virtual functions and the application ofnon-default function arguments.

All classes involved in this pool concept are designed as generic classes such that they can be used both for variables
and constraints.

4.2.6 Linear Programs

SinceABACUS is a framework for the implementation of linear-programming based branch-and-bound algo-
rithms it is obvious that the solution of linear programs plays a central role, and we require a class concept of

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

4.2 Details 35

C
onstraint

C
onstraint

C
onstraint

C
onstraint

C
onstraint

C
onstraint

C
onstraint

C
onstraint

C
onstraint

C
onstraint

2 2 2 2 Constraint Pool1 3 1 3 3

2 2 21 3 1
Active Constraints

Active Variables

Subproblem

21 3
Active Constraints

Active Variables

Subproblem

Variable Pool2 1 1 3 2 2 3 33

2 1 1 2 2 2 3 1 3

V
ariable

V
ariable

V
ariable

V
ariable

V
ariable

V
ariable

V
ariable

V
ariable

V
ariable

1

3

Figure 4.1: The pool concept.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

36 Design

the representation of linear programs. Moreover, linear programs might not only be used for the solution of
LP-relaxations in the subproblems, but they can also be usedfor other purposes, e.g., for the separation of lift-
and-project cutting planes of zero-one optimization problems [BCC93a, BCC93b] and within heuristics for the
determination of good feasible solutions in mixed integer programming [HP93].

Therefore, we would like to provide two basic interfaces fora linear program. The first one should be in a very
general form for linear programs defined by a constraint matrix stored in some sparse format. The second one
should be designed for the solution of the LP-relaxations inthe subproblem. The main differences to the first
interface are that the constraint matrix is stored in the abstract ABA_VARIABLE/ABA_CONSTRAINT format
instead of theABA_COLUMN/ABA_ROW format and that fixed and set variables should be eliminated.

Another important design criterion is that the solution of the linear programs should be independent from the used
LP-solver, and plugging in a new LP-solver should be simple.

4.2.6.1 The Basic Interface

The result of these requirements is the class hierarchy of Figure4.2. The classABA_LP is an abstract base class
providing the public functions that are usually expected: initialization, optimization, addition of rows and columns,
deletion of rows and columns, access to the problem data, thesolution, the slack variables, the reduced costs, and
the dual variables. These functions do some minor bookkeeping and call a pure virtual function having the same
name but starting with an underscore (e.g,optimize() calls_optimize). These functions starting with an
underscore are exactly the functions that have to be implemented by an interface to an LP-solver.

4.2.6.2 The LP-Solver Interface

The classABA_OSIIF implements these solver specific functions. The classABA_OSIIF itself is an interface to
Osi (Open Solver Interface) which is a uniform API for calling embedded linear and mixed-integer programming
solvers. Using this generic API means that the single interface classABA_OSIIF provides access to a whole
range of LP-solvers. Another advantage is that any change inthe API of a specific LP-solver is handled by th Osi
layer. That means that in order to support future versions ofLP-solvers no change to theABACUS code will be
necessary. When support for futher solvers is added to Osi only minimal changes toABACUS will be necessary
to make them available for solving linear programs.

4.2.6.3 Linear Programming Relaxations

The most important linear programs being solved within thissystem are the LP-relaxations solved in the op-
timization of the subproblems. However, the active constraints and variables of a subproblem are not stored
in the format required by the classABA_LP. Therefore, we have to implement a transformation from the
ABA_VARIABLE/ABA_CONSTRAINT format to theABA_COLUMN/ABA_ROW format.

Two options are available for the realization of this transformation: either it can be implemented in the class
ABA_SUB or in a new class derived from the classABA_LP. We decided to implement such an interface class,
which we callABA_LPSUB, for the following reasons. First, the interface is better structured. Second, the sub-
problem optimization becomes more robust for later modifications of the classABA_LP. Third, we regard the class
ABA_LPSUB as a preprocessor for the linear programs solved in the subproblem, because fixed and set variables
can be eliminated from the linear program submitted to the solver. It depends on the used solution method if all
fixed and set variables should be eliminated. If the simplex method is used and a basis is known, then only non-
basic fixed and set variables should be eliminated. The encapsulation of the interface between the subproblem and
the classABA_LP supports a more flexible adaption of the elimination to otherLP-solvers in the future and also
enables us to use other LP-preprocessing techniques, e.g.,constraint elimination, or changing the bounds of vari-
ables under certain conditions (see [Sav94]), without modifying the variables and constraints in the subproblem.
Preprocessing techniques other than elimination of fixed and set variables are currently not implemented.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

4.2 Details 37

ABA_OSIIF ABA_LPSUB

ABA_LPSUBOSI

ABA_LP

Figure 4.2: The linear programming classes.

4.2.6.4 Solving Linear Programming Relaxations

The subproblem optimization in the classABA_SUB uses only the public functions of the classABA_LPSUB,
which is again an abstract class independent from the used LP-solver.

A linear program solving the relaxations within a subproblem with a LP-solver supported by Osi is defined
by the classABA_LPSUBOSI, which is derived from the classesABA_LPSUB and ABA_OSIIF. The class
ABA_LPSUBOSI only implements a constructor passing the arguments to the base classes. Using a LP-solver
not suppported by Osi in this context requires the definitionof a class equivalent to the classABA_LPSUBOSI and
a redefinition of the virtual functionABA_LPSUB *ABA_SUB::generateLp(), which is a one-line function
allocating an object of the classABA_LPSUBOSI and returning a pointer to this object.

Therefore, it is easy to use different LP-solvers for differentABACUS applications and it is also possible to use
different LP-solvers in a singleABACUS application. For instance, if there is a very fast method forthe solution
of the linear programs in the root node of the enumeration tree, but all other linear programs should be solved by
Cplex, then only a simple modification ofABA_SUB::generateLp() is required.

To avoid multiple instances of the classABA_LP in objects of the classABA_LPSUBOSI, the classes
ABA_OSIIF, andABA_LPSUB are virtually derived from the classABA_LP. In order to save memory we do
not make copies of the LP-data in any of the classes of this hierarchy except for the data that is passed to the
LP-solvers in the classABA_OSIIF.

4.2.7 Auxiliary Classes for Branch-and-Bound

In this section we are going to discuss the design of some important classes that support the linear-programming
based branch-and-bound algorithm. These are classes for the management of the open subproblems, for buffering
newly generated constraints and variables, for the implementation of branching rules, for the candidates for fixing
variables by reduced costs, for the control of the tailing off effect, and for the storage of a solution history.

4.2.7.1 The Set of Open Subproblems

During a branch-and-bound algorithm subproblems are dynamically generated in branching steps and later opti-
mized. Therefore, we require a data structure that stores pointers to all unprocessed and dormant subproblems and
supports the insertion and the extraction of a subproblem.

One of the important issues in a branch-and-bound algorithmis the enumeration strategy, i.e., which subproblem
is extracted from the set of open subproblems for further processing. It would be possible to implement the
different classical enumeration strategies, like depth-first search, breadth-first search, or best-first search within
this class. But in this case, an application-specific enumeration strategy could not be added in a simple way by
a user ofABACUS. Of course, with the help of inheritance and virtual functions a technique similar to the one
we implemented for the usage of different LP-solvers for thesubproblem optimization could be applied. However,
there is a much simpler solution for this problem.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

38 Design

In the classABA_MASTER we define a virtual member function that compares two subproblems according to the
selected enumeration strategy and returns 1 if the first subproblem has higher priority,−1 if the second one has
higher priority, and 0 if both subproblems have equal priority. Application specific enumeration strategies can be
integrated by a redefinition of this virtual function. In order to compare two subproblems within the extraction
operation of the classABA_OPENSUB this comparison function of the associated master is called.

The classABA_OPENSUB implements the set of open subproblems as a doubly linked linear list. Each time
when another subproblem is required for further processingthe complete list is scanned and the best subproblem
according to the applied enumeration strategy is extracted. This implementation has the additional advantage,
that it is very easy to change the enumeration strategy during the optimization process, e.g., to perform a diving
strategy, which uses best-first search but performs a limited depth first search everyk iterations.

The drawback of this implementation is the linear running time of the extraction of a subproblem. If the set of
open subproblems would be implemented by a heap, then the insertion and the extraction of a subproblem would
require logarithmic time, whereas in the current implementation the insertion requires constant, but the extraction
requires linear time. But if the enumeration strategy is changed, the heap has to be reinitialized from scratch, which
requires linear time.

However, it is typical for a linear-programming based branch-and-bound algorithm that a lot of work is performed
in the subproblem optimization, but the total number of subproblems is comparatively small. Also the performance
analysis of our current applications shows that the runningtime spent in the management of the set of open sub-
problems is negligible. Due to the encapsulation of the management of the set of open subproblem in the private
part of the classABA_OPENSUB, it will be no problem to change the implementation, as soon as it is required.

In order to allow the special fathoming technique for fathoming more than one subproblem in case of a contra-
diction (even though it is currently not implemented), the classABA_OPENSUB supports also the removal of an
arbitrary subproblem. This operation cannot be performed in logarithmic time in a heap, but requires linear time. A
data structure providing logarithmic running time for the insertion, extraction of the minimal element, and removal
of an arbitrary element is, e.g., a red-black tree [Bay72, GS78]. According to our current experience it seems that
the implementation effort for these enhanced data structures does not pay.

We provide four rather common enumeration strategies per default: best-first search, breadth-first search, depth-
first search, and a simple diving strategy performing depth-first search until the first feasible solution is found and
continuing afterwards with best-first search.

If the branching strategy is branching on a binary variable,then these default enumeration strategies are further
refined. We can often observe in mixed integer programming that feasible solutions are sparse, i.e., only a small
number of variables have a nonzero value. Setting a binary variable to one may induce a subproblem with a smaller
number of feasible solutions than for its brother in which the branching variable is set to zero. Therefore, if two
subproblems have the same priority in the enumeration, we prefer that one with the branching variable set to one.
This resolution of subproblems having equal priority is performed in a virtual function, such that it can be adapted
to each specific application or can be extended to other branching strategies.

4.2.7.2 Buffering Generated Variables and Constraints

Usually, new constraints are generated in the separation phase. However, it is possible that in some applications
violated constraints are also generated in other subroutines of the cutting plane algorithm. In particular, if not all
constraints of the integer programming formulation are active in the subproblem a separation routine might have
to be called to check the feasibility of the LP-solution. Another example is the maximum cut problem, for which
it is rather convenient if new constraints can also be generated while we try to find a better feasible solution after
the linear program has been solved. Therefore, it is necessary that constraints can be added by a simple function
call from any part of the cutting plane algorithm.

This requirement also holds for variables. For instance, when we perform a special rounding algorithm on a
fractional solution during the optimization of the traveling salesman problem, we may detect useful variables that
are currently inactive. It should be possible to add such important variables before they may be activated in a later

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

4.2 Details 39

pricing step.

It can happen that too many variables or constraints are generated such that it is not appropriate to add all of them,
but only the “best” ones. Measurements for “best” are difficult, for constraints this can be the slack or the distance
between the fractional solution and the associated hyperplane, for variables this can be the reduced costs.

Therefore, we have implemented a buffer for generated constraints and variables in the generic class
ABA_CUTBUFFER, which can be used both for variables and constraints. Thereis one object of this class for
buffering variables, the other one for buffering constraints. Constraints and variables that are added during the
subproblem optimization are not added directly to the linear program and the active sets of constraints and vari-
ables, but are added to these buffers. The size of the bufferscan be controlled by parameters. At the beginning of
the next iteration items out of the buffers are added to the active constraint and variable sets and the buffers are
emptied. An item added to a buffer can receive an optional rank given by a floating point number. If all items in a
buffer have a rank, then the items with maximal rank are added. As the rank is only specified by a floating point
number, different measurements for the quality of the constraints or variables can be applied. The number of added
constraints and variables can be controlled again by parameters.

If an item is discarded during the selection of the constraints and variables from the buffers, then usually it is also
removed from the pool and deleted. However, it may happen that these items should be kept in the pool in order
to regenerate them in later iterations. Therefore, it is possible to set an additional flag while adding a constraint or
variable to the buffer that prevents it from being removed from the pool if it is not added. Constraints or variables
that are regenerated form a pool receive this flag automatically.

Another advantage of this buffering technique is that adding a constraint or variable does not change immediately
the current linear program and active sets. The update of these data structures is performed at the beginning of the
cutting plane or column generation algorithm before the linear program is solved. Hence, this buffering method
together with the buffering of removed constraints and variables relieves us also from some nasty bookkeeping.

4.2.7.3 Branching

It should be possible that in a framework for linear-programming based branch-and-bound algorithms many dif-
ferent branching strategies can be embedded. Standard branching strategies are branching on a binary variable by
setting it to 0 or 1, changing the bounds of an integer variable, or splitting the solution space by a hyperplane such
that in one subproblemaT x ≥ β and in the other subproblemaT x ≤ β must hold. A straightforward generaliza-
tion is that instead of one variable or one hyperplane we usek variables ork hyperplanes, which results in2k-nary
enumeration tree instead of a binary enumeration tree.

Another branching strategy is branching on a set of equations a1
T x = β1, . . . , al

T x = βl. Here,l new subprob-
lems are generated by adding one equation to the constraint system of the father in each case. Of course, as for
any branching strategy, the complete set of feasible solutions of the father must be covered by the sets of feasible
solutions of the generated subproblems.

For branch-and-price algorithms often different branching rules are applied. Variables not satisfying the branching
rule have to be eliminated and it might be necessary to modifythe pricing problem. The branching rule of Ryan
and Foster [RF81] for set partitioning problems also requires the elimination of a constraint in one of the new
subproblems.

So it is obvious that we require on the one hand a rather general concept for branching, which does not only cover
all mentioned strategies, but should also be extendable to “unknown” branching methods.

On the other hand it should be simple for a user of the framework to adapt an existing branching strategy like
branching on a single variable by adding a new branching variable selection strategy.

Again, an abstract class is the basis for a general branchingscheme, and overloading a virtual function provides a
simple method to change the branching strategy. We have developed the concept of branching rules. A branching
rule defines the modifications of a subproblem for the generation of a son. In a branching step as many rules as
new subproblems are instantiated. The constructor of a new subproblem receives a branching rule. When the

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

40 Design

optimization of a subproblem starts, the subproblem makes acopy of the member data defining its father, i.e., the
active constraints and variables, and makes the modifications according to its branching rule.

The abstract base class for different branching rules is theclassABA_BRANCHRULE, which declares a pure virtual
function modifying the subproblem according to the branching rule. We have to declare this function in the class
ABA_BRANCHRULE instead of the classABA_SUB because otherwise adding a new branchrule would require a
modification of the classABA_SUB.

We derive from the abstract base classABA_BRANCHRULE classes for branching by setting a binary vari-
able (classABA_SETBRANCHRULE), for branching by changing the lower and upper bound of an integer
variable (classABA_BOUNDBRANCHRULE), for branching by setting an integer variable to a value (class
ABA_VALBRANCHRULE), and branching by adding a new constraint (classABA_CONBRANCHRULE).

This concept of branching rules should allow almost every branching scheme. Especially, it is independent of the
number of generated sons of a subproblem. Further branchingrules can be implemented by deriving new classes
from the classABA_BRANCHRULE and defining the pure virtual function for the correspondingmodification of
the subproblem.

In order to simplify changing the branching strategy we implemented the generation of branching rules in a hier-
archy of virtual functions of the classABA_SUB. By default, the branching rules are generated by branchingon a
single variable. If a different branching strategy should be implemented a virtual function must be redefined in a
class derived from the classABA_SUB.

Often in a special branch-and-cut algorithm we only want to modify the branching variable selection strategy. A
new branching variable selection strategy can be implemented again by redefining a virtual function.

4.2.7.4 Candidates for Fixing

Each time when all variables price out correctly during the processing of the root node of the branch-and-bound
tree, we store those nonbasic variables that cannot be fixed together with their statuses, reduced costs, and the
current dual bound in an object of the classABA_FIXCAND. Later, when the primal bound improves, we can try to
fix these variables by reduced cost criteria. This data structure can also be updated if the root node of the remaining
branch-and-bound tree changes.

4.2.7.5 Tailing Off

We implemented the classABA_TAILOFF to memorize the values of the last solved linear programs of asubprob-
lem to control the tailing off effect. An instance of this class is a member of each subproblem.

4.2.7.6 Solution History

The classABA_HISTORY stores the solution history, i.e., it memorizes the primal and the dual bound and the
current time whenever a new primal or dual bound is found.

4.2.8 Basic Generic Data Structures

We have implemented several basic data structures as templates. We only sketch these classes briefly. For the
details on the implementations we refer to text books about algorithms and data structures such as, e.g., [CLR90].

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

4.2 Details 41

4.2.8.1 Arrays

Arrays are already supported by C++ as in C. To provide in addition to the subscript operator[] simpler con-
struction, destruction, reallocation, copying, and assignment we have implemented the classABA_ARRAY.

4.2.8.2 A Buffer for Objects

Arrays are frequently used for buffering data, i.e., there is an additional counter that is initially 0. Then, objects
are inserted in the array at the position of the counter, which is afterwards incremented. In order to simplify such
buffering operations we have encapsulated an array together with the counter in the classABA_BUFFER.

Actually, a buffer is a special array such that the classABA_BUFFER should be derived from the class
ABA_ARRAY. Unfortunately, the version of the GNU-compiler we were using when we developed this part of the
system had a bug in the inheritance of templates. In a future release we will derive this class fromABA_ARRAY.

4.2.8.3 Bounded Stack

A stack stores a set of elements according to the last-in-first-out principle, i.e., only the last inserted element can
be accessed or removed. A linked list could implement such a data structure in which an unlimited number of
elements (limited only by the available memory) can be inserted. We would have to sacrifice some efficiency for
this flexibility. Therefore, we use an array for implementing a stack having a maximal size. If it turns out that the
initial estimation on the maximal size is too small, the stack can be reallocated.

4.2.8.4 Ring

A ring is a collection of elements that has a maximal size. If this maximal size is reached but a new element is
inserted, then the oldest element is replaced. No element can be removed explicitly from the ring except that the
ring can be emptied in a single step. The classABA_RING implements such a data structure with an array. We
need a ring in the framework to memorize the lastk (e.g.,k = 10) values of the LP-solution in the subproblem
optimization, in order to control the tailing off effect. Since this data structure might be useful for other purposes
we implemented it as a template.

4.2.8.5 Linked Lists

The classesABA_LIST andABA_DLIST provide implementations of a linked list and a doubly linkedlist, re-
spectively.

4.2.8.6 Bounded Heap

A heap is a data structure representing a complete binary tree, where each node satisfies the so called “heap-
property”. For similar efficiency reasons, we discussed already in the context of the stack, we provide an imple-
mentationABA_BHEAP of a heap with limited size by an array.

4.2.8.7 Bounded Priority Queue

A priority queue is a data structure storing a set of elementswhere each element is associated with a key. The
priority queue provides the operations inserting an element, finding the element with minimal key, and extracting
the element with minimal key. We provide an implementationABA_BPRIOQUEUE of a priority queue of limited
size with the help of a heap.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

42 Design

4.2.8.8 Hash Table

In a hash table a set of elements is stored by computing for each element the address in the table via a hash function
applied to the key of the element. As the number of possible values of keys is usually much greater than the number
of addresses in the table we require techniques for resolving collisions, i.e., if more than one element is mapped to
the same address.

We use direct addressing and collision resolution by chaining in the classABA_HASH. For integer keys we imple-
mented the Fibonacci hash function and for strings a hash function proposed in [Knu93].

4.2.8.9 Dictionary

A dictionary in our context is a data structure storing elements together with some additional data. Besides the
insertion of an element we provide a look up operation returning the data associated with an element. For the
implementation of the classABA_DICTIONARY we use a hash table.

4.2.9 Other Basic Data Structures

In this section we shortly outline some other basic data structures, which are not implemented as templates. These
are classes for the representation of sparse vectors, for sparse graphs, for strings, and for disjoint sets.

4.2.9.1 Sparse Vector

Typically, mixed integer optimization problems have a constraint matrix with a very small number of nonzero
elements. Storing also the zero elements of constraints would waste a lot of memory and increase the running
time. Therefore, we implemented in the classABA_SPARVEC, a data structure which stores only the non-zero
elements of a vector together with their coefficients in two arrays. With this implementation the critical operation
is the determination of the coefficient of an original component.

In the worst case, i.e., if the coefficient is zero, the complete array must be scanned. However, in a performance
analysis of our current applications it turns out that more sophisticated implementations using sorted elements such
that binary search can be performed or using hash tables are not necessary.

To simplify the dynamic insertion of elements, which is verycommon within this software system, an automatic
reallocation is performed if the arrays implementing the sparse vector are full. By default, the arrays are increased
by ten percent but this value can be changed in the constructor.

We use the classABA_SPARVEC mainly as base class of the classesABA_ROW andABA_COLUMN, which are
essential in the interface to the LP-solver and also used forthe implementation of special types of constraints and
variables.

4.2.9.2 String

We also implement the classABA_STRING for the representation of character strings. We provide only those
member functions which are currently required in our software system. This class still requires extensions in the
future.

4.2.9.3 Disjoint Sets

We provide the classesABA_SET andABA_FASTSET for maintaining disjoint sets represented by integer num-
bers. The operations for generating a set, union of sets, andfinding the representative of the set the element is
contained in are effciently supported.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

4.2 Details 43

4.2.10 Tools

The following classes are not data structures in a narrow sense, but provide useful tools for the management of the
output, for measuring time, and for sorting.

4.2.10.1 Output Streams

A framework like ABACUS requires different levels of output. A lot of information isrequired during the
development and debugging phase of an application, only some information on the progress of the solution process
and the final results are desired in ordinary runs, and finallythere should be no output at all if an application of
ABACUS is used as a subprogram.

In order to satisfy these requirements usually output statements are either enclosed in

#ifdef
...
#endif

preprocessor instructions or each output statement is preceded by a statement of the form

if (outLevel == ...)

We rejected the first method immediately since changing the output level would require a recompilation of the
code. The second method has the drawback that all these if-statements before output operations are not very nice
and make the source code less readable.

Therefore, we make use of the C++ output streams and derive from the classostream of the i/o-stream library a
classABA_OSTREAM implementing a specialized output stream that can be turnedon and off. More precisely, we
can apply the output operator« as usual, but write to an object of the classABA_OSTREAM instead ofostream.
If the output should be suppressed, we call a member functionto turn it off. If output is desired again later in the
program, it can be turned on again. The classABA_OSTREAM is a filter in this context for an output stream of the
classostream that can be turned on and off at any time.

The disadvantage of this filter is that if at a certain output level one output statement should pass, the next one
should be filtered out, etc., then a lot of code has to be inserted in the program for turning the output on and off,
which leads to a less readable code than the classical remedy.

However, we observed that forABACUS a rather simple structure of output levels and output statements is
sufficient. Between the two extreme cases that no output is generated (Silent) and a lot of output is produced (Full)
there are only three levels supported. On each level in addition to all output of the preceding levels some extra
information is given. After the levelSilentfollows the levelStatisticsgenerating only some statistical information
at the end of the run. At the levelSubproblema short information on the status of the optimization is output at the
end of each subproblem optimization. Finally, at the outputlevel LinearProgramsimilar output is generated after
every solved linear program.

Therefore, turning the output streams on and off is requiredvery seldomly withinABACUS and its applications
such that this concept improves the readability of the code.

Under the operating system UNIX output written tocout can be redirected to a file. Unfortunately, in this case
no output is visible on the screen. Therefore, we have implemented in the classABA_OSTREAM also the option to
generate a log-file. If this option is chosen output is both written on the screen and to the log-file. This effect can
also be obtained by using the UNIX commandtee. However, the output levels for the log-file and the standard
output may be different, e.g., one can choose output levelSubproblemfor the standard output stream to monitor
the optimization process, butFull output on the log-file for a later analysis of the run.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

44 Design

Of course, several instances of the classABA_OSTREAM can be used. The default version ofABACUS uses one
for the normal output messages, i.e., as filter forcout and one for the warning and error messages, i.e., as filter
for cerr. In an application it is possible to introduce another output stream for the problem specific output.

4.2.10.2 Timers

For a simple measurement of the CPU and the wall-clock time ofparts of the program we implemented the classes
ABA_TIMER, ABA_CPUTIMER, ABA_COWTIMER. TheABA_TIMER is the base class of the two other classes
and provides the basic functionality of a timer, like starting, stopping, resetting, output, retrieving the time, and
checking if the current time exceeds some value. The actual measurement of the time is performed by the pure
virtual functiontheTime(). This is the only function (besides the constructors and thedestructor) that is defined
by the classesABA_CPUTIMER andABA_COWTIMER.

This class hierarchy is a nice, small example where inheritance and late binding save a lot of implementational
effort.

4.2.10.3 Sorting

Sorting an array of elements according to another array of keys is quite frequently required. Usually, sorting
functions are good candidates for template functions, but we prefer to embed these functions in a template class.
The advantage is that we can provide within a class also member variables for swapping elements of the arrays,
which have the same advantages as global variables from point of view of the sorting functions (they do not have
to be put on the stack for each function call), but do not have global scope. Within the classABA_SORTER we
implemented the quicksort and the heapsort algorithm.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

Chapter 5

Using ABACUS

Section5.1provides the basic guidelines how a new application can be attacked with the help ofABACUS. While
this section describes the first steps a user should follow, we discuss in Section5.2advanced features, in particular
how default strategies can be modified according to problem specific requirements.

We strongly encourage to study this chapter together with the example of theABACUS distribution. In this
example all concepts of Section5.1and several features of Section5.2can be found.

In the following sections we also present pieces of C++ code. When we discuss variables that are of the type
“pointer to some type”, then we usually omit for convenienceof presentation the “pointer to” and the operator∗ if
there is no danger of confusion. For instance, given the variable

ABA_ARRAY<ABA_CONSTRAINT*> *constraints;

we also say “the constraints are stored in the arrayconstraints” instead of “the pointer to constraints are stored
in the array*constraints”.

In order to simplify the useABACUS we are using the following style for the names of classes, functions,
variables, and enumerations.

• Names of classes (e.g.,class ABA_COLUMN), names of enumerations (e.g.,enum VARELIMMODE), and
character strings associated with an enumeration (e.g.,const char* VARELIMMODE_[]) are written
with upper case letters.

• Members of enumerations begin with an upper case letter, e.g.,enum STATUS{Fixed, Set}.

• All other names (functions, objects, variables, functionarguments) start with a lower case letter (e.g.,
optimize()).

• We use upper case letters within all names to increase the readability (e.g.,generateSon()).

• Names of data members of classes end with an underscore suchthat they can be easily distinguished from
local variables of member functions.

• We do not refrain from using a long name if it helps expressing the concepts behind the name.

5.1 Basics

In this section we explain how our framework is used for the implementation of a new application. This section
should provide only the guidelines for the first steps of an implementation, for details we refer to Section5.2and
to the documentation in the reference manual.

46 Using ABACUS

ABA_MASTER

ABA_ABACUSROOT

ABA_SUBABA_GLOBAL ABA_CONVAR

ABA_CONSTRAINTABA_VARIABLE

ABA_MYCONSTRAINTABA_MYVARIABLE

ABA_MYSUB

ABA_MYMASTER

Figure 5.1: Embedding problem specific classes inABACUS.

If we want to useABACUS for a new application we have to derive problem specific classes from some base
classes. Usually, only four base classes ofABACUS are involved: ABA_VARIABLE, ABA_CONSTRAINT,
ABA_MASTER, andSUBPROBLEM. For some applications it is even possible that the classesABA_VARIABLE
and/orABA_CONSTRAINT are not included in the derivation process if those conceptsprovided already byABA-

CUS are sufficient. By the definition of some pure virtual functions of the base classes in the derived classes and
the redefinition of some virtual functions a problem specificalgorithm can be composed. Figure5.1 shows how
the problem specific classesMYMASTER, MYSUB, MYVARIABLE, andMYCONSTRAINT are embedded in the
inheritance graph ofABACUS.

Throughout this section we only use the default pool conceptof ABACUS, i.e., we have one pool for static
constraints, one pool for dynamically generated cutting planes, and one pool for variables. We will outline how an
application specific pool concept can be implemented in Section 5.2.1.

5.1.1 Constraints and Variables

The first step in the implementation of a new application is the analysis of its variable and constraint structure.
We require at least one constraint class derived from the classABA_CONSTRAINT and at least one variable class
derived from the classABA_VARIABLE. The used variable and constraint classes have to match suchthat a row
or a column of the constraint matrix of an LP-relaxation can be generated.

We derive from the classABA_VARIABLE the classMYVARIABLE storing the attributes specific to the variables
of our application, e.g., its number, or the tail and the headof the associated edge of a graph.

Then we derive the classMYCONSTRAINT from the classABA_CONSTRAINT

class MYCONSTRAINT : public ABA_CONSTRAINT {
public:

virtual double coeff(ABA_VARIABLE *v);
};

The functionABA_CONSTRAINT::coeff(ABA_VARIABLE *v) is a pure virtual function. Hence, we define
it in the classMYCONSTRAINT. It returns the coefficient of variablev in the constraint. Usually, we need in an
implementation of the functioncoeff(ABA_VARIABLE *v) access to the application specific attributes of the
variablev. Therefore, we have to castv to a pointer to an object of the classMYVARIABLE for the computation
of the coefficient ofv. Such that this cast can be performed safely, the variables and constraints used within an
application have to be compatible. If run time type information (RTTI) is supported on your system, these casts
can be performed safely.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

5.1 Basics 47

The functioncoeff() is used within the framework when the row format of a constraint is computed, e.g., when
the linear program is set up, or a constraint is added to the linear program. When the column associated with a
variable is generated, then the virtual member functioncoeff() of the classABA_VARIABLE is used, which is
in contrast to the functioncoeff() of the classABA_CONSTRAINT not an abstract function:

double ABA_VARIABLE::coeff(ABA_CONSTRAINT *con)
{

return con->coeff(this);
}

This method of defining the coefficients of the constraint matrix via the constraints of the matrix originates
from cutting plane algorithms. Whereas in a column generation algorithm we usually have a different view
on the problem, i.e., the coefficients of the constraint matrix are defined with the help of the variables. In
this case, it is appropriate to define the functionMYCONSTRAINT::coeff(ABA_VARIABLE *v) analo-
gously to the functionABA_VARIABLE::coeff(ABA_CONSTRAINT *v) and to define the the function
MYVARIABLE::coeff(ABA_CONSTRAINT *v).

ABACUS provides two constraint/variable pairs in its applicationindependent kernel. The most simple one is
where each variable is identified by an integer number (classABA_NUMVAR) and each constraint is represented
by its nonzero coefficients and the corresponding number of the variables (classABA_ROWCON). We use this
constraint/variable pair for general mixed integer optimization problems.

The constraint/variable pairABA_NUMCON/ABA_COLVAR is dual to the previous one. Here the constraints are
given by an integer number, but we store the nonzero coefficients and the corresponding row numbers for each
variable. Therefore, this constraint/variable pair is useful for column generation algorithms.

ABACUS is not restricted to a single constraint/variable pair within one application. There can be an arbitrary
number of constraint and variable classes. It is only required that the coefficients of the constraint matrix can be
safely computed for each constraint/variable pair.

5.1.2 The Master

There are two main reasons why we require a problem specific master of the optimization. The first reason is that
we have to embed problem specific data members like the problem formulation. The second reason is the initializa-
tion of the first subproblem, i.e., the root node of the branch-and-bound tree has to be initialized with a subproblem
of the classMYSUB. Therefore, a problem specific master has to be derived from the classABA_MASTER:

class MYMASTER : public ABA_MASTER {};

5.1.2.1 The Constructor

Usually, the input data is read from a file by the constructor or they are specified by the arguments of the constructor.

From the constructor of the classMYMASTER the constructor of the base classABA_MASTER must be called:

ABA_MASTER(const char *problemName, bool cutting, bool pricing,
ABA_OPTSENSE::SENSE optSense = ABA_OPTSENSE::Unknown,
double eps = 1.0e-4, double machineEps = 1.0e-7,
double infinity = 1.0e32);

Whereas the first three arguments are mandatory, the other ones are optional.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

48 Using ABACUS

problemName The name of the problem being solved.
cutting If true, then cutting planes are generated.
pricing If true, then inactive variables are priced out.
optSense The sense of the optimization.
eps A zero-tolerance used within all member functions of objects that have a pointer to

this global object.
machineEps Another zero tolerance to compare a value of a floating point variable with 0. This

value is usually less thaneps, becauseeps includes some “safety” tolerance, e.g., to
test if a constraint is violated.

infinity All floating point numbers greater thaninfinity are regarded as “infinitely big”.
Please note that this value might be different from the valuethe LP-solver uses inter-
nally. You should make sure that the value used here is alwaysgreater than or equal
to the value used by the solver.

An optional argument of the constructor of the classABA_MASTER is the sense of the optimization. For some
problems (e.g., the binary cutting stock problem or the traveling salesman problem) the sense of the optimization
is already known when this constructor is called. For other problems (e.g, the mixed integer optimization problem)
the sense of the optimization is determined later when the input data is read in the constructor of the specific
application. In this case, the sense of the optimization hasto be initialized explicitly before the optimization is
started with the functionoptimize().

The following example of a constructor for the classMYMASTER sets up the master for a branch-and-cut algorithm
and initializes the optimization sense explicitly as it is read from the input file.

MYMASTER::MYMASTER(const char *problemName) :
ABA_MASTER(problemName, true, false),

{
// read the data from the file problemName
if (/* problemName is a minimization problem*/)
initializeOptSense(ABA_OPTSENSE::Min);

else
initializeOptSense(ABA_OPTSENSE::Max);

}

5.1.2.2 Initialization of the Constraints and Variables

The constraints and variables that are not generated dynamically, e.g., the degree constraints of the traveling
salesman problem or the constraints and variables of the problem formulation of a general mixed integer opti-
mization problem, have to be set up and inserted in pools in a member function of the classMYMASTER. These
initializations can be also performed in the constructor, but we recommend to use the virtual dummy function
initializeOptimization() for this purpose, which is called after the optimization is started with the
functionoptimize().

By default,ABACUS provides three different pools: one for variables and two for constraints. The first constraint
pool stores the constraints that are not dynamically generated and with which the first LP-relaxation of the first
subproblem is initialized. The second constraint pool is empty at the beginning and is filled up with dynamically
generated cutting planes. In general,ABACUS provides a more flexible pool concept to which we will come
back later, but for many applications the default pools are sufficient.

After the initial variables and constraints are generated they have to be inserted into the default pools by calling
the function

virtual void initializePools(ABA_BUFFER<ABA_CONSTRAINT*> &constraints,
ABA_BUFFER<ABA_VARIABLE*> &variables,

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

5.1 Basics 49

int varPoolSize,
int cutPoolSize,
bool dynamicCutPool = false);

Here,constraints are the initial constraints,variables are the initial variables,varPoolSize is the
initial size of the variable pool, andcutPoolSize is the initial size of the cutting plane pool. The size of the
variable pool is always dynamic, i.e., this pool is increased if required. By default, the size of the cutting plane
pool is fixed, but it becomes dynamic if the argumentdynamicCutPool is true.

There is second version of the function |initializePools()| that allows the insertion of an initial set of cutting planes
into the cut pool.

The functioninitializeOptimization() can be also used to determine a feasible solution by a heuristic
such that the primal bound can be initialized.

Hence, the functioninitializeOptimization() could look as follows under the assumption that the func-
tionsnVar() andnCon() are defined in the classMYMASTER and return the number of variables and the number
of the constraints, respectively. In the example we initialize the size of the cut pool with2*nCon(). As the ar-
guments of the constructors of the classesMYVARIABLE andMYCONSTRAINT are problem specific we replace
them by “. . . ”.

After the pools are set up the primal bound is initialized with the value of a feasible solution returned by the
function myHeuristic(). While the initialization of the pools is mandatory the initialization of the primal
bound is optional.

void MYMASTER::initializeOptimization()
{

ABA_BUFFER<ABA_VARIABLE*> variables(this, nVar());
for (int i = 0; i < nVar(); i++)
variables.push(new MYVARIABLE(...));

ABA_BUFFER<ABA_CONSTRAINT*> constraints(this, nCon());
for (i = 0; i < nCon(); i++)
constraints.push(new MYCONSTRAINT(...));

initializePools(constraints, variables, nVar(), 2*nCon());
primalBound(myHeuristic());

}

5.1.2.3 The First Subproblem

The root of the branch-and-bound tree has to be initialized with an object of the problem specific subproblem class
MYSUB, which is derived from the classABA_SUB. This initialization must be performed by a definition of the
pure virtual functionfirstSub(), which returns a pointer to the first subproblem. In the following example we
assume that the constructor of the classMYSUB for the root node of the enumeration tree has only a pointer tothe
associated master as argument.

ABA_SUB *MYMASTER::firstSub()
{

return new MYSUB(this);
}

5.1.3 The Subproblem

Finally, we have to derive a problem specific subproblem fromthe classABA_SUB:

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

50 Using ABACUS

class MYSUB : public ABA_SUB {};

Besides the constructors only two pure virtual functions ofthe base classABA_SUB have to be defined, which
check if a solution of the LP-relaxation is a feasible solution of the mixed integer optimization problem, and
generate the sons after a branching step, respectively. Moreover, the main functionality of the problem specific
subproblem is to enhance the branch-and-bound algorithm with dynamic variable and constraint generation and
sophisticated primal heuristics.

5.1.3.1 The Constructors

The classABA_SUB has two different constructors: one for the root node of the optimization and one for all other
subproblems of the optimization. This differentiation is required as the constraint and variable set of the root node
can be initialized explicitly, whereas for the other nodes this data is copied from the father node and possibly
modified by a branching rule. Therefore, we also have to implement these two constructors for the classMYSUB.

The root node constructor for the classABA_SUB must be called from the root node constructor of the class
MYSUB.

ABA_SUB(ABA_MASTER *master,
double conRes, double varRes, double nnzRes,
bool relativeRes = true,
ABA_BUFFER<ABA_POOLSLOT<ABA_CONSTRAINT, ABA_VARIABLE> *> *constraints = 0,
ABA_BUFFER<ABA_POOLSLOT<ABA_VARIABLE, ABA_CONSTRAINT> *> *variables = 0);

master A pointer to the corresponding master of the optimization.
conRes The additional memory allocated for constraints.
varRes The additional memory allocated for variables.
nnzRes The additional memory allocated for nonzero elements of theconstraint matrix.
relativeRes If this argument istrue, then reserve space for variables, constraints, and nonzeros of

the previous three arguments is given in percent of the original numbers. Otherwise, the
numbers are interpreted as absolute values (casted to integer).

constraints The pool slots of the initial constraints. If the value is 0, then all constraints of the default
constraint pool are taken.

variables The pool slots of the initial variables. If the value is 0, then all variables of the default
variable pool are taken.

The values of the argumentsconRes, varRes, andnnzRes should only be good estimations. An underes-
timation does not cause a run time error, because space is reallocated internally as required. However, many
reallocations decrease the performance. An overestimation only wastes memory.

In the following implementation of a constructor for the root node we do not specify additional memory for
variables, because we suppose that no variables are generated dynamically. We accept the default settings of the
last three arguments, as this is normally a good choice for many applications.

MYSUB::MYSUB(MYMASTER *master) :
ABA_SUB(master, 50.0, 0.0, 100.0)

{ }

While there are some alternatives for the implementation of the root node for the application, the constructor of
non-root nodes has usually the same form for all applications, but might be augmented with some problem specific
initializations.

MYSUB::MYSUB(ABA_MASTER *master, ABA_SUB *father, ABA_BRANCHRULE *branchRule) :

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

5.1 Basics 51

ABA_SUB(master, father, branchRule)
{}

master A pointer to the corresponding master of the optimization.
father A pointer to the father in the enumeration tree.
branchRule The rule defining the subspace of the solution space associated with this node. More

information about branching rules can be found in Section5.2.7. As long as you are
using only the default branching on variables you do not haveto know anything about
the classABA_BRANCHRULE.

The root node constructor for the classMYSUB has to be called from the functionfirstSub() of the class
MYMASTER. The constructor for non-root nodes has to be called in the functiongenerateSon() of the class
MYSUB.

5.1.3.2 The Feasibility Check

After the LP-relaxation is solved we have to check if its optimum solution is a feasible solution of our optimization
problem. Therefore, we have to define the pure virtual functionfeasible() in the classMYSUB, which should
returntrue if the LP-solution is a feasible solution of the optimization problem, andfalse otherwise:

bool MYSUB::feasible()
{}

If all constraints of the integer programming formulation are present in the LP-relaxation, then the LP-solution is
feasible if all discrete variables have integer values. This check can be performed by calling the member function
integerFeasible() of the base classABA_SUB:

bool MYSUB::feasible()
{

return integerFeasible();
}

If the LP-solution is feasible and its value is better than the primal bound, thenABACUS automatically updates
the primal bound. However, the update of the solution itselfis problem specific, i.e., this update has to be performed
within the functionfeasible().

5.1.3.3 The Generation of the Sons

Like the pure virtual functionfirstSub() of the classABA_MASTER, which generates the root node of the
branch-and-bound tree, we need a function generating a son of a subproblem. This function is required as the
nodes of the branch-and-bound tree have to be identified witha problem specific subproblem of the classMYSUB.
This is performed by the pure virtual functiongenerateSon(), which calls the constructor for a non-root node
of the classMYSUB and returns a pointer to the newly generated subproblem. If the constructor for non-root nodes
of the classMYSUB has the same arguments as the corresponding constructor of the base classABA_SUB, then the
functiongenerateSon() can have the following form:

ABA_SUB *MYSUB::generateSon(ABA_BRANCHRULE *rule)
{

return new MYSUB(master_, this, rule);
}

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

52 Using ABACUS

This function is automatically called during a branching process. If the already built-in branching strategies are
used, we do not have to care about the generation of the branching rulerule. How other branching strategies can
be implemented is presented in Section5.2.7.

5.1.3.4 A Branch-and-Bound Algorithm

The two constructors, the functionfeasible(), and the functiongenerateSon() must be implemented for
the subproblem class of every application. As soon as these functions are available, a branch-and-bound algorithm
can be performed. All other functions of the classMYSUB that we are going to explain now, are optional in order
to improve the performance of the implementation.

5.1.3.5 The Separation

Problem specific cutting planes can be generated by redefining the virtual dummy functionseparate(). In this
case, also the argumentcutting in the constructor of the classABA_MASTER should receive the valuetrue,
otherwise the separation is skipped. The first step is the redefinition of the functionseparate() of the base
classABA_SUB.

int MYSUB::separate()
{ }

The functionseparate() returns the number of generated constraints.

We distinguish between the separation from scratch and the separation from a constraint pool. Newly generated
constraints have to be added by the functionaddCons() to the buffer of the classABA_SUB, which returns
the number of added constraints. Constraints generated in earlier iterations that have been become inactive in
the meantime might be still contained in the cut pool. These constraints can be regenerated by calling the func-
tion constraintPoolSeparation(), which adds the constraints to the buffer without an explicit call of the
functionaddCons().

A very simple separation strategy is implemented in the following example of the functionseparate(). Only if
the pool separation fails, we generate new cuts from scratch. The generated constraints are added with the function
addCons() to the internal buffer, which has a limited size. The number of constraints that can still be added to
this buffer is returned by the functionaddConBufferSpace(). The functionmySeparate() performs here
the application specific separation. If more cuts are added with the functionaddCons() than there is space in
the internal buffer for cutting planes, then the redundant cuts are discarded. The functionaddCons() returns the
number of actually added cuts.

int MYSUB::separate()
{

int nCuts = constraintPoolSeparation();
if (!nCuts) {
ABA_BUFFER<ABA_CONSTRAINT*> newCuts(master_, addConBufferSpace());
nCuts = mySeparate(newCuts);
if (nCuts) nCuts = addCons(newCuts);

}
return nCuts;

}

Note, ABACUS does not automatically check if the added constraints are really violated. Adding only non-
violated constraints, can cause an infinite loop in the cutting plane algorithm, which is only left if the tailing off
control is turned on (see Section5.2.26).

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

5.1 Basics 53

While constraints added with the functionaddCons() are usually allocated by the user, they are deleted by
ABACUS. They mustnot be deleted by the user (see Section5.2.13).

If not all constraints of the integer programming formulation are active, and all discrete variables have integer
values, then the solution of a separation problem might be required to check the feasibility of the LP-solution. In
order to avoid a redundant call of the same separation algorithm later in the functionseparate(), constraints
can be added already here by the functionaddCons().

In the following example of the functionfeasible() the separation is even performed if there are discrete
variables with fractional values such that the separation routine does not have to be called a second time in the
functionseparate().

bool MYSUB::feasible()
{

bool feasible;

if (integerFeasible()) feasible = true;
else feasible = false;

ABA_BUFFER<ABA_CONSTRAINT*> newCuts(master_, addConBufferSpace());

int nSep = mySeparate(newCuts);

if (nSep) {
feasible = false;
addCons(newCuts);

}
return feasible;

}

5.1.3.6 Pricing out Inactive Variables

The dynamic generation of variables is performed very similarly to the separation of cutting planes. Here, the
virtual functionpricing() has to be redefined and the argumentpricing in the constructor of the class
ABA_MASTER should receive the valuetrue, otherwise the pricing is skipped.

We illustrate the redefinition of the functionpricing() by an example that is an analogon to the example given
for the functionseparate().

int MYSUB::pricing()
{

int nNewVars = variablePoolSeparation();
if (!nNewVars) {
ABA_BUFFER<ABA_VARIABLE*> newVariables(master_, addVarBufferSpace());
nNewVars = myPricing(newVariables);
if (nNewVars) nNewVars = addVars(newVariables);

}
return nNewVars;

}

While variables added with the functionaddVars() are usually allocated by the user, they are deleted byABA-

CUS. They mustnot be deleted by the user (see Section5.2.13).

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

54 Using ABACUS

5.1.3.7 Primal Heuristics

After the LP-relaxation has been solved in the subproblem optimization the virtual functionimprove() is called.
Again, the default implementation does nothing but in a redefinition in the derived classMYSUB application specific
primal heuristics can be inserted:

int MYSUB::improve(double &primalValue)
{ }

If a better feasible solution is found its value has to be stored inprimalValue and the function should return 1,
otherwise it should return 0. In this case, the value of the primal bound is updated byABACUS, whereas the solu-
tion itself has to be updated within the functionimprove() as already explained for the functionfeasible().

It is also possible to update the primal bound already withinthe functionimprove() if this is more conve-
nient to reduce internal bookkeeping. In the following example we apply the two problem specific heuristics
myFirstHeuristic() and mySecondHeuristic(). After each heuristic we check if thevalue of
the solution is better than the best known one with the function call master_->betterPrimal(value).
If this function returnstrue we update the value of the best known feasible solution by calling the function
master_->primalBound().

int MYSUB::improve(double &primalValue)
{

int status = 0;
double value;

myFirstHeuristic(value);
if (master_->betterPrimal(value)) {
master_->primalBound(value);
primalValue = value;
status = 1;

}

mySecondHeuristic(value);
if (master_->betterPrimal(value)) {
master_->primalBound(value);
primalValue = value;
status = 1;

}

return status;
}

5.1.3.8 Accessing Important Data

For a complete description of all members of the classABA_SUB we refer to the documentation in the reference
manual. However, in most applications only a limited numberof data is required for the implementation of problem
specific functions, like separation or pricing functions. For simplification we want to state some of these members
here:

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

5.1 Basics 55

int nCon() const; returns the number of active constraints.
int nVar() const; returns the number of active variables.
ABA_VARIABLE *variable(int i); returns a pointer to thei-th active variable.
ABA_CONSTRAINT *constraint(int i); returns a pointer to thei-th active constraint.
double *xVal_; an array storing the values of the variables after the linear

program is solved.
double *yVal_ an array storing the values of the dual variables after the

linear program is solved.

5.1.4 Starting the Optimization

After the problem specific classes are defined as discussed inthe previous sections, the optimization can be per-
formed with the following main program. We suppose that the master of our new application has as only parameter
the name of the input file.

#include "mymaster.h"

int main(int argc, char **argv)
{

MYMASTER master(argv[1]);

master.optimize();
return master.status();

}

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

56 Using ABACUS

5.2 Advanced Features

In the previous section we described the first steps for the implementation of a linear-programming based branch-
and-bound algorithm withABACUS. Now, we present several advanced features ofABACUS. We show how
various built-in strategies can be used instead of the default strategies and how new problem specific concepts can
be integrated.

5.2.1 Using other Pools

By default,ABACUS provides one variable pool, one constraint pool for constraints of the problem formulation,
and another constraint pool for cutting planes. For certainapplications the implementation of a different pool
concept can be advantageous. Suppose we would like to provide two different pools for cutting planes for our
application instead of our default cutting plane pool. These pools have to be declared in the classMYMASTER and
we also provide two public functions returning pointers to these pools.

class MYMASTER : public ABA_MASTER {
public:
ABA_STANDARDPOOL<ABA_CONSTRAINT, ABA_VARIABLE> *myCutPool1()
{

return myCutPool1_;
}
ABA_STANDARDPOOL<ABA_CONSTRAINT, ABA_VARIABLE> *myCutPool2()
{
return myCutPool2_;

}
private:
ABA_STANDARDPOOL<ABA_CONSTRAINT, ABA_VARIABLE> *myCutPool1_;
ABA_STANDARDPOOL<ABA_CONSTRAINT, ABA_VARIABLE> *myCutPool2_;

};

Now, instead of the default cutting plane pool we set up our two problem specific cut pools in the func-
tioninitializeOptimization(). This is done by using 0 as last argument of the functioninitialize-
Pools(), which sets the size of the default cut pool to 0. The size of the variable pool is chosen arbitrarily. Then,
we allocate the memory for our pools. For simplification, we suppose that the size of each cut pool is 1000.

void MYMASTER::initializeOptimization()
{

// initialize the constraints and variables
initializePools(constraints, variables, 3*variables.number(), 0);

myCutPool1_ = new ABA_STANDARDPOOL<ABA_CONSTRAINT, ABA_VARIABLE>(this, 1000);
myCutPool2_ = new ABA_STANDARDPOOL<ABA_CONSTRAINT, ABA_VARIABLE>(this, 1000);

}

The following redefinition of the functionseparate() shows how constraints can be separated from and added
to our pools instead of the default cut pool. If a pointer to a pool is specified as an argument of the function
constraintPoolSeparation(), then constraints are regenerated from this pool instead ofthe default cut
pool. By specifying a constraint pool as the second argumentof the functionaddCons() the constraints are added
to this pool instead of the default cut pool. As the membermaster_ of the base classABA_SUB is a pointer to an
object of the classABA_MASTER we require an explicit cast to call the member functionsmyCutPool1() and
myCutPool2() of the classMYMASTER.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

5.2 Advanced Features 57

int MYSUB::separate()
{

ABA_BUFFER<ABA_CONSTRAINT*> newCuts(master_, 100);
int nCuts = constraintPoolSeparation(0, ((MYMASTER*) master_)->myCutPool1());
if (!nCuts) {
nCuts = mySeparate1(newCuts);
if (nCuts) nCuts = addCons(newCuts, ((MYMASTER*) master_)->myCutPool1());

}
if (!nCuts) {
nCuts = constraintPoolSeparation(0, ((MYMASTER*) master_)->myCutPool2());
if (!nCuts) {
nCuts = mySeparate2(newCuts);
if (nCuts) nCuts = addCons(newCuts, ((MYMASTER*) master_)->myCutPool2());

}
}
return nCuts;

}

Using application specific variable pools can be done in an analogous way with the two functions
variablePoolSeparation() andaddVars().

5.2.2 Pool without Multiple Storage of Items

One of the data structures using up very large parts of the memory are the pools for constraints and variables.
Limiting the size of the pool has two side effects. First, pool separation or pricing is less powerful with a small
pool. Second, the branch-and-bound tree might be processedwith reduced speed, since subproblems cannot be
initialized with the constraint and variable system of the father node.

On the other hand it can be observed that the same constraint or variable is generated several times in the course of
the optimization. This could be avoided by scanning completely the pool before separating or pricing from scratch.
But, if direct separation or pricing are fast, such a strategy can be less advantageous.

ThereforeABACUS provides the template classABA_NONDUPLPOOL that avoids storing the same constraint
or variable more than once in a pool. More precisely, when an item is inserted in such a pool, the inserted item
is compared with the already available items. If it is already present in the pool, the inserted item is deleted and
replaced by the already available item.

In order to use this pool, you have to set up your own pool as explained in Section5.2.1. Instead of a
ABA_STANDARDPOOL you have to use now anABA_NONDUPLPOOL. For constraints or variables that are in-
serted in a pool of the template classABA_NONDUPLPOOL, the virtual functionshashKey, name, andequal
of the base classABA_CONVAR have to be redefined. These functions are used in the comparison of a new item
and the items that are already stored in the pool. For the details of these functions we refer to the reference manual.

5.2.3 Constraints and Variables

We discussed the concept of expanding and compressing constraints and variables already in Section4.2.4.
This feature can be activated for a specific constraint or variable class if the virtual dummy functionsexpand()
andcompress() are redefined. Here we give an example for constraints, but itcan be applied to variables
analogously. We discussed the expanded and compressed format of the subtour elimination constraints already in
Section4.2. The nodes defining the subtour elimination constraint are contained in the buffernodes_. When the
constraint is expanded each node of the subtour eliminationconstraint is marked.

void SUBTOUR::expand()

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

58 Using ABACUS

{
if(expanded()) return;
marked_ = new bool[graph_->nNodes() + 1];
int nGraph = graph_->nNodes();
for (int v = 1; v <= nGraph; v++)
marked_[v] = false;

int nNodes = nodes_.size();
for (int v = 0; v < nNodes; v++)
marked_[nodes_[v]] = true;

}

For the compression of the constraint only the allocated memory is deleted.

void SUBTOUR::compress()
{

if (!expanded()) return;
delete marked_;

}

5.2.3.1 Constraints

Often, the definition of constraint specific expanded and compressed formats provides already sufficiently efficient
running times for the generation of the row format, the computation of the slack of a given LP-solution, or the
check if the constraint is violated.

If nevertheless further tuning is required, then the functionsgenRow() andslack() can be redefined. The
function

virtual int genRow(ABA_ACTIVE<ABA_VARIABLE, ABA_CONSTRAINT> *variables,
ABA_ROW &row);

stores the row format associated with the variable setvariables in row and returns the number of nonzero
coefficients stored inrow.

The function

virtual double slack(ABA_ACTIVE<ABA_VARIABLE, ABA_CONSTRAINT> *variables,
double *x);

returns the slack of the vectorx associated with the variable setvariables. Instead of redefining the function
violated() due to performance issues, the functionslack() should be redefined because this function is
called from the functionviolated() and uses most of the joint running time.

5.2.3.2 Variables

The equivalents of the classABA_VARIABLE to the functionsgenRow() andslack() of the classABA_CON-
STRAINT are the functionsgenColumn() andredCost(). Also for these two functions a redefinition due to
performance reasons can be considered if the expansion/compression concept is not sufficient or cannot be applied.

The function

virtual int genColumn(ABA_ACTIVE<ABA_CONSTRAINT, ABA_VARIABLE> *constraints,
ABA_COLUMN &col);

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

5.2 Advanced Features 59

stores the column format of the variable associated with theconstraint setconstraints in the argumentcol
and returns the number of nonzero coefficients stored incol.

The function

virtual double redCost(ABA_ACTIVE<ABA_CONSTRAINT, ABA_VARIABLE> *constraints,
double *y);

returns the reduced cost of the variable corresponding to the dual variablesy of the active constraints
constraints. As a redefinition of the virtual member functionslack() of the classABA_CONSTRAINT
might speed up the functionviolated(), also a redefinition of the functionredCost() can speed up the
functionviolated() of the classABA_VARIABLE.

5.2.4 Infeasible Linear Programs

As long as we do not generate variables dynamically, a subproblem can be immediately fathomed if the LP-
relaxation is infeasible. However, if not all variables areactive we have to check if the addition of an inactive
variable can restore the feasibility. An infeasibility caneither be detected when the linear program is set up, or
later by the LP-solver (see [Thi95]).

If fixed and set variables are eliminated, it might happen when the row format of a constraint is generated in the
initialization of the linear program that a constraint has avoid left hand side but can never be satisfied due to its
right hand side. In this case, the function

virtual int initMakeFeas(ABA_BUFFER<ABA_INFEASCON*> &infeasCon,
ABA_BUFFER<ABA_VARIABLE*> &newVars,
ABA_POOL<ABA_VARIABLE, ABA_CONSTRAINT> **pool);

is called. The default implementation always returns 1 to indicate that no variables could be added to restore
feasibility. If it might be possible that in our applicationthe addition of variables could restore the feasibility, then
this function has to be redefined in a derived class.

The bufferinfeasCon stores pointers to objects storing the infeasible constraints and the kind of infeasibility.
The new variables should be added to the buffernewVars, and if the variables should be added to an other pool
than the default variable pool, then a pointer to this pool should be assigned to*pool. If variables have been
added that could restore the feasibility for all infeasibleconstraints, then the function should return 0, otherwise it
should return 1.

If an infeasible linear program is detected by the LP-solver, then the function

virtual int makeFeasible();

is called. The default implementation of the virtual dummy function does nothing except returning 1 in order
to indicate that the feasibility cannot be restored. Otherwise, an iteration of the dual simplex method has to be
emulated according to the algorithm outlined in [Thi95]. When the function is called it is guaranteed that the
current basis is dual feasible. Exactly one of the member variablesinfeasVar_ or infeasCon_ of the class
ABA_SUB is nonnegative. IfinfeasVar_ is nonnegative, then it holds the number of an infeasible variable,
if infeasCon_ is nonnegative, then it holds the number of an infeasible slack variable. The arraybInvRow_
stores the row of the basis inverse corresponding to the infeasible variable (only basic variables can be infeasible).
Then the inactive variables have to be scanned like in the functionpricing(). Variables that might restore the
feasibility have to be added by the functionaddCons(). If no such candidate is found the subproblem can be
fathomed.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

60 Using ABACUS

5.2.5 Other Enumeration Strategies

With the parameterEnumerationStrategy in the file.abacus the enumeration strategies best-first search,
breadth-first search, depth-first search, and a diving strategy can be controlled (see Section5.2.26). Another
problem specific enumeration strategy can be implemented byredefining the virtual function

virtual int enumerationStrategy(ABA_SUB *s1, ABA_SUB *s2);

which compares the two subproblemss1 ands2 and returns 1 if the subproblems1 should be processed before
s2, returns−1 if the subproblems2 should be processed befores1, and returns 0 if the two subproblems have
the same precedence in the enumeration.

We provide again an implementation of the depth-first searchstrategy as an example for a reimplementation of the
functionenumerationStrategy().

int MYMASTER::enumerationStrategy(ABA_SUB *s1, ABA_SUB *s2)
{

if(s1->level() > s2->level()) return 1;
if(s1->level() < s2->level()) return -1;
return 0;
}

In the default implementation of the depth-first search strategy we do not return 0 immediately if the two subprob-
lems have the same level in the enumeration tree, but we call the virtual function

int ABA_MASTER::equalSubCompare(ABA_SUB *s1, ABA_SUB *s2);

which return 0 if both subproblems have not been generated bysetting a binary variable. Otherwise, that subprob-
lem has higher priority where the branching variable is set to the upper bound, i.e., it returns 1 if the branching
variable ofs1 is set to the upper bound,−1 if the branching variable ofs2 is set to the upper bound, and 0 oth-
erwise. Other strategies for resolving equally good subproblems for the built-in enumeration strategies depth-first
search and best-first search can be implemented by a redefinition of this virtual function. Moreover, this function
can also be generalized for other enumeration strategies.

5.2.6 Selection of the Branching Variable

The default branching variable selection strategy can be changed by the redefinition of the virtual function

int ABA_SUB::selectBranchingVariable(int &variable);

in a class derived from the classABA_SUB. If a branching variable is found it has to be stored in the argument
variable and the function should return 0. If the function fails to finda branching variable, it should return 1.
Then, the subproblem is automatically fathomed.

Here we present an example where the first fractional variable is chosen as branching variable. In general, this is
not a very good strategy.

int MYSUB::selectBranchingVariable(int &variable)
{

for (int i = 0; i < nVar(); i++)
if (fracPart(xVal_[i]) > master_->machineEps()) {
variable = i;
return 0;

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

5.2 Advanced Features 61

}

return 1;
}

The functionfracPart(double x) returns the absolute value of the fractional part ofx.

5.2.7 Using other Branching Strategies

Although branching on a variable is often an adequate strategy for branch-and-cut algorithms, it is in general
useless for branch-and-price algorithms. But also for branch-and-cut algorithms other branching strategies, e.g.,
branching on a constraint can be interesting alternatives.

For the implementation of different branching strategies we have introduced the concept of branching rules in the
classABA_BRANCHRULE (see Section4.2.7.3). The virtual function

int ABA_SUB::generateBranchRules(ABA_BUFFER<ABA_BRANCHRULE*> &rules);

returns 0 if it can generate branching rules and stores for each subproblem, that should be generated, a branching
rule in the bufferrules. If no branching rules can be generated, this function returns 1 and the subproblem is
fathomed. The default implementation of the functiongenerateBranchRules() generates two rules for two
new subproblems by branching on a variable. These rules are represented by the classesABA_SETBRANCHRULE
for binary variables andABA_BOUNDBRANCHRULE for integer variables, which are derived from the abstract class
ABA_BRANCHRULE. Moreover, we provide also rules for branching on constraints (ABA_CONBRANCHRULE),
and for branching by setting an integer variable to a fixed value (ABA_VALBRANCHRULE). Other branching rules
have to be derived from the classABA_BRANCHRULE. The default branching strategy can be replaced by the
redefinition of the virtual functiongenerateBranchRules() in a class derived from the classABA_SUB.

5.2.7.1 Branching on a Variable

The default branching strategy ofABACUS is branching on a variable. Different branching variable
selection strategies can be chosen in the parameter file (seeSection 5.2.26). If a problem specific
branching variable selections strategy should be implemented it is not required to redefine the function
ABA_SUB::generateBranchRule(), but a redefinition of the function

int ABA_SUB::selectBranchingVariable(int &variable)

is sufficient. If a branching variable is found it should be stored in the function argumentvariable and
selectBranchingVariable() should return 0, otherwise it should return 1.

If no branching variable is found, the subproblem is fathomed.

5.2.7.2 Branching on a Constraint

As all constraints used inABACUS, also branching constraints have to be inserted in a pool. The function
ABA_POOL::insert() returns a pointer to the pool slot the constraint is stored inthat is required in the con-
structor ofABA_CONBRANCHRULE. Although the default cut pool can be used for the branching constraints, an
extra pool for branching constraints is recommended, because first no redundant work in the pool separation is
performed, and second the branching constraint pool shouldbe dynamic such that all branching constraints can
be inserted. This pool for the branching constraints shouldbe added to your derived master class. It is sufficient
that thesize of the branching pool is only a rough estimation. If the branching pool is dynamic, it will increase
automatically if required.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

62 Using ABACUS

class MYMASTER : ABA_MASTER {
ABA_STANDARDPOOL<ABA_CONSTRAINT, ABA_VARIABLE> *branchingPool_;

}

MYMASTER::MYMASTER(const char *problemName) :
ABA_MASTER(problemName, true, false)

{
branchingPool_ = new ABA_STANDARDPOOL<ABA_CONSTRAINT, ABA_VARIABLE>(this,

size,
true);

}

MYMASTER::~MYMASTER()
{

delete branchingPool_;
}

The constraint branching rules have to be generated in the functionMYSUB::generateBranchRules(). It
might be necessary to introduce a new class derived from the classABA_CONSTRAINT for the representation
of your branching constraint. For simplification we assume here that your branching constraint is also of type
MYCONSTRAINT. Each constraint is added to the branching pool.

If the generation of branching constraints failed, you might try to resort to the standard branching on variables.

int MYSUB::generateBranchRules(ABA_BUFFER<ABA_BRANCHRULE*> &rules)
{

if (/* branching constraints can be found */) {
ABA_POOLSLOT<ABA_CONSTRAINT, ABA_VARIABLE> *poolSlot;

/* generate the branching rule for the first new subproblem */

MYCONSTRAINT *constraint1 = new MYCONSTRAINT(...);
poolSlot = ((MYMASTER *) master_)->branchingPool_->insert(constraint1);
rules.push(new ABA_CONBRANCHRULE(master_, poolSlot);

/* generate the branching rule for the second new subproblem */
MYCONSTRAINT *constraint2 = new MYCONSTRAINT(...);
poolSlot = ((MYMASTER *) master_)->branchingPool_->insert(constraint2);
rules.push(new ABA_CONBRANCHRULE(master_, poolSlot);

return 0;
}
else
return ABA_SUB::generateBranchRules(rules); // resort to standard branching

}

Moreover, a branching constraint should be locally valid and not dynamic. This has to be specified when calling the
constructor of the base classABA_CONSTRAINT. Of course, the subproblem defined by the branching constraint
is not available at the time when the branching constraint isgenerated. However, any locally valid constraint
requires an associated subproblem in the constructor. Therefore, the (incorrect) subproblem in which the branching
constraint is generated should be used.ABACUS will modify the associated subproblem later in the constructor
of the subproblem generated with the constraint branching rule.

When the subproblem generated by the branching constraint isactivated at the beginning of its optimization the
branching constraint is not immediately added to the linearprogram and the active constraints, but it is inserted

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

5.2 Advanced Features 63

into the buffer for added constraints similarly as cutting planes are added (see Section5.2.16).

5.2.7.3 Problem Specific Branching Rules

A problem specific branching rule is introduced by the derivation of a new classMYBRANCHRULE from the base
classABA_BRANCHRULE. As example we show how a branching rule for setting a variable to its lower or upper
bound is implemented. This example has some small differences to theABACUS classABA_SETBRANCHRULE.

class MYBRANCHRULE : public ABA_BRANCHRULE {
public:
MYBRANCHRULE(ABA_MASTER *master, int variable, ABA_FSVARSTAT::STATUS status);
virtual ~MYBRANCHRULE();
virtual int extract(ABA_SUB *sub);

private:
int variable_; // the branching variable
ABA_FSVARSTAT::STATUS status_; // the status of the branching variable

};

The constructor initializes the branching variable and itsstatus (ABA_FSVARSTAT::SetToLowerBound or
ABA_FSVARSTAT::SetToUpperBound).

MYBRANCHRULE::MYBRANCHRULE(ABA_MASTER *master,
int variable,
ABA_FSVARSTAT::STATUS status) :

ABA_BRANCHRULE(master),
variable_(variable),
status_(status)

{ }

MYBRANCHRULE::~MYBRANCHRULE()
{ }

The pure virtual functionextract() of the base classABA_BRANCHRULE has to be defined in every new
branching rule. This function is called when the subproblemis activated at the beginning of its optimization.
During the activation of the subproblem a copy of the final constraint and variable system of the father subproblem
is made. The functionextract() should modify this system according to the branching rule.

In our example we first check if setting the branching variable causes a contradiction. In this case we return1 in
order to indicate that the subproblem can be fathomed immediately. Otherwise we set the branching variable and
return0.

int MYBRANCHRULE::extract(ABA_SUB *sub)
{

if (sub->fsVarStat(variable_)->contradiction(status_))
return 1;

sub->fsVarStat(variable_)->status(status_);
return 0;

}

As a second example for the design of a branching rule we show how the constraint branching rule ofABACUS is
implemented. After inserted the branching constraint in a pool slot the constraint branching rule can be constructed
with this pool slot.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

64 Using ABACUS

class ABA_CONBRANCHRULE : public ABA_BRANCHRULE {
public:
ABA_CONBRANCHRULE(ABA_MASTER *master,

ABA_POOLSLOT<ABA_CONSTRAINT,
ABA_VARIABLE> *poolSlot);

virtual ~ABA_CONBRANCHRULE();
virtual int extract(ABA_SUB *sub);

private:
ABA_POOLSLOTREF<ABA_CONSTRAINT, ABA_VARIABLE> poolSlotRef_;

};

ABA_CONBRANCHRULE::ABA_CONBRANCHRULE(ABA_MASTER *master,
ABA_POOLSLOT<ABA_CONSTRAINT, ABA_VARIABLE> *poolSlot) :

ABA_BRANCHRULE(master),
poolSlotRef_(poolSlot)

{ }

ABA_CONBRANCHRULE::~ABA_CONBRANCHRULE()
{ }

In the functionextract() the branching constraint is added to the subproblem. This should always be done
with the functionABA_SUB::addBranchingConstraint(). Since adding a branching constraint cannot
cause a contradiction, we always return 0.

int ABA_CONBRANCHRULE::extract(ABA_SUB *sub)
{

if (sub->addBranchingConstraint(poolSlotRef_.slot())) {
master_->err() << "ABA_CONBRANCHRULE::extract(): addition of branching ";
master_->err() << "constraint to subproblem failed." << endl;
exit(Fatal);

}

return 0;
}

5.2.8 Strong Branching

In order to reduce the size of the enumeration tree, it is important to select “good” branching rules. We present
a framework for measuring the quality of the branching rules. First, we describe the basic idea and explain the
details later.

A branching step is performed by generating a set of branching rules, each one defines a son of the current sub-
problem. We call such a set of branching rules asample. For instance, if we branch on a single binary variable,
the corresponding sample consists of two branching rules, one defining the subproblem in which the branching
variable is set to the upper bound, the other one the subproblem in which the branching variable is set to the lower
bound. Instead of generating a single branching sample, it is now possible to generate a set of branching samples
and selecting from this set the “best” sample for generatingthe sons of the subproblem. In this evaluation process
for each branching rule of each branching sample a rank is computed. In the default implementation this rank
is given by performing a limited number of iterations of the dual simplex method for the first linear program of
the subproblem defined by the branching rule. For maximization problems we select that sample for which the

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

5.2 Advanced Features 65

maximal rank of its rules is minimal. For minimization problems we select that sample for which the minimal rank
of its rules is maximal.

Both the computation of the ranks and the comparison of the rules can be adapted to problem specific criteria.

5.2.8.1 Default Strong Branching

Strong branching can be turned on for the built-in branchingstrategies that are controlled by the parameter
BranchingStrategy of the configuration file. With the parameterNBranchingVariableCandidates
the number of tested branching variables can be indicated (see also Section5.2.26).

5.2.8.2 Strong Branching with Special Branching Variable Selection

In order to use strong branching in combination with a problem specific branching variable selection strategy, it is
only necessary to redefine the virtual function

int ABA_SUB::selectBranchingVariableCandidates(ABA_BUFFER<int> &candidates)

in the problem specific subproblem class. In the buffercandidates the indices of the variables that should
be tested as branching variables are collected. If at least one candidate is found, the function should return1,
otherwise0.

ABACUS tests all candidates by solving (partially) the first linearprogram of all potential sons and selects the
branching variable as previously explained.

5.2.8.3 Ranking Branching Rules

In the default version the rank of a branching rule is computed by the functionlpRankBranchingRule().
The rank can be determined differently by redefining the virtual function

double ABA_SUB::rankBranchingRule(ABA_BRANCHRULE *branchRule)

that returns a floating point number associated with the rankof thebranchRule.

5.2.8.4 Comparing Branching Samples

After a rank to each rule of each branching sample has been assigned by the functionrankBranchingRule()
all branching samples are compared and the best one is selected. This comparison is performed by the virtual
function

int ABA_SUB::compareBranchingSampleRanks(ABA_ARRAY<double> &rank1,
ABA_ARRAY<double> &rank2)

that compares the ranksrank1 of all rules of one branching sample with the ranksrank2 of the rules of another
branching sample. It returns1 if the ranks stored inrank1 are better,0 if both ranks are equal, and-1 if the
ranks stored inrank2 are better.

For maximization problems in the default version ofcompareBranchingSampleRanks() the arrayrank1
is better if its maximal entry is less than the maximal entry of rank2 (min-max criteria). For minimization
problemsrank1 is better if its minimal entry is greater than the minimal entry of rank2 (max-min criteria).

Problem specific orders of the ranks of branching samples canbe implemented by redefining the virtual function
compareBranchingSampleRanks().

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

66 Using ABACUS

5.2.8.5 Selecting Branching Samples

If the redefinition of the functioncompareBranchingSample() is not adequate for a problem specific selec-
tion of the branching sample, then the virtual function

int ABA_SUB::selectBestBranchingSample(int nSamples,
ABA_BUFFER<ABA_BRANCHRULE*> **samples)

can be redefined. The number of branching samples is given by the integer numbernSamples, the array
samples stores pointers to buffers storing the branching rules of the samples. The function should return the
number of the best branching sample.

5.2.8.6 Strong Branching with other Branching Rules

As explained in Section5.2.7other branching strategies than branching on variables canbe chosen by redefining
the virtual function

int ABA_SUB::generateBranchRules(ABA_BUFFER<ABA_BRANCHRULE*> &rules);

in the problem specific subproblem class. Instead of generating immediately a single branching sample and storing
it in the bufferrules it is possible to generate first a set of samples and selectingthe best one by calling the
function

int ABA_SUB::selectBestBranchingSample(int nSamples,
ABA_BUFFER<ABA_BRANCHRULE*> **samples).

For problem specific branching rules that are not already provided byABACUS, but derived from the base class
ABA_BRANCHRULE, it is necessary to redefine the virtual function

void ABA_BRANCHRULE::extract(ABA_LPSUB *lp)

if the ranks of the branching rules are computed by solving the first linear program of the potential sons asABA-

CUS does in its default version. Similar as the function

int ABA_BRANCHRULE::extract(SUB *sub)

(see Section5.2.7.3) modifies the subproblem according to the branching rule, the virtual function

void extract(ABA_LPSUB *lp)

should modify the linear programming relaxation in order toevaluate the branching rule.

In addition the virtual function

void ABA_BRANCHRULE::unextract(ABA_LPSUB *lp)

must also be redefined. It should undo the modifications of thelinear programming relaxation performed by
extract(ABA_LPSUB *lp).

5.2.9 Activating and Deactivating a Subproblem

Entry points at the beginning and at the end of the subproblemoptimization are provided by the functions
activate() anddeactivate().

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

5.2 Advanced Features 67

5.2.10 Calling ABACUS Recursively

The separation or pricing problem in a branch-and-bound algorithm can again be a mixed integer optimization
problem. In this case, it might be appropriate to solve this problem again with an application ofABACUS. The
pricing problem of a solver for binary cutting stock problems, e.g., is under certain conditions a general mixed
integer optimization problem [VBJN94]. The following example shows how this part of the functionpricing()
could look like for the binary cutting stock problem. First,we construct an object of the classLPFORMAT, stor-
ing the pricing problem formulated as a mixed integer optimization problem, then we initialize the solver of the
pricing problem. The classMIP is derived from the classABA_MASTER for the solution of general mixed integer
optimization problems (the classesLPFORMAT andMIP are not part of theABACUS kernel but belong to a not
publicly availableABACUS application). After the optimization we retrieve the valueof the optimal solution.

LPFORMAT knapsackProblem(master_, nOrigVar_, 1 + nSosCons_, &optSense,
origObj_, lBound, uBound, varType, constraints);

MIP *knapsackSolver = new MIP(&knapsackProblem, "CSP-Pricer");

knapsackSolver->optimize();

optKnapsackValue = knapsackSolver->primalBound();

5.2.11 Selecting the LP-Method

Before the linear programming relaxation is solved, the virtual function

ABA_LP::METHOD ABA_SUB::chooseLpMethod(int nVarRemoved, int nConRemoved,
int nVarAdded, int nConAdded)

is called in each iteration of the cutting plane algorithm, if approximate solving is disabled (the default). If the
usage of the approximate solver is enabled (by setting the parameter SolveApprox to true in the configuration file
.abacus), the virtual functionABA_SUB::solveApproxNow() is called first. If this function returns true
the LP method is set toABA_LP::Approximate (if the current situation in the cutting plane algorithm does not
require an exact solution, e.g. to prepare branching).

The parameters of the functionABA_SUB::chooseLpMethod refer to the number of removed and added vari-
ables and constraints. If a linear programming relaxation should be solved with a strategy different from the
default strategy, then this virtual function must be redefined in the classMYSUB. According to the criteria of
our new application the functionchooseLpMethod() must returnABA_LP::BarrierAndCrossover,
ABA_LP::BarrierNoCrossover, ABA_LP::Primal, or ABA_LP::Dual. The LP methods
ABA_LP::BarrierAndCrossover andABA_LP::BarrierNoCrossover are provided only for com-
patibility with older versions ofABACUS and custom solver interfaces as the current interface only supports the
methodsABA_LP::Primal andABA_LP::Dual (andABA_LP::Approximate, see above).

5.2.12 Generating Output

We recommend to use also for problem specific output the built-in output and error streams via the member
functionsout() anderr() of the classABA_GLOBAL:

master_->out() << "This is a message for the output stream." << endl;
master_->err() << "This is a message for the error stream." << endl;

For messages output from members of the classABA_MASTER and its derived classes dereferencing the pointer to
the master can be omitted:

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

68 Using ABACUS

out() << "This is a message for the output stream from a master class." << endl;
err() << "This is a message for the error stream from a master class." << endl;

The functionsout() anderr() can receive optionally an integer number as argument givingthe amount of
indentation. One unit of indentation is four blanks.

The amount of output can be controlled by the parameterOutLevel in the file.abacus (see Section5.2.26).
If some output should be generated although it is turned off for a certain output level at this point of the program,
then it can be turned temporarily on.

int MYSUB::myFunction()
{

if (master_->outLevel() == ABA_MASTER::LinearProgram) master_->out().on();
master_->out() << "This output appears only for output level ";
master_->out() << "‘LinearProgram’." << endl;
if (master_->outLevel() == ABA_MASTER::LinearProgram) master_->out().off();

}

5.2.13 Memory Management

The complete memory management of data allocated in member functions of application specific classes has to
be performed by the user, i.e., memory allocated in such a function also has to be deallocated in an application
specific function. However, there are some exceptions. As soon as a constraint or a variable is added to a pool its
memory management is passed toABACUS. This also holds if the constraint or variable is added to a pool with
the functionsABA_SUB::addCons() or ABA_SUB::addVars(). Constraints and variables are allocated in
problem specific functions, but deallocated by the framework.

Another exception are branching rules added to a subproblem. But this is only relevant for applications that
add a problem specific branching rule. If variables are fixed or set by logical implications, then objects of the
classABA_FSVARSTAT are allocated. Also for these objects the further memory management is performed by
the framework.

In order to save memory a part of the data members of a subproblem can be accessed only when the subproblem is
currently being optimized. These data members are listed inTable5.1.

Member Description
tailOff_ tailing off manager
lp_ linear programming relaxation
addVarBuffer_ buffer for adding variables
addConBuffer_ buffer for adding constraints
removeVarBuffer_ buffer for removing variables
removeConBuffer_ buffer for removing constraints
xVal_ values of the variables in the last solved ABA_LP
yVal_ values of the dual variables in the last solved ABA_LP

Table 5.1: Activated members ofABA_SUB.

5.2.14 Eliminating Constraints

In order to keep the number of active constraints within a moderate size active constraints can be eliminated by set-
ting the built-in parameterConstraintEliminationMode toBasic orNonBinding (see Section5.2.26).
Other problem specific strategies can be implemented by redefining the virtual function

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

5.2 Advanced Features 69

void MYSUB::conEliminate(ABA_BUFFER<int> &remove)
{

for (int i = 0; i < nCon(); i++)
if (/* constraint i should be eliminated */)
remove.push(i);

}

within the subproblem of the new application.

The functionconEliminate() is called within the cutting plane algorithm. Moreover, we provide an even
more flexible method for the elimination of constraints by the functionsremoveCon() andremoveCons(),
which can be called from any function within the cutting plane method. The functions

void ABA_SUB::removeCon(int i);
void ABA_SUB::removeCons(ABA_BUFFER<int> &remove);

which remove the constrainti or the constraints stored in the bufferremove, respectively.

Both constraints removed by the functionconEliminate() and by explicitly calling the functionremove()
are not removed immediately from the active constraints andthe linear program, but buffered, and the updates are
performed at the beginning of the next iteration of the cutting plane method.

5.2.15 Eliminating Variables

Similarly to the constraint elimination, variables can be eliminated either by setting the parameter
VariableEliminationMode to ReducedCost or by redefining the virtual functionvarEliminate()
according to the needs of our application.

void ABA_SUB::varEliminate(ABA_BUFFER<int> &remove)
{

for (int i = 0; i < nVar(); i++)
if (/* variable i should be eliminated)
remove.push(i);

}

By analogy to the removal of constraints we provide functions to remove variables within any function of the
cutting plane algorithm. The functions

void ABA_SUB::removeVar(int i);
void ABA_SUB::removeVars(ABA_BUFFER<int> &remove);

which remove the variablei or the variables stored in the bufferremove, respectively.

Like eliminated constraints eliminated variables are buffered and the update is performed at the beginning of the
next iteration of the cutting plane algorithm.

5.2.16 Adding Constraints/Variables in General

The functionsseparate() andpricing() provide interfaces where constraints/variables are usually gener-
ated in the cutting plane or column generation algorithm. Moreover, to provide a high flexibility we allow the
addition and removal of constraints and variables within any subroutine of the cutting plane or column generation
algorithm as we have already pointed out.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

70 Using ABACUS

Note, while constraints or variables added with the functionaddCons() or addVars() are usually allocated
by the user, they are deleted byABACUS. They mustnot be deleted by the user (see Section5.2.13).

The sizes of the buffers that store the constraints/variables being added can be controlled by the parameters
MaxConBuffered andMaxVarBuffered in the parameter file.abacus. At the start of the next iteration the
bestMaxConAdd constraints and the bestMaxVarAdd variables are added to the subproblem. This evaluation
of the buffered items is only possible if a rank has been specified for each item in the functionsaddCons() and
addVars(), respectively.

Moreover, we provide further features for the addition of cutting planes with the functionaddCons():

virtual int addCons(ABA_BUFFER<ABA_CONSTRAINT*> &constraints,
ABA_POOL<ABA_CONSTRAINT, ABA_VARIABLE> *pool = 0,
ABA_BUFFER<bool> *keepInPool = 0,
ABA_BUFFER<double> *rank = 0);

The bufferconstraints holds the constraints being added. All other arguments are optional or ignored if they
are 0. If the argumentpool is not 0, then the constraints are added to this pool instead of the default pool. If the
flag(*keepInPool)[i] is true for thei-th added constraint, then this constraint will even be stored in the
pool if it is not added to the active constraints. In order to define an order of the buffered constraints arank has
to be specified for each constraint in the functionaddCons().

As constraints can be added with the functionaddCons(), the function

virtual int addVars(ABA_BUFFER<ABA_VARIABLE*> &variables,
ABA_POOL<ABA_VARIABLE, ABA_CONSTRAINT> *pool = 0,
ABA_BUFFER<bool> *keepInPool = 0,
ABA_BUFFER<double> *rank = 0);

can be used for a flexible addition of variables to the buffer in a straightforward way.

The functionpricing() handles non-liftable constraints correctly (see Section4.2.3.12). However, if variables
are generated within another part of the cutting plane algorithm and non-liftable constraints are present, then run-
time errors or wrong results can be produced. IfABACUS is compiled in the safe mode (-DABACUSSAFE)
this situation is recognized and the program stops with an error message. If in an application both non-liftable
constraints are generated and variables are added outside the functionpricing(), then the user has to remove
non-liftable constraints explicitly to avoid errors.

5.2.16.1 Activation of a Subproblem

After a subproblem becomes active the virtual functionactivate() is called. Its default implementation in
the classABA_SUB does nothing but it can be redefined in the derived classMYSUB. In this function application
specific data structures that are only required for an activesubproblem can be set up, e.g., a graph associated with
the subproblem:

void MYSUB::activate()
{ }

5.2.16.2 Deactivation of a Subproblem

The virtual functiondeactivate() is the counterpart of the functionactivate(). It is called at the end of
the optimization of a subproblem and again its default implementation does nothing. In this function, e.g., memory
allocations performed in the functionactivate() can be undone:

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

5.2 Advanced Features 71

void MYSUB::deactivate()
{ }

5.2.17 Fixing and Setting Variables by Logical Implications

Variables can by fixed and set by logical implications by redefining the virtual functions

void MYSUB::fixByLogImp(ABA_BUFFER<int> &variables,
ABA_BUFFER<ABA_FSVARSTAT*> &status)

{}

and

void MYSUB::setByLogImp(ABA_BUFFER<int> &variables,
ABA_BUFFER<ABA_FSVARSTAT*> &status)

{}

The buffersvariables hold the variables being fixed or set, respectively, and the buffersstatus the statuses
they are fixed or set to, respectively. The following piece ofcode gives a fragment of an implementation of the
functionfixByLogImp().

void MYSUB::fixByLogImp(ABA_BUFFER<int> &variables,
ABA_BUFFER<ABA_FSVARSTAT*> &status)

{
for (int i = 0; i < nVar(); i++)
if (/* condition for fixing i to lower bound holds */) {
variables.push(i);
status.push(new ABA_FSVARSTAT(master_, ABA_FSVARSTAT::FixedToLowerBound));

}
else if (/* condition for fixing i to upper bound holds */) {
variables.push(i);
status.push(new ABA_FSVARSTAT(master_, ABA_FSVARSTAT::FixedToUpperBound));

}
}

Setting variables by logical implications can be implemented analogously by replacing “FixedTo” with
“SetTo”.

5.2.18 Loading an Initial Basis

By default, the barrier method is used for the solution of thefirst linear program of the subproblem. How-
ever, a basis can be also loaded, and then, the LP-method can be accordingly selected with the function
chooseLpMethod() (see Section5.2.11). The variable and slack variable statuses can be initialized in the
constructor of the root node like in the following example.

MYSUB::MYSUB(ABA_MASTER *master) :
ABA_SUB(master, 50.0, 0.0, 100.0)
{

ABA_LPVARSTAT::STATUS lStat;
for (int i = 0; i < nVar(); i++) {
lStat = /* one of ABA_LPVARSTAT::AtLowerBound, ABA_LPVARSTAT::Basic,

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

72 Using ABACUS

or ABA_LPVARSTAT::AtUpperBound */;
lpVarStat(i)->status(lStat);

}
ABA_SLACKSTAT::STATUS sStat;
for (int i = 0; i < nCon(); i++) {
sStat = /* one of ABA_SLACKSTAT::Basic or ABA_SLACKSTAT::NonBasicZero */;
slackStat(i)->status(sStat)

}
}

5.2.19 Integer Objective Functions

If all objective function values of feasible solutions haveinteger values, then a subproblem can be fathomed earlier
because its dual bound can be rounded up for a minimization problem, or down for a maximization problem, respec-
tively. This feature can be controlled by the parameterObjInteger of the parameter file (see Section5.2.26).

This feature can depend on the specific problem instance. Moreover, if variables are generated dynamically, it is
even possible that this attribute depends on the currently active variable set. Therefore, we provide the function

void ABA_MASTER::objInteger(bool switchedOn);

with which the automatic rounding of the dual bound can be turned on (ifswitchedOn is true) or off (if
switchedOn is false).

Helpful for the analysis if all objective function values ofall feasible solutions are integer with respect to the
currently active variable set of the subproblem might be thefunction

bool ABA_SUB::objAllInteger();

that returnstrue if all active variables of the subproblem are discrete and their objective function coefficients are
integer, and returnsfalse otherwise.

If the set of active variables is static, i.e., no variables are generated dynamically, then the function
objAllInteger() could be called in the constructor of the root node of the enumeration tree and according to
the result the flag of the master can be set:

MYSUB::MYSUB(ABA_MASTER *master) :
ABA_SUB(master, 50.0, 0.0, 100.0)

{
master_->objInteger(objAllInteger());

}

By default, we assume that the objective function values of feasible solutions can also have noninteger values.

5.2.20 An Entry Point at the End of the Optimization

While the virtual functioninitializeOptimization() is called at the beginning of the optimization and
can be redefined for the initialization of application specific data (e.g., the variables and constraints), the virtual
functionterminateOptimization() is called at the end of the optimization. Again, the default implemen-
tation does nothing and a redefined version can be used, e.g.,for visualizing the best feasible solution on the
screen.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

5.2 Advanced Features 73

5.2.21 Output of Statistics

At the end of the optimization a solution history and some general statistics about the optimization are output.
Problem specific statistics can be output by redefining the virtual functionoutput() of the classABA_MASTER
in the classMYMASTER. The default implementation of the functionoutput() does nothing. Of course, appli-
cation specific output can be also generated in the functionterminateOptimization(), but then this output
appears before the solution history and some other statistics. If the functionoutput() is used, problem specific
statistics are output between the general statistics and the value of the optimum solution.

5.2.22 Accessing Internal Data of the LP-Solver

The classABA_SUB has the member functionABA_LPSUB *lp() that allows a direct access of the data of
the linear program solved within the subproblem. If the member functions of the classABA_LPSUB and its base
classABA_LP are not sufficient to retrieve a specific information, a direct access of the data of the LP-Solvers is
possible.

The data retrieved from your LP-solver in this direct way hasto be interpreted very carefully. Since variables
might be automatically eliminated the actual linear program submitted to the LP-solver might differ from the linear
programming relaxation. Only if LP-data is accessed through the member functions of the classABA_LPSUB the
“real” linear programming relaxation is obtained.

Warning: Do not modify the data of the LP-solver using the pointers to the internal data structures and the
functions of the solver interface. A correct modification ofthe LP-data is only guaranteed by the member functions
of the classABA_SUB.

5.2.22.1 Accessing Internal Data of the LP-solver

Internal data of the solver is retrieved with the function

OsiSolverInterface* ABA_OSIIF::osiLP();

that returns a pointer to the OsiSolverInterface object that manages the interaction with the LP-solver.

Since the linear programming relaxation of a subproblem is designed independently from the LP-solver an explicit
cast to the classABA_LPSUBOSI is required:

OsiSolverInterface* LpInterface = ((ABA_LPSUBOSI*) lp())->osiLP();

The classABA_LPSUBOSI is derived from the classesABA_LPSUB andABA_OSIIF.

5.2.23 Problem Specific Fathoming Criteria

Sometimes structural problem specific information can be used for fathoming a subproblem. Such criteria can
be implemented by redefining the virtual functionABA_SUB::exceptionFathom(). This function is called
before the separation or pricing is performed. If this function returnsfalse (as the default implementation in the
base classABA_SUB does), we continue with separation or pricing. Otherwise, if it returnstrue, the subproblem
is fathomed.

5.2.24 Enforcing a Branching Step

ABACUS enforces a branching step if a tailing off effect is observed. Other problem specific criteria for branching
instead of continuing the cutting plane or column generation algorithm can be specified by redefining the function

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

74 Using ABACUS

ABA_SUB::exceptionBranch(). This criterion is checked before the separation or pricingis performed. If
the function returnstrue, a branching step is performed. Otherwise, we continue withthe separation or pricing.
The default implementation of the base classABA_SUB always returnsfalse.

5.2.25 Advanced Tailing Off Control

ABACUS automatically controls the tailing off effect according tothe parametersTailOffNLps and
TailOffPercent of the configuration file.abacus. However, sometimes it turns out that certain solutions
of the LP-relaxations should be ignored in the tailing off control. The functionignoreInTailingOff() can
be used to control better the tailing off effect. If this function is called, the next LP-solution is ignored in the
tailing-off control. CallingignoreInTailingOff() can, e.g., be considered in the following situation: If
only constraints that are required for the integer programming formulation of the optimization problem are added
then the next LP-value could be ignored in the tailing-off control. Only “real” cutting planes should be consid-
ered in the tailing-off control (this is only an example strategy that might not be practical in many situations, but
sometimes turned out to be efficient).

5.2.26 System Parameters

The setting of several parameters heavily influences the running time. Good candidates are the modification of the
enumeration strategy with the parameterEnumerationStrategy, the control of the tailing off effect with the
parametersTailOffNLps andTailOffPercent, an adaption of the skipping method for the cut generation
with the parametersSkipFactor andSkipByNode, and the parameters specific to the used LP-solver.

Here we present a complete list of the parameters that can be modified for the fine tuning of the algo-
rithm in the file .abacus. Almost all parameters can be modified with member functionsof the class
ABA_MASTER. Usually, these member functions have the same name as the parameter, but the first letter is
a lower case letter. The parameters specific to the LP-solvercan be set by redefining the virtual function
ABA_MASTER::setSolverParameters(), see Section5.2.27for details.

Warning: The integer numbers used in the parameter files must not exceed the value ofINT_MAX given in the
file <limits.h>. The default values are correct for platforms representingthe typeint with 32 bits (usually
2147483647 on machines using theb-complement).

5.2.26.1 EnumerationStrategy

This parameter controls the enumeration strategy in the branch-and-bound algorithm.

Valid settings:

BestFirst best-first search

BreadthFirst breadth-first search

DepthFirst depth-first search

DiveAndBest depth-first search until the first feasible solution is found,
then best-first search

Default value:BestFirst

5.2.26.2 Guarantee

The branch-and-bound algorithm stops as soon as a primal bound and a global dual bound are known such
that it can be guaranteed that the value of an optimum solution is at mostGuarantee percent better than

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

5.2 Advanced Features 75

the primal bound. The value 0.0 means determination of an optimum solution. If the program terminates
with a guarantee greater than 0, then the status of the masteris ABA_MASTER::Guarantee instead of
ABA_MASTER::Optimal.

Valid settings:

A nonnegative floating point number.

Default value:0.0

5.2.26.3 MaxLevel

This parameter indicates the maximal level that should be reached in the enumeration tree. Instead of performing
a branching operation any subproblem having levelMaxLevel is fathomed. If the value ofMaxLevel is 1,
then no branching is done, i.e., a pure cutting plane algorithm is performed. If the maximal enumeration level is
reached, the master of the optimization receives the statusMaxLevel in order to indicate that the problem does
not necessarily terminate with an optimum solution.

Valid settings:

A positive integer number.

Default value:999999

5.2.26.4 MaxCpuTime

This parameter indicates the maximal CPU time that may be used by the optimization process. If the CPU time
exceeds this value, then the master of the optimization receives the statusMaxCpuTime in order to indicate that the
problem does not necessarily terminate with an optimum solution. In this case, the real CPU time can exceed this
value since we check the used CPU time only in the main loop of the cutting plane algorithm. Under the operating
system UNIX a more exact check can be done with the commandlimit, which kills the process if the maximal
CPU time is exceeded, whereas our CPU time control “softly” terminates the run, i.e., the branch-and-bound tree
is cleaned, all relevant destructors are called, and the final output is generated.

Valid settings:

A string in the formath{h}:mm:ss, where the first number represents the hours, the second
one the minutes, and the third one the seconds. Note, internally this string is converted to seconds.
Therefore, its value must be less thanINT_MAX seconds.

Default value:99999:59:59

5.2.26.5 MaxCowTime

This parameter indicates the maximal elapsed time (wall clock time) that may be used by the process. If the elapsed
time exceeds this value, then the master of the optimizationreceives the statusMaxCowTime in order to indicate
that the problem does not necessarily terminate with an optimum solution. In this case, the real elapsed time can
exceed this value since we check the elapsed time only in the main loop of the cutting plane algorithm.

Valid settings:

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

76 Using ABACUS

A string in the formath{h}:mm:ss, where the first number represents the hours, the second
one the minutes, and the third one the seconds. Note, internally this string is converted to seconds.
Therefore, its value must be less thanINT_MAX seconds.

Default value:99999:59:59

5.2.26.6 ObjInteger

If this parameter istrue, then we assume that all feasible solutions have integer objective function values. In this
case, we can fathom a subproblem in the branch-and-bound algorithm already when the gap between the solution
of the linear programming relaxation and the primal bound isless than 1.

Valid settings:

false or true

Default value:false

5.2.26.7 TailOffNLps

This parameter indicates the number of linear programs considered in the tailing off analysis (see parameter
TailOffPercent).

Valid settings:

An integer number. If this number is nonpositive, then the tailing off control is turned off.

Default value:0

5.2.26.8 TailOffPercent

This parameter indicates the minimal change in percent of the objective function value between the solution of
TailOffNLps successive linear programming relaxations in the subproblem optimization which is required such
that we do not try to stop the cutting plane algorithm and to enforce a branching step.

Valid settings:

A nonnegative floating point number.

Default value:0.0001

5.2.26.9 DelayedBranchingThreshold

This number indicates how often a subproblem should be put back into the set of open subproblems before a
branching step is executed. The value 0 means that we branch immediately at the end of the first optimization,
if the subproblem is not fathomed. We try to keep the subproblemMinDormantRounds untouched, i.e., other
subproblems are optimized if possible before we turn back tothe optimization of this subproblem.

Valid settings:

A positive integer number.

Default value:0

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

5.2 Advanced Features 77

5.2.26.10 MinDormantRounds

The minimal number of iterations we try to keep a subproblem dormant if delayed branching is applied.

Valid settings:

A positive integer number.

Default value: 1

5.2.26.11 OutputLevel

We can control the amount of output during the optimization by this parameter.

For the parameter valuesSubproblem andLinearProgram a seven column output is generated with the
following meaning:

#sub total number of subproblems
#open current number of open subproblems
current the number of the currently optimized subproblem
#iter number of iterations in the cutting plane algorithm
ABA_LP value of the LP-relaxation
dual global dual bound
primal primal bound

Valid settings:

Silent No output.

Statistics Output of the result and some statistics at the end of the
optimization.

Subproblem Additional one-line output after the first solved ABA_LP
of the root node and at the end of the optimization of each
subproblem.

LinearProgram Additional one-line output after the solution of a linear
program.

Full Detailed output in all phases of the optimization.

Default value:Full

5.2.26.12 LogLevel

We can control the amount of output written to the log file in the same way as the output to the standard output
stream.

Valid settings:

See parameterOutputLevel. If the LogLevel is not Silent two log files are created.
While the file with the name of the problem instance and the extension.log contains the output
written toABA_MASTER::out() (filtered according theLogLevel), the all messages written to
ABA_MASTER::err() are also written to the file with the name of the problem instance and the
extension.error.log.

Default value:Silent

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

78 Using ABACUS

5.2.26.13 PrimalBoundInitMode

This parameter controls the initialization of the primal bound. The modesOptimum andOptimumOne are useful
for tests.

Valid settings:

None The primal bound is initialized with “infinity” for mini-
mization problems and “minus infinity” for maximization
problems, respectively.

Optimum The primal bound is initialized with the value of an op-
timum solution, if it can be read from the file with the
name of the parameterOptimumFileName.

OptimumOne The primal bound is initialized with the value of an op-
timum solution plus one for minimization problems, and
the value of an optimum solutions minus one for maxi-
mization problems. This is only possible if the value of
an optimum solution can be read from the file with the
name given by the parameterOptimumFileName.

Default value: None

5.2.26.14 PricingFrequency

This parameter indicates the number of iterations between two additional pricing steps in the cutting plane phase
for algorithms performing both constraint and variable generation. If this number is 0, then no additional pricing
is performed.

Valid settings:

A nonnegative integer number.

Default value:0

5.2.26.15 SkipFactor

This parameter indicates the frequency of cutting plane andvariable generationskipping!factor in the subproblems
according to the parameterSkippingMode. The value 1 means that cutting planes and variables are generated
in every subproblem independent from the skipping mode.

Valid settings:

A positive integer number.

Default value:1

5.2.26.16 SkippingMode

This parameter controls the skipping mode, i.e., if constraints or variables are generated in a subproblem.

Valid settings:

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

5.2 Advanced Features 79

SkipByNode Generate constraints and variables only every
SkipFactor processed node.

SkipByLevel Generate constraints and variables only every
SkipFactor level in the branch-and-bound tree.

Default value:SkipByNode

5.2.26.17 FixSetByRedCost

Variables are fixed and set by reduced cost criteria if and only if this parameter istrue. The default setting is
false, as fixing or setting variables to 0 can make the pricing problem intractable in branch-and-price algorithms.

Valid settings:

false or true

Default value:false

5.2.26.18 PrintLP

If this parameter istrue, then the linear program is output every iteration. This is only useful for debugging.

Valid settings:

false or true

Default value:false

5.2.26.19 MaxConAdd

This parameter determines the maximal number of constraints added to the linear programming relaxation per
iteration in the cutting plane algorithm.

Valid settings:

A nonnegative integer number.

Default value:100

5.2.26.20 MaxConBuffered

After the cutting plane generation theMaxConAdd best constraints are selected from all generated constraints that
are kept in a buffer. This parameter indicates the size of this buffer.

Valid settings:

A nonnegative integer number.

Default value:100

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

80 Using ABACUS

5.2.26.21 MaxVarAdd

This parameter determines the maximal number of variables added to the linear programming relaxation per itera-
tion in the cutting plane algorithm.

Valid settings:

A nonnegative integer number.

Default value:100

5.2.26.22 MaxVarBuffered

After the variable generation theMaxVarAdd best variables are selected from all generated variables that are kept
in a buffer. This parameter indicates the size of this buffer.

Valid settings:

A nonnegative integer number.

Default value:100

5.2.26.23 MaxIterations

The parameter limits the number of iterations of the cuttingplane phase of a single subproblem.

Valid settings:

A nonnegative integer number or−1 if unlimited.

Default value:-1

5.2.26.24 EliminateFixedSet

Fixed and set variables are eliminated from the linear program submitted to the LP-solver if this parameter istrue
and the variable is eliminable. By default, a variable is eliminable if it has not been basic in the last solved linear
program.

Valid settings:

false or true

Default value:false

5.2.26.25 NewRootReOptimize

If the root of the remaining branch-and-bound tree changes and this node is not the active subproblem, then we
reoptimize this subproblem, if this parameter istrue. The reoptimization might provide better criteria for fixing
variables by reduced costs.

Valid settings:

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

5.2 Advanced Features 81

false or true

Default value:false

5.2.26.26 OptimumFileName

This parameter indicates the name of a file storing the valuesof the optimum solutions. Each line of this file consists
of a problem name and the value of the corresponding optimum solution. This is the only optional parameter.
Having the optimum values of some instances at hand can be very useful in the testing phase.

Valid settings:

A string.

Default value: This parameter is commented out in the file.abacus.

5.2.26.27 ShowAverageCutDistance

If this parameter istrue, then the average Euclidean distance of the fractional solution from the added cutting
planes is output every iteration of the cutting plane phase.

Valid settings:

false or true

Default value:false

5.2.26.28 ConstraintEliminationMode

The parameter indicates the method how constraints are eliminated in the cutting plane algorithm.

Valid settings:

None No constraints are eliminated.

NonBinding The non-binding dynamic constraints are eliminated.

Basic The dynamic constraints with basic slack variables are
eliminated.

Default value:Basic

5.2.26.29 ConElimEps

The parameter indicates the tolerance for the elimination of constraints by the methodNonBinding.

Valid settings:

A nonnegative floating point number.

Default value:0.001

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

82 Using ABACUS

5.2.26.30 ConElimAge

The number of iterations an elimination criterion for a constraint must be satisfied until the constraint is eliminated
from the active constraints.

Valid settings:

A nonnegative integer.

Default value:1

5.2.26.31 VariableEliminationMode

This parameter indicates the method how variables are eliminated in a column generation algorithm.

Valid settings:

None No variables are eliminated.

ReducedCost Nonbasic dynamic variables that are neither fixed nor set
and for which the absolute value of the reduced costs ex-
ceeds the value given by the parameterVarElimEps are
removed.

Default value:ReducedCost

5.2.26.32 VarElimEps

This parameter indicates the tolerance for the eliminationof variables by the methodReducedCost.

Valid settings:

A nonnegative floating point number.

Default value:0.001

5.2.26.33 VarElimAge

The number of iterations an elimination criterion for a variable must be satisfied until the variable is eliminated
from the active variables.

Valid settings:

A nonnegative integer.

Default value:1

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

5.2 Advanced Features 83

5.2.26.34 VbcLog

This parameter indicates if a log-file of the enumeration tree should be generated, which can be read by the VBC-
tool [Lei95]. The VBC-tool is a utility for the visualization of the branch-and-bound tree.

Valid settings:

None No file for the VBC-Tool is generated.

File The output is written to a file with the name
<name>.<pid>.tree. <name> is the problem name
as specified in the constructor of the classABA_MASTER
and<pid> is the process id.

Pipe The control instructions for the VBC-Tool are written to
the global output stream. Each control instuction starts
with a $ sign. If the standard output of anABACUS

application is piped through the VBC-Tool, lines starting
with a $ sign are regarded as control instructions, all other
lines written to a text window.

Default value:None

5.2.26.35 NBranchingVariableCandidates

This number indicates how many candidates for branching variables should be tested according to the
BranchingStrategy. If this number is 1, a single variable is determined (if possible) that is the branch-
ing variable. If this number is greater than 1 each candidateis tested and the best branching variable is selected,
i.e., for each candidate the two linear programs of potential sons are solved. The variable for which the minimal
change of the two objective function values is maximal is selected as branching variable.

Valid settings:

Positive integer number.

Default value: 1

5.2.26.36 DefaultLpSolver

This parameter determines the LP-solver that should be applied per default for each subproblem. Please note that
these are the solvers supported by theOpen Solver Interface and hence byABACUSṄevertheless not
all of these solvers may be suitable for solving LP relaxations.

Valid settings:

Cbc

Clp

CPLEX

DyLP

FortMP

GLPK

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

84 Using ABACUS

MOSEK

OSL

SoPlex

SYMPHONY

Vol

XPRESS_MP

Default value:Clp

5.2.26.37 SolveApprox

If set to true usage of the Volume Algorithm to solve LP relaxations is enabled. This parameter only enables
usage of the approximate solver in general. Whether or not a specific LP relaxation is solved exact or approximate
is determined by the functionABA_MASTER::solveApproxNow().

Valid settings:

F

Default value: o r an example reimplementation of this function see the filetspsub.w in theexample directory
of theABACUS source code.false or true false

5.2.27 Solver Parameters

Setting parameters for specific LP-solvers is done by redefining the virtual function
ABA_MASTER::setSolverParameters(OsiSolverInterface* interface, bool
solverIsApprox). The parameterinterface is a generic pointer to an object of type
OsiSolverInterface, it has to be typecast to a pointer to a specific solver interface. Via this pointer
all the internals of the solver can be accessed. The parameter solverIsApprox is true if the solver for which
parameters are set is approximate, i.e. the Volume Algorithm. To set the primal column pivot algorithm for Clpi
to "steepest", for example, one would do:

bool MYMASTER::setSolverParameters(OsiSolverInterface*interface,bool solverIsApprox)
{
OsiClpSolverInterface* clpIf = dynamic_cast<OsiClpSolverInterface*> (interface);
ClpSimplex* clp_simplex = clpIf->getModelPtr();
ClpPrimalColumnSteepest steepestP;
clp_simplex->setPrimalColumnPivotAlgorithm(steepestP);
return true;
}

For a more complex reimplementation of this function see thefile tspmaster.w in theexample directory of
theABACUS source code.

5.2.28 Parameter Handling

ABACUS provides a concept for the implementation of application parameter files, which is very easy to use.
In these files it is both possible to overwrite the values of parameters already defined in the file.abacus and to
define extra parameters for the new application.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

5.2 Advanced Features 85

The format for parameter files is very simple. Each line contains the name of a parameter separated by an arbitrary
number of whitespaces from its value. Both parameter name and parameter value can be an arbitrary character
string. A line may have at most 1024 characters. Empty lines are allowed. All lines starting with a ‘#’ are
considered as comments.

The following lines give an example for the parameter file.myparameters.

#
First, we overwrite two parameters from the file .abacus.
#
EnumerationStrategy DepthFirst
OutputLevel LinearProgram
#
#
Here are the parameters of our new application.
#
#
Our application has two different separation strategies
’All’ calls all separators in each iteration
’Hierarchical’ follows a hierarchy of the separators
#
SeparationStrategy All
#
The parameter MaxNodesPerCut limits the number of nodes involved
in a cutting plane that is defined by a certain subgraph.
#
MaxNodesPerCut 1000

Here, we suppose that the classMYMASTER has two members that are initialized from the parameter file.

class MYMASTER : public ABA_MASTER {
/* public and protected members */
private:
enum SEPSTRAT {All,Hierachical};
ABA_STRING separationStrategy_;
int maxNodesPerCut_;
/* other private members */

};

The parameter file can be read by redefining the virtual function initializeParameters(), which does
nothing in its default implementation.

Parameter files having our format can be read by the functionABA_GLOBAL::readParameters(),
which inserts all parameters in a table. Then, the parameters can be extracted from the ta-
ble with the functionsABA_GLOABAL::assignParameter(), ABA_GLOABAL::findParameter(),
ABA_GLOABAL::getParameter() which are overloaded in different ways.

For our application, the code could look like

void MYMASTER::initializeParameters()
{

readParameters(".myparameters");

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

86 Using ABACUS

/* terminate the program if the parameters are not found
in the table (which was filled by readParamters()) */

const char* SeparationStrategy[]={"All","Hierachical"};
separationStrategy_=(SEPSTRAT)
findParameter("SeparationStrategy",2, SeparationStrategy);

/* allow only values between 1 and 5000; */
assignParameter(maxNodesPerPerCut_, "MaxNodesPerCut", 1, 5000);

}

Parameters of the base classABA_MASTER that are redefined in the file.myparameters do not have to be
extracted explicitly, but are initialized automatically.Note, the parameters specified in the file.abacus are
read in the constructor of the classABA_MASTER, but an application specific parameter file is read when the
optimization starts (functionABA_MASTER::optimize()).

A branch-and-cut optimization can be performed even without reading the file.abacus. This can be achieved by
setting the 8th parameter of the constructor ofABA_MASTER tofalse. In this case,ABACUS starts with default
settings for the parameters, which can be overwritten by thefunctionABA_GLOBAL::insertParameter().

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

5.3 Using the ABACUS Templates 87

5.3 Using the ABACUS Templates

ABACUS also provides several basic data structures as templates. For several fundamental types and some
ABACUS classes the templates are instantiated already in the library libabacus.a. However, if you want to
use one of theABACUS templates for one of your classes then you have to instantiate the templates for these
classes yourself.

Moreover, in order to keep the library small, we instantiated the templates only for those types which are required
in the kernel of theABACUS system. Therefore, it can happen that the linker complains about undefined symbols.
In this case you have to instantiate these templates, too.

ABACUS allows implicit or explicit template instantiation. Implicit template instantiation is the more convenient
way. The compiler automatically instantiates a template when required. Its disadvantage is that it increases the
compile time and (depending on the compiler) also the size ofthe generated code. For explicit template instantia-
tion the templates have to be collected manually in file and and this file has to be compiled separately. Note, some
compilers do not support explicit template instantiation.Other compilers perform the explicit template instantiation
automatically even if the implicit instantiation is selected. Currently, we recommend explicit template instantiation
for the GNU-compiler 2.7.x and the SGI compiler and implicittemplate instantiation for the GNU-compiler 2.8.x,
the SUN compiler and the MS Visual C++ compiler.

For instance, you want to use anABA_ARRAY template for your classMYCONSTRAINT and the fundamental type
unsigned int, for which we have no instantiations in the librarylibabacus.a. Then you can instantiate
explicitly the corresponding templates in a filemyarray.cc.

//

// This is the file myarray.cc.

//

#include "abacus/array.h" // the header of the class ABA_ARRAY

#include "abacus/array.inc" // the member functions of the class ABA_ARRAY

template class ABA_ARRAY<MYCONSTRAINT>;

template class ABA_ARRAY<unsigned int>;

// end of file myarray.cc

The filemyarray.cc should be compiled and linked together with your files and thelibrarylibabacus.a. In
the file in which you are using the array templates only the filearray.h should be included.

For more information on templates we refer to the documentation of the templates for the GNU compiler1. We
prefer the method using the g++ compiler flag-fno-implicit-templates.

1http://funnelweb.utcc.utk.edu/harp/gnu/gcc-2.7.0/gcc_98.html#SEC101

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

88 Using ABACUS

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

Chapter 6

Reference Manual

The reference manual covers only those classes and class members which are relevant for the user. Therefore,
the declarations of the classes in this chapter contain onlya subset of the actual members, e.g., private members
are usually not documented here. For some classes the copy constructor and/or assignment operator have not
been defined, but the default copy constructor and/or assignment operator are not correct. In this case we declare
this function and/or this operator as a private member of itsclass such that its invalid usage is detected already at
compile time. In this reference manual this is documented byincluding the copy constructor and/or assignment op-
erator in the private part of a function. Even if there are other private members of the class they are not documented
here.

This reference manual is automatically compiled from the source files ofABACUS. The advantage of this method
is that we can always provide an up to date version of the reference manual in future releases of the software. The
major drawback of this procedure is that the lack of order of the functions in the current source files is reflected
in the reference manual. In particular, there is a often a difference of the order of the member functions in the
header of a class and in the documentation. For this reason weadded HTML links in the declaration part of the
class which point to other classes and to the descriptions ofthe class members. For a listing of all functions in
lexicographical order we refer to the index.

At the end of the reference manual a list of all preprocessor flags is given.

6.1 Application Base Classes

In order to implement anABACUS application problem specific classes have to be derived fromthe classes
ABA_MASTER andABA_SUB. ABACUS provides already some non-abstract classes derived from the classes
ABA_CONSTRAINT andABA_VARIABLE, but if there is application specific structure to be exploited, classes
also have to be derived fromABA_VARIABLE andABA_CONSTRAINT.

Some other classes are included in this section because theyare base classes of the application base classes
ABA_MASTER, ABA_SUB, ABA_CONSTRAINT andABA_VARIABLE. The classABA_ABACUSROOT is a base
class of every class of the system. The classABA_GLOBAL is a base class of the classABA_MASTER. Com-
mon features of constraints and variables are embedded in the classABA_CONVAR, from which the classes
ABA_CONSTRAINT andABA_VARIABLE are derived.

90 Reference Manual

6.2 ABA_ABACUSROOT Class Reference

base class of all other classes of ABACUS

#include <abacusroot.h>

Inheritance diagram for ABA_ABACUSROOT::

ABA_ABACUSROOT

ABA_ACTIVE< BaseType, CoType >

ABA_ARRAY< Type >

ABA_BHEAP< Type, Key >

ABA_BPRIOQUEUE< Type, Key >

ABA_BRANCHRULE

ABA_BSTACK< Type >

ABA_BUFFER< Type >

ABA_CONCLASS

ABA_CONVAR

ABA_CSENSE

ABA_CUTBUFFER< BaseType, CoType >

ABA_DICTIONARY< KeyType, ItemType >

ABA_DLIST< Type >

ABA_DLISTITEM< Type >

ABA_FIXCAND

ABA_FSVARSTAT

ABA_GLOBAL

ABA_HASH< KeyType, ItemType >

ABA_HASHITEM< KeyType, ItemType >

ABA_HISTORY

ABA_ID

ABA_IDMAP< Type >

ABA_INFEASCON

ABA_LIST< Type >

ABA_LISTITEM< Type >

ABA_LP

ABA_LPMASTER

ABA_LPSOLUTION< BaseType, CoType >

ABA_LPVARSTAT

ABA_MTSERVER

ABA_OPENSUB

ABA_OPTSENSE

ABA_OSTREAM

ABA_PARMASTER

ABA_POOL< BaseType, CoType >

ABA_POOLSLOT< BaseType, CoType >

ABA_POOLSLOTREF< BaseType, CoType >

ABA_RING< Type >

ABA_SEPARATOR< BaseType, CoType >

ABA_SET

ABA_SLACKSTAT

ABA_SORTER< ItemType, KeyType >

ABA_SPARVEC

ABA_STRING

ABA_SUB

ABA_TAILOFF

ABA_TIMER

ABA_VARTYPE

Public Types

• enumEXITCODES{ Ok, Fatal}

This enumeration defines the codes used be the functionexit().

Public Member Functions

• virtual∼ABA_ABACUSROOT()
• virtual voidexit (enumEXITCODEScode) const

terminates the program and returnscodeto the environment from which the program was called.

• const char∗ onOff (bool value)

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.2 ABA_ABACUSROOT Class Reference 91

converts a boolean variable to the strings"on" and"off" .

• doublefracPart(double x) const

6.2.1 Detailed Description

base class of all other classes of ABACUS

Definition at line 81 of file abacusroot.h.

6.2.2 Member Enumeration Documentation

6.2.2.1 enumABA_ABACUSROOT::EXITCODES

This enumeration defines the codes used be the functionexit().

Parameters:
Ok The program terminates without error.

Fatal A severe error occurred leading to an immediate terminationof the program.

Enumeration values:
Ok

Fatal

Definition at line 95 of file abacusroot.h.

6.2.3 Constructor & Destructor Documentation

6.2.3.1 virtual ABA_ABACUSROOT::∼ABA_ABACUSROOT () [virtual]

The destructor is only implemented since it should be virtual function.

6.2.4 Member Function Documentation

6.2.4.1 virtual void ABA_ABACUSROOT::exit (enum EXITCODES code) const [virtual]

terminates the program and returnscodeto the environment from which the program was called.

We overload the functionexit() that in a debugger a break point can be easily set within this function in order
to investigate the error. We also observed that for some reason it can be impossible to set a break point within
a template. Here this functionexit()was quite helpful during the debugging process.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

92 Reference Manual

Exception handling could substitute many calls to the function exit(). However, in version 2.6.3 of the GNU
/ compiler only a prototypical implementation of exceptionhandling is available. As soon as a the GNU
compiler provides a stable implementation of exception handling we will use this technique in future releases
of this software.

Parameters:
code The exit code given to the environment.

6.2.4.2 double ABA_ABACUSROOT::fracPart (doublex) const

Returns:
The absolute value of the fractional part of the valuex. E.g., it holdsfracPart(2.33) == 0.33 andfracPart(-1.77)
== 0.77.

Parameters:
x The value of which the fractional part is computed.

6.2.4.3 const char∗ ABA_ABACUSROOT::onOff (bool value)

converts a boolean variable to the strings"on" and"off" .

Returns:
"on" if valueis true
"off" otherwise

Parameters:
value The boolean variable being converted.

The documentation for this class was generated from the following file:

• Include/abacus/abacusroot.h

6.3 ABA_GLOBAL Class Reference

class stores global data (e.g., a zero tolerance, an output stream, a table with system parameters) und functions
operating with this data.

#include <global.h>

Inheritance diagram for ABA_GLOBAL::

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.3 ABA_GLOBAL Class Reference 93

ABA_GLOBAL

ABA_ABACUSROOT

ABA_MASTER

Public Member Functions

• ABA_GLOBAL (double eps=1.0e-4, double machineEps=1.0e-7, double infinity=1.0e32)

The constructor initializes our filtered output and error stream with the standard output streamcoutand the standard
error streamcerr.

• virtual∼ABA_GLOBAL ()

The destructor.

• virtual ABA_OSTREAM & out (int nTab=0)

Returns a reference to the output stream associated with this global object after writing nTab (default value 0)
tabulators on this stream. This tabulator is not the normal tabulator but consists of four blanks.

• virtual ABA_OSTREAM & err (int nTab=0)

Behaves like the functionout()except that the global error stream is used instead of the global output stream.

• doubleeps() const
• void eps(double e)

This version of the functioneps()sets the zero tolerance.

• doublemachineEps() const
• void machineEps(double e)

This version of the functionmachineEps()sets the machine dependent zero tolerance.

• doubleinfinity () const

Provides a floating point value of “infinite” size. Especially, we assume that -infinity() is the lower andinfinity() is
the upper bound of an unbounded variable in the linear program.

• void infinity (double x)

This version of the functioninfinity() sets the “infinite value”. Please note that this value might be different from the
value the LP-solver uses internally. You should make sure that the value used here is always greater than or equal
to the value used by the solver.

• bool isInfinity (double x) const
• bool isMinusInfinity (double x) const
• boolequal(double x, double y) const
• bool isInteger(double x) const
• bool isInteger(double x, double eps) const
• virtual charenter(istream &in)

Displays the string { ENTER>} on the global output stream and waits for a character on the input streamin, e.g., a
keystroke ifin == cin.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

94 Reference Manual

• void readParameters(const char∗fileName)

Opens the parameter filefileName, reads all parameters, and inserts them in the parameter table.

• void insertParameter(const char∗name, const char∗value)
• int getParameter(const char∗name, int ¶m)
• int getParameter(const char∗name, unsigned int ¶m)
• int getParameter(const char∗name, double ¶m)
• int getParameter(const char∗name,ABA_STRING¶m)
• int getParameter(const char∗name, bool ¶m)
• int getParameter(const char∗name, char ¶m)
• void assignParameter(int ¶m, const char∗name, int minVal, int maxVal)
• void assignParameter(unsigned ¶m, const char∗name, unsigned minVal, unsigned maxVal)

SeeABA_GLOBAL::assignParameter} for description.

• void assignParameter(double ¶m, const char∗name, double minVal, double maxVal)

SeeABA_GLOBAL::assignParameter} for description.

• void assignParameter(bool ¶m, const char∗name)

SeeABA_GLOBAL::assignParameter} for description.

• void assignParameter(ABA_STRING ¶m, const char∗name, unsigned nFeasible=0, const char
∗feasible[]=0)

• void assignParameter(char ¶m, const char∗name, const char∗feasible=0)
• void assignParameter(int ¶m, const char∗name, int minVal, int maxVal, int defVal)
• void assignParameter(unsigned ¶m, const char∗name, unsigned minVal, unsigned maxVal, unsigned

defVal)

SeeABA_GLOBAL::assignParameter} for description.

• void assignParameter(double ¶m, const char∗name, double minVal, double maxVal, double defVal)

SeeABA_GLOBAL::assignParameter} for description.

• void assignParameter(bool ¶m, const char∗name, bool defVal)

SeeABA_GLOBAL::assignParameter} for description.

• void assignParameter(ABA_STRING ¶m, const char∗name, unsigned nFeasible, const char
∗feasible[], const char∗defVal)

• void assignParameter(char ¶m, const char∗name, const char∗feasible, char defVal)
• int findParameter(const char∗name, unsigned nFeasible, const int∗feasible)
• int findParameter(const char∗name, unsigned nFeasible, const char∗feasible[])

SeeABA_GLOBAL::findParameter} for description.

• int findParameter(const char∗name, const char∗feasible)

SeeABA_GLOBAL::findParameter} for description.

Private Member Functions

• ABA_GLOBAL (constABA_GLOBAL &rhs)
• constABA_GLOBAL & operator=(constABA_GLOBAL &rhs)

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.3 ABA_GLOBAL Class Reference 95

Private Attributes

• ABA_OSTREAM out_
• ABA_OSTREAM err_
• doubleeps_
• doublemachineEps_

The machine dependent zero tolerance, which is used to , e.g., to test ifa floating point value is 0.

• doubleinfinity_
• char∗ tab_
• ABA_HASH< ABA_STRING, ABA_STRING> paramTable_

Friends

• ostream &operator<< (ostream &out, constABA_GLOBAL &rhs)

6.3.1 Detailed Description

class stores global data (e.g., a zero tolerance, an output stream, a table with system parameters) und functions
operating with this data.

Definition at line 58 of file global.h.

6.3.2 Constructor & Destructor Documentation

6.3.2.1 ABA_GLOBAL::ABA_GLOBAL (double eps= 1.0e-4, doublemachineEps= 1.0e-7, double
infinity = 1.0e32)

The constructor initializes our filtered output and error stream with the standard output streamcoutand the standard
error streamcerr.

Parameters:
eps The zero-tolerance used within all member functions of objects which have a pointer to this global object

(default value1.0e-4).

machineEpsThe machine dependent zero tolerance (default value1.0e-7).

infinity All values greater thaninfinity are regarded as “infinite big”, all values less than-infinity are regarded
as “infinite small” (default value1.0e32). Please note that this value might be different from the value
the LP-solver uses internally. You should make sure that thevalue used here is always greater than or
equal to the value used by the solver.

6.3.2.2 virtual ABA_GLOBAL:: ∼ABA_GLOBAL () [virtual]

The destructor.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

96 Reference Manual

6.3.2.3 ABA_GLOBAL::ABA_GLOBAL (const ABA_GLOBAL & rhs) [private]

6.3.3 Member Function Documentation

6.3.3.1 void ABA_GLOBAL::assignParameter (char & param, const char∗ name, const char∗ feasible,
char defVal)

SeeABA_GLOBAL::assignParameter} for description.

Parameters:
param The variableparamreceives the value of the parameter.

name The name of the parameter.

feasible A string containing all feasible settings. Iffeasibleis zero, then all settings are allowed.

defVal The default value that is used when the paramter is not found in the parameter table.

6.3.3.2 void ABA_GLOBAL::assignParameter (ABA_STRING & param, const char∗ name, unsigned
nFeasible, const char∗ feasible[], const char ∗ defVal)

SeeABA_GLOBAL::assignParameter} for description.

Parameters:
parameter The variableparameterreceives the value of the parameter.

name The name of the parameter.

nFeasible The number of feasible settings. IfnFeasibleis equal to zero, then all settings are allowed.

feasible The settings for the parameter to be considered as feasible.Must be an array ofnFeasiblestrings.

defVal The default value that is used when the paramter is not found in the parameter table.

6.3.3.3 void ABA_GLOBAL::assignParameter (bool ¶m, const char∗ name, bool defVal)

SeeABA_GLOBAL::assignParameter} for description.

6.3.3.4 void ABA_GLOBAL::assignParameter (double ¶m, const char∗ name, doubleminVal,
doublemaxVal, doubledefVal)

SeeABA_GLOBAL::assignParameter} for description.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.3 ABA_GLOBAL Class Reference 97

6.3.3.5 void ABA_GLOBAL::assignParameter (unsigned ¶m, const char∗ name, unsignedminVal,
unsignedmaxVal, unsigneddefVal)

SeeABA_GLOBAL::assignParameter} for description.

6.3.3.6 void ABA_GLOBAL::assignParameter (int & param, const char∗ name, int minVal, int maxVal,
int defVal)

SeeABA_GLOBAL::assignParameter} for description.

Parameters:
parameter The variableparameterreceives the value of the parameter.

name The name of the parameter.

minVal The value of the parameter is considered as infeasible if it is less thanminVal.

maxVal The value of the parameter is considered as infeasible if it is larger thanmaxVal.

defVal The default value that is used when the paramter is not found in the parameter table.

6.3.3.7 void ABA_GLOBAL::assignParameter (char & param, const char∗ name, const char∗ feasible=
0)

SeeABA_GLOBAL::assignParameter} for description.

Parameters:
param The variableparamreceives the value of the parameter.

name The name of the parameter.

feasible A string consisting of all feasible characters. Iffeasibleis zero, then all characters are allowed.

6.3.3.8 void ABA_GLOBAL::assignParameter (ABA_STRING & param, const char∗ name, unsigned
nFeasible= 0, const char∗ feasible[] = 0)

SeeABA_GLOBAL::assignParameter} for description.

Parameters:
param The variableparameterreceives the value of the parameter.

name The name of the parameter.

nFeasible The number of feasible settings. IfnFeasibleis equal to zero, then all values are allowed. 0 is the
default value.

feasible If nFeasibleis greater zero, the this are the settings for the parameter to be considered as feasible.
Must be an array ofnFeasiblestrings.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

98 Reference Manual

6.3.3.9 void ABA_GLOBAL::assignParameter (bool ¶m, const char∗ name)

SeeABA_GLOBAL::assignParameter} for description.

6.3.3.10 void ABA_GLOBAL::assignParameter (double ¶m, const char∗ name, doubleminVal,
doublemaxVal)

SeeABA_GLOBAL::assignParameter} for description.

6.3.3.11 void ABA_GLOBAL::assignParameter (unsigned ¶m, const char∗ name, unsignedminVal,
unsignedmaxVal)

SeeABA_GLOBAL::assignParameter} for description.

6.3.3.12 void ABA_GLOBAL::assignParameter (int & param, const char∗ name, int minVal, int maxVal)

Searches for the parameternamein the parameter table.

If no parameternameis found and no default value of the parameter is given, the program terminates with an error
messages. The program terminates also with an error messageif the value of a parameter is not within a specified
feasible region. Depending on the type of the parameter, a feasible region can be an interval (specified byminVal
andmaxVal) or can be given by a set of feasible settings (given by a number nFeasibleand a pointerfeasibleto the
feasible values.

This function is overloaded in two ways. First, this function is defined for different types of the argument
parameter, second, for each such type we have both versions, with and without a default value of the parameter.

Parameters:
param The variableparameterreceives the value of the parameter.

name The name of the parameter.

minVal The value of the parameter is considered as infeasible if it is less thanminVal.

maxVal The value of the parameter is considered as infeasible if it is larger thanmaxVal.

6.3.3.13 virtual char ABA_GLOBAL::enter (istream & in) [virtual]

Displays the string { ENTER>} on the global output stream and waits for a character on the input streamin, e.g.,
a keystroke ifin == cin.

Returns:
The character read from the input stream.

Parameters:
in The input stream the character should be read from.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.3 ABA_GLOBAL Class Reference 99

6.3.3.14 void ABA_GLOBAL::eps (doublee) [inline]

This version of the functioneps()sets the zero tolerance.

Parameters:
e The new value of the zero tolerance.

Definition at line 439 of file global.h.

6.3.3.15 double ABA_GLOBAL::eps () const [inline]

Returns:
The zero tolerance.

Definition at line 434 of file global.h.

6.3.3.16 bool ABA_GLOBAL::equal (doublex, doubley) const [inline]

Returns:
true If the absolute difference ofx andy is less than the machine dependent zero tolerance,
false otherwise.

Parameters:
x The first value being compared.

y The second value being compared.

Definition at line 484 of file global.h.

6.3.3.17 virtualABA_OSTREAM & ABA_GLOBAL::err (int nTab = 0) [virtual]

Behaves like the functionout()except that the global error stream is used instead of the global output stream.

Returns:
A reference to the global error stream.

Parameters:
nTab The number of tabulators which should be written to the global error stream. The default value is 0.

6.3.3.18 int ABA_GLOBAL::findParameter (const char ∗ name, const char∗ feasible)

SeeABA_GLOBAL::findParameter} for description.

6.3.3.19 int ABA_GLOBAL::findParameter (const char ∗ name, unsignednFeasible, const char∗
feasible[])

SeeABA_GLOBAL::findParameter} for description.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

100 Reference Manual

6.3.3.20 int ABA_GLOBAL::findParameter (const char ∗ name, unsignednFeasible, const int ∗ feasible)

Searches for the parameternamein the parameter table.

If no parameternameis found the program terminates with an error messages. The program terminates also with an
error message if the value of a parameter is not within a givenlist of feasible settings. This function is overloaded
and can be used for different types of parameters such as integer valued, char valued and string parameters.

Returns:
The index of the matched feasible setting.

Parameters:
name The name of the parameter.

nFeasible The number of feasible settings.

feasible The settings for the parameter to be considered as feasible.Must be an array ofnFeasiblestrings.

6.3.3.21 int ABA_GLOBAL::getParameter (const char∗ name, char & param)

6.3.3.22 int ABA_GLOBAL::getParameter (const char∗ name, bool & param)

6.3.3.23 int ABA_GLOBAL::getParameter (const char∗ name, ABA_STRING & param)

6.3.3.24 int ABA_GLOBAL::getParameter (const char∗ name, double & param)

6.3.3.25 int ABA_GLOBAL::getParameter (const char∗ name, unsigned int & param)

6.3.3.26 int ABA_GLOBAL::getParameter (const char∗ name, int & param)

Searches for the parameternamein the parameter table.

This function is overloaded for different types of the argumentparameter. See also the functionsassignParameter
andfindParameterwith enhanced functionality.

Returns:
0 If the parameter is found,
1 otherwise.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.3 ABA_GLOBAL Class Reference 101

Parameters:
name The name of the parameter.

parameter The variableparameterreceives the value of the parameter, if the function returns1, otherwise it
is undefined.

6.3.3.27 void ABA_GLOBAL::infinity (double x) [inline]

This version of the functioninfinity() sets the “infinite value”. Please note that this value might be different from
the value the LP-solver uses internally. You should make sure that the value used here is always greater than or
equal to the value used by the solver.

Parameters:
x The new value representing “infinity”.

Definition at line 459 of file global.h.

6.3.3.28 double ABA_GLOBAL::infinity () const [inline]

Provides a floating point value of “infinite” size. Especially, we assume that-infinity() is the lower andinfinity() is
the upper bound of an unbounded variable in the linear program.

Returns:
A very large floating point number. The default value ofinfinity() is 1.0e32.

Definition at line 454 of file global.h.

6.3.3.29 void ABA_GLOBAL::insertParameter (const char∗ name, const char∗ value)

Inserts a parameter in the parameter table.

If the parameter already is in the table, the value is overwritten.

Parameters:
name The name of the parameter.

value The literal value of the parameter.

6.3.3.30 bool ABA_GLOBAL::isInfinity (double x) const [inline]

Returns:
true If x is regarded as “infinite” large,
false otherwise.

Parameters:
x The value compared with “infinity”.

Definition at line 464 of file global.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

102 Reference Manual

6.3.3.31 bool ABA_GLOBAL::isInteger (doublex, doubleeps) const

Returns:
true If the valuex differs at most byepsfrom an integer value,
false otherwise.

6.3.3.32 bool ABA_GLOBAL::isInteger (doublex) const [inline]

Returns:
true If the valuex differs at most by the machine dependent zero tolerance froman integer value,
false otherwise.

Definition at line 490 of file global.h.

6.3.3.33 bool ABA_GLOBAL::isMinusInfinity (double x) const [inline]

Returns:
true If x is regarded as infinite small;}
false otherwise.

Parameters:
x The value compared with “minus infinity”.

Definition at line 474 of file global.h.

6.3.3.34 void ABA_GLOBAL::machineEps (doublee) [inline]

This version of the functionmachineEps()sets the machine dependent zero tolerance.

Parameters:
e The new value of the machine dependent zero tolerance.

Definition at line 449 of file global.h.

6.3.3.35 double ABA_GLOBAL::machineEps () const [inline]

Provides a machine dependent zero tolerance.

The machine dependent zero tolerance is used, e.g., to test if a floating point value is 0. This value is usually less
thaneps(), which provides, e.g., a safety tolerance if a constraint isviolated.

Returns:
The machine dependent zero tolerance.

Definition at line 444 of file global.h.

6.3.3.36 constABA_GLOBAL & ABA_GLOBAL::operator= (const ABA_GLOBAL & rhs) [private]

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.3 ABA_GLOBAL Class Reference 103

6.3.3.37 virtualABA_OSTREAM & ABA_GLOBAL::out (int nTab = 0) [virtual]

Returns a reference to the output stream associated with this global object after writingnTab (default value 0)
tabulators on this stream. This tabulator is not the normal tabulator but consists of four blanks.

Returns:
A reference to the global output stream.

Parameters:
nTab The number of tabulators which should be written to the global output stream. The default value is 0.

6.3.3.38 void ABA_GLOBAL::readParameters (const char∗ fileName)

Opens the parameter filefileName, reads all parameters, and inserts them in the parameter table.

A parameter file may have at most 1024 characters per line.

Parameters:
fileName The name of the parameter file.

6.3.4 Friends And Related Function Documentation

6.3.4.1 ostream& operator<< (ostream & out, constABA_GLOBAL & rhs) [friend]

The output operator writes some of the data members to an ouput stream.

Returns:
A reference to the output stream.

Parameters:
out The output stream.

rhs The object being output.

6.3.5 Member Data Documentation

6.3.5.1 doubleABA_GLOBAL::eps_ [private]

A zero tolerance.

Definition at line 411 of file global.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

104 Reference Manual

6.3.5.2 ABA_OSTREAM ABA_GLOBAL::err_ [private]

The global error stream.

Definition at line 407 of file global.h.

6.3.5.3 doubleABA_GLOBAL::infinity_ [private]

An “infinite” big number.

Definition at line 423 of file global.h.

6.3.5.4 doubleABA_GLOBAL::machineEps_ [private]

The machine dependent zero tolerance, which is used to , e.g., to test if a floating point value is 0.

This value is usually less thaneps_, which represents, e.g., a safety tolerance if a constraintis violated.

Definition at line 419 of file global.h.

6.3.5.5 ABA_OSTREAM ABA_GLOBAL::out_ [private]

The global output stream.

Definition at line 403 of file global.h.

6.3.5.6 ABA_HASH<ABA_STRING, ABA_STRING> ABA_GLOBAL::paramTable_ [private]

Definition at line 428 of file global.h.

6.3.5.7 char∗ ABA_GLOBAL::tab_ [private]

A string used as tabulator in the functionsout()anderr().

Definition at line 427 of file global.h.

The documentation for this class was generated from the following file:

• Include/abacus/global.h

6.4 ABA_MASTER Class Reference

Class ABA_MASTER is the central object of the framework. Themost important tasks of the class ABA_-
MASTER is the management of the implicit enumeration. Moreover, it provides already default implementations
for constraints, cutting planes, and variables pools.

#include <master.h>

Inheritance diagram for ABA_MASTER::

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.4 ABA_MASTER Class Reference 105

ABA_MASTER

ABA_GLOBAL

ABA_ABACUSROOT

Public Types

• enumSTATUS{

Optimal, Error, OutOfMemory, Unprocessed,

Processing, Guaranteed, MaxLevel, MaxCpuTime,

MaxCowTime, ExceptionFathom}
• enumOUTLEVEL {

Silent, Statistics, Subproblem, LinearProgram,

Full }
• enumENUMSTRAT { BestFirst, BreadthFirst, DepthFirst, DiveAndBest}
• enumBRANCHINGSTRAT{ CloseHalf, CloseHalfExpensive}

This enumeration defines the two currently implemented branching variableselection strategies.

• enumPRIMALBOUNDMODE { NoPrimalBound, Optimum, OptimumOne}

This enumeration provides various methods for the initialization of the primal bound.

• enumSKIPPINGMODE{ SkipByNode, SkipByLevel}
• enumCONELIMMODE { NoConElim, NonBinding, Basic}

This enumeration defines the ways for automatic constraint elimination duringthe cutting plane phase.

• enumVARELIMMODE { NoVarElim, ReducedCost}

This enumeration defines the ways for automatic variable elimination during thecolumn generation algorithm.

• enumVBCMODE { NoVbc, File, Pipe}

This enumeration defines what kind of output can be generated for the VBCTOOL.

• enumOSISOLVER{

Cbc, Clp, CPLEX, DyLP,

FortMP, GLPK, MOSEK, OSL,

SoPlex, SYMPHONY, Vol, XPRESS_MP}

This enumeration defines which solvers can be used to solve theLP-relaxations.

Public Member Functions

• ABA_MASTER (const char∗problemName, bool cutting, bool pricing,ABA_OPTSENSE::SENSE
optSense=ABA_OPTSENSE::Unknown, double eps=1.0e-4, double machineEps=1.0e-7, double infin-
ity=1.0e30, bool readParamFromFile=true)

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

106 Reference Manual

• virtual∼ABA_MASTER ()

The destructor.

• STATUS optimize()
• ENUMSTRAT enumerationStrategy() const
• void enumerationStrategy(ENUMSTRAT strat)

This version of the functionenumerationStrategy()changes the enumeration strategy.

• virtual int enumerationStrategy(constABA_SUB ∗s1, constABA_SUB ∗s2)

Analyzes the enumeration strategy set in the parameter file { .abacus} and calls the corresponding comparison
function for the subproblemss1 and s2. This function should be redefined for application specific enumeration
strategies.

• boolguaranteed()

Can be used to check if the guarantee requirements are fulfilled, i.e., the difference between upper bound and the
lower bound in respect to the lowerBound is less than this guarantee value inpercent.

• doubleguarantee()
• void printGuarantee()
• bool check()

Can be used to control the correctness of the optimization if the value of the optimum solution has been loaded.

• bool knownOptimum(double &optVal)

Opens the file specified with the parameter { OptimumFileName} in the configuration file { .abacus} and tries to find
a line with the name of the problem instance (as specified in the constructor ofABA_MASTER) as first string.

• virtual voidoutput()
• bool cutting() const
• boolpricing () const
• constABA_OPTSENSE∗ optSense() const
• ABA_HISTORY ∗ history() const
• ABA_OPENSUB∗ openSub() const
• ABA_STANDARDPOOL< ABA_CONSTRAINT, ABA_VARIABLE > ∗ conPool() const
• ABA_STANDARDPOOL< ABA_CONSTRAINT, ABA_VARIABLE > ∗ cutPool() const
• ABA_STANDARDPOOL< ABA_VARIABLE , ABA_CONSTRAINT> ∗ varPool() const
• ABA_SUB ∗ root () const
• ABA_SUB ∗ rRoot() const
• STATUS status() const
• constABA_STRING∗ problemName() const
• constABA_COWTIMER ∗ totalCowTime() const
• bool solveApprox() const
• constABA_CPUTIMER∗ totalTime() const
• constABA_CPUTIMER∗ lpTime () const
• constABA_CPUTIMER∗ lpSolverTime() const
• constABA_CPUTIMER∗ separationTime() const
• constABA_CPUTIMER∗ improveTime() const
• constABA_CPUTIMER∗ pricingTime() const
• constABA_CPUTIMER∗ branchingTime() const
• int nSub() const
• int nLp () const

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.4 ABA_MASTER Class Reference 107

• int highestLevel() const
• int nNewRoot() const
• int nSubSelected() const
• void printParameters()

Writes all parameters of the class ABA_MASTER together with their values to the global output stream.

• BRANCHINGSTRAT branchingStrategy() const
• void branchingStrategy(BRANCHINGSTRATstrat)
• OSISOLVER defaultLpSolver() const
• void defaultLpSolver(OSISOLVERosiSolver)
• ABA_LPMASTEROSI∗ lpMasterOsi() const
• int nBranchingVariableCandidates() const
• void nBranchingVariableCandidates(int n)

This version of the functionnbranchingVariableCandidates()sets the number of tested branching variable candi-
dates.

• doublerequiredGuarantee() const
• void requiredGuarantee(double g)

This version of the functionrequiredGuarantee()changes the guarantee specification.

• int maxLevel() const
• void maxLevel(int ml)

This version of the functionmaxLevel()changes the maximal enumeration depth.

• constABA_STRING& maxCpuTime() const
• void maxCpuTime(constABA_STRING&t)
• constABA_STRING& maxCowTime() const

The functionmaxCowTime().

• void maxCowTime(constABA_STRING&t)

This version of the functionmaxCowTime()set the maximal wall-clock time for the optimization.

• boolobjInteger() const
• void objInteger(bool b)

This version of functionobjInteger()sets the assumption that the objective function values of all feasible solutions
are integer.

• int tailOffNLp () const

The functiontailOffNLp().

• void tailOffNLp (int n)
• doubletailOffPercent() const

The functiontailOffPercent().

• void tailOffPercent(double p)

This version of the functiontailOffPercent()sets the minimal change of the dual bound for the tailing off analysis.

• OUTLEVEL outLevel() const
• void outLevel(OUTLEVEL mode)

The version of the functionoutLevel()sets the output mode.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

108 Reference Manual

• OUTLEVEL logLevel() const
• void logLevel(OUTLEVEL mode)

This version of the functionlogLevel()sets the output mode for the log-file.

• booldelayedBranching(int nOpt_) const
• void dbThreshold(int threshold)

Sets the number of optimizations of a subproblem until sons are created inABA_SUB::branching().

• int dbThreshold() const
• int minDormantRounds() const
• void minDormantRounds(int nRounds)
• PRIMALBOUNDMODE pbMode() const
• void pbMode(PRIMALBOUNDMODE mode)
• int pricingFreq() const
• void pricingFreq(int f)

This version of the functionpricingFreq()sets the number of linear programs being solved between two additional
pricing steps.

• int skipFactor() const
• void skipFactor(int f)

This version of the functionskipFactor()sets the frequency for constraint and variable generation.

• void skippingMode(SKIPPINGMODEmode)

This version of the functionskippingMode()sets the skipping strategy.

• SKIPPINGMODE skippingMode() const
• CONELIMMODE conElimMode() const
• void conElimMode(CONELIMMODE mode)
• VARELIMMODE varElimMode() const
• void varElimMode(VARELIMMODE mode)
• doubleconElimEps() const
• void conElimEps(double eps)
• doublevarElimEps() const
• void varElimEps(double eps)
• int varElimAge() const
• void varElimAge(int eps)
• int conElimAge() const
• void conElimAge(int eps)
• bool fixSetByRedCost() const
• void fixSetByRedCost(bool on)
• boolprintLP () const
• void printLP (bool on)
• int maxConAdd() const
• void maxConAdd(int max)

Sets the maximal number of constraints that are added in an iteration of the cutting plane algorithm.

• int maxConBuffered() const
• void maxConBuffered(int max)

Changes the maximal number of constraints that are buffered in an iteration of the cutting plane algorithm.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.4 ABA_MASTER Class Reference 109

• int maxVarAdd() const
• void maxVarAdd(int max)

Changes the maximal number of variables that are added in an iteration ofthe subproblem optimization.

• int maxVarBuffered() const
• void maxVarBuffered(int max)

Changes the maximal number of variables that are buffered in an iterationof the subproblem optimization.

• int maxIterations() const
• void maxIterations(int max)

Changes the default value for the maximal number of iterations of the optimization of a subproblem.

• booleliminateFixedSet() const
• void eliminateFixedSet(bool turnOn)

This version of the functioneliminateFixedSet()can be used to turn the elimination of fixed and set variables on or
off.

• boolnewRootReOptimize() const
• void newRootReOptimize(bool on)
• constABA_STRING& optimumFileName() const
• void optimumFileName(const char∗name)
• bool showAverageCutDistance() const
• void showAverageCutDistance(bool on)

Turns the output of the average distance of the added cuts from the fractional solution on or off.

• VBCMODE vbcLog() const
• void vbcLog(VBCMODE mode)
• virtual boolsetSolverParameters(OsiSolverInterface∗interface, bool solverIsApprox)

bounds

In order to embed both minimization and maximization problems in this system we work internally with primal
bounds, i.e., a value which is worse than the best known solution (often a value of a feasible solution), and dual
bounds, i.e., a bound which is better than the best known solution. Primal and dual bounds are then interpreted
as lower or upper bounds according to the sense of the optimization.

• doublelowerBound() const
• doubleupperBound() const
• doubleprimalBound() const
• void primalBound(double x)

This version of the functionprimalBound()sets the primal bound tox and makes a new entry in the solution
history. It is an error if the primal bound gets worse.

• doubledualBound() const
• void dualBound(double x)

This version of the functiondualBound()sets the dual bound tox and makes a new entry in the solution history.

• boolbetterDual(double x) const
• boolprimalViolated(double x) const
• boolbetterPrimal(double x) const
• bool feasibleFound() const

We use this function ,e.g., to adapt the enumeration strategy in theDiveAndBest-Strategy.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

110 Reference Manual

Static Public Attributes

• static const char∗ STATUS_[]

Literal values for the enumerators of the corresponding enumeration type. The order of the enumerators is preserved.
(e.g., { STATUS[0]=="Optimal"}).

• static const char∗ OUTLEVEL_ []

Literal values for the enumerators of the corresponding enumeration type. The order of the enumerators is preserved.
(e.g., { OUTLEVEL[0]=="Silent"}).

• static const char∗ ENUMSTRAT_[]

Literal values for the enumerators of the corresponding enumeration type. The order of the enumerators is preserved.
(e.g., { ENUMSTRAT[0]=="BestFirst"}).

• static const char∗ BRANCHINGSTRAT_[]

Literal values for the enumerators of the corresponding enumeration type. The order of the enumerators is preserved.
(e.g., { BRANCHINGSTRAT[0]=="CloseHalf"}).

• static const char∗ PRIMALBOUNDMODE_ []

Literal values for the enumerators of the corresponding enumeration type. The order of the enumerators is preserved.
(e.g., { PRIMALBOUNDMODE[0]=="None"}).

• static const char∗ SKIPPINGMODE_[]

Literal values for the enumerators of the corresponding enumeration type. The order of the enumerators is preserved.
(e.g., { SKIPPINGMODE[0]=="None"}).

• static const char∗ CONELIMMODE_ []

Literal values for the enumerators of the corresponding enumeration type. The order of the enumerators is preserved.
(e.g., { CONELIMMODE[0]=="None"}).

• static const char∗ VARELIMMODE_ []

Literal values for the enumerators of the corresponding enumeration type. The order of the enumerators is preserved.
(e.g., { VARELIMMODE[0]=="None"}).

• static const char∗ VBCMODE_ []

Literal values for the enumerators of the corresponding enumeration type. The order of the enumerators is preserved.
(e.g., { VBCMODE[0]=="None"}).

• static const char∗ OSISOLVER_[]

Array for the literal values for possible Osi solvers.

Protected Member Functions

• virtual void initializePools(ABA_BUFFER< ABA_CONSTRAINT ∗ > &constraints,ABA_BUFFER<

ABA_VARIABLE ∗ > &Variables, int varPoolSize, int cutPoolSize, bool dynamicCutPool=false)
• virtual void initializePools(ABA_BUFFER< ABA_CONSTRAINT ∗ > &constraints,ABA_BUFFER<

ABA_CONSTRAINT ∗ > &cuts, ABA_BUFFER< ABA_VARIABLE ∗ > &Variables, int varPoolSize,
int cutPoolSize, bool dynamicCutPool=false)

Is overloaded such that also a first set of cutting planes can be insertedinto the cutting plane pool.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.4 ABA_MASTER Class Reference 111

• void initializeOptSense(ABA_OPTSENSE::SENSEsense)

Can be used to initialize the sense of the optimization in derived classes, if this has not been already performed when
the constructor of ABA_MASTER has been called.

• int bestFirstSearch(constABA_SUB ∗s1, constABA_SUB ∗s2) const
• virtual int equalSubCompare(constABA_SUB ∗s1, constABA_SUB ∗s2) const

Is called from the functionbestFirstSearch()and from the functiondepthFirstSearch()if the subproblemss1ands2
have the same priority.

• int depthFirstSearch(constABA_SUB ∗s1, constABA_SUB ∗s2) const

Implements the depth first search enumeration strategy, i.e., the subproblem with maximumlevel is selected.

• int breadthFirstSearch(constABA_SUB ∗s1, constABA_SUB ∗s2) const

Implements the breadth first search enumeration strategy, i.e., the subproblem with minimumlevel is selected.

• int diveAndBestFirstSearch(constABA_SUB ∗s1, constABA_SUB ∗s2) const

Performs depth-first search until a feasible solution is found, then the search process is continued with best-first
search.

• virtual void initializeParameters()

Is only a dummy. This function can be used to initialize parameters of derivedclasses and to overwrite parameters
read from the file { .abacus} by the function ().

• virtual ABA_SUB ∗ firstSub()=0
• virtual void initializeOptimization()

The default implementation ofinitializeOptimization()does nothing.

• virtual void terminateOptimization()

The default implementation ofterminateOptimization()does nothing.

Private Member Functions

• void _initializeParameters()

Reads the parameter-file { .abacus}, which is searched in the directorygiven by the environment variable ABACUS_-
DIR, and calls the virtual functioninitializeParameters()which can initialize parameters of derived classes and
overwrite parameters of this class.

• void _createLpMasters()
• void _deleteLpMasters()
• void _initializeLpParameters()
• void _setDefaultLpParameters()

Initializes the LP solver specific default Parameters if they are not read from the parameter-file { .abacus}.

• void _printLpParameters()
• void _outputLpStatistics()
• ABA_SUB ∗ select()
• int initLP ()
• void writeTreeInterface(const char∗info, bool time=true) const
• void treeInterfaceNewNode(ABA_SUB ∗sub) const

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

112 Reference Manual

Adds the subproblemsub to the stream storing information for graphical output of the enumeration treeif this
logging is turned on.

• void treeInterfacePaintNode(int id, int color) const
• void treeInterfaceLowerBound(double lb) const
• void treeInterfaceUpperBound(double ub) const
• void treeInterfaceNodeBounds(int id, double lb, double ub)

Updates the node information in the node with numberid by writing the lower boundlb and the upper boundub to
the node.

• void newSub(int level)
• void countLp()

Increments the counter for linear programs and should be called in each optimization call of the LP-relaxation.

• void newFixed(int n)

Increments the counter of the number of fixed variables byn.

• void addCons(int n)

Increments the counter for the total number of added constraints byn.

• void removeCons(int n)

Increments the counter for the total number of removed constraints byn.

• void addVars(int n)

Increments the counter for the total number of added variables byn.

• void removeVars(int n)

Increments the counter for the total number of removed variables byn.

• ABA_FIXCAND ∗ fixCand() const
• void rRoot(ABA_SUB ∗newRoot, bool reoptimize)
• void status(STATUSstat)
• void rootDualBound(double x)
• void theFuture()
• ABA_MASTER (constABA_MASTER &rhs)
• constABA_MASTER & operator=(constABA_MASTER &rhs)

Private Attributes

• ABA_STRING problemName_
• bool readParamFromFile_
• ABA_OPTSENSE optSense_
• ABA_SUB ∗ root_
• ABA_SUB ∗ rRoot_
• ABA_OPENSUB∗ openSub_
• ABA_HISTORY ∗ history_
• ENUMSTRAT enumerationStrategy_
• BRANCHINGSTRAT branchingStrategy_
• int nBranchingVariableCandidates_

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.4 ABA_MASTER Class Reference 113

The number of candidates that are evaluated for branching on variables.

• OSISOLVER defaultLpSolver_
• ABA_LPMASTEROSI∗ lpMasterOsi_
• ABA_STANDARDPOOL< ABA_CONSTRAINT, ABA_VARIABLE > ∗ conPool_
• ABA_STANDARDPOOL< ABA_CONSTRAINT, ABA_VARIABLE > ∗ cutPool_
• ABA_STANDARDPOOL< ABA_VARIABLE , ABA_CONSTRAINT> ∗ varPool_
• doubleprimalBound_
• doubledualBound_
• doublerootDualBound_
• ABA_FIXCAND ∗ fixCand_
• bool cutting_
• boolpricing_
• bool solveApprox_
• int nSubSelected_

The number of subproblems already selected from the list of open subproblems.

• VBCMODE VbcLog_

Ouput for the Tree Interface is generated depending on the value of this variable.

• ostream∗ treeStream_
• doublerequiredGuarantee_

The guarantee in percent which should be reached when the optimization stops.

• int maxLevel_
• ABA_STRING maxCpuTime_
• ABA_STRING maxCowTime_
• boolobjInteger_

true, if all objective function values of feasible solutions are assumed to be integer.

• int tailOffNLp_
• doubletailOffPercent_
• int dbThreshold_
• int minDormantRounds_

The minimal number of rounds, i.e., number of subproblem optimizations, a subproblem is dormant, i.e., it is not
selected from the set of open subproblem if its status isDormant, if possible.

• OUTLEVEL outLevel_
• OUTLEVEL logLevel_
• PRIMALBOUNDMODE pbMode_
• int pricingFreq_
• int skipFactor_

The frequency constraints or variables are generated depending on theskipping mode.

• SKIPPINGMODE skippingMode_

Either constraints are generated only everyskipFactor_subproblem (SkipByNode) only everyskipFactor_level
(SkipByLevel).

• bool fixSetByRedCost_
• boolprintLP_

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

114 Reference Manual

• int maxConAdd_

The maximal number of added constraints per iteration of the cutting plane algorithm.

• int maxConBuffered_
• int maxVarAdd_

The maximal number of added variables per iteration of the column generation algorithm.

• int maxVarBuffered_
• int maxIterations_

The maximal number of iterations of the cutting plane/column generation algorithm in the subproblem.

• booleliminateFixedSet_
• boolnewRootReOptimize_

If true, then an already earlier processed node is reoptimized if it becomes the new root of the remaining\ tree.

• ABA_STRING optimumFileName_

The name of a file storing a list of optimum solutions of problem instances.

• bool showAverageCutDistance_

If truethen the average distance of the added cutting planes is output every iteration of the cutting plane algorithm.

• CONELIMMODE conElimMode_

The way constraints are automatically eliminated in the cutting plane algorithm.

• VARELIMMODE varElimMode_

The way variables are automatically eliminated in the column generation algorithm.

• doubleconElimEps_

The tolerance for the elimination of constraints by the modeNonBinding/.

• doublevarElimEps_

The tolerance for the elimination of variables by the modeReducedCost.

• int conElimAge_

The number of iterations an elimination criterion must be satisfied until a constraint can be removed.

• int varElimAge_

The number of iterations an elimination criterion must be satisfied until a variable can be removed.

• STATUS status_
• ABA_COWTIMER totalCowTime_
• ABA_CPUTIMER totalTime_
• ABA_CPUTIMER lpTime_
• ABA_CPUTIMER lpSolverTime_
• ABA_CPUTIMER separationTime_
• ABA_CPUTIMER improveTime_

The timer for the cpu time spent in the heuristics for the computation of feasible solutions.

• ABA_CPUTIMER pricingTime_

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.4 ABA_MASTER Class Reference 115

• ABA_CPUTIMER branchingTime_
• int nSub_
• int nLp_
• int highestLevel_
• int nFixed_
• int nAddCons_
• int nRemCons_
• int nAddVars_
• int nRemVars_
• int nNewRoot_

Friends

• classABA_SUB
• classABA_FIXCAND

6.4.1 Detailed Description

Class ABA_MASTER is the central object of the framework. Themost important tasks of the class ABA_-
MASTER is the management of the implicit enumeration. Moreover, it provides already default implementations
for constraints, cutting planes, and variables pools.

Definition at line 76 of file master.h.

6.4.2 Member Enumeration Documentation

6.4.2.1 enumABA_MASTER::BRANCHINGSTRAT

This enumeration defines the two currently implemented branching variable selection strategies.

Parameters:
CloseHalf Selects the variable with fractional part closest to0.5 .

CloseHalfExpensiveSelects the variable with fractional part close to0.5 (within some interval around0.5)
and has highest absolute objective function coefficient.

Enumeration values:
CloseHalf

CloseHalfExpensive

Definition at line 175 of file master.h.

6.4.2.2 enumABA_MASTER::CONELIMMODE

This enumeration defines the ways for automatic constraint elimination during the cutting plane phase.

Parameters:
NoConElim No constraints are eliminated.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

116 Reference Manual

NonBinding Nonbinding constraints are eliminated.

Basic Constraints with basic slack variable are eliminated.

Enumeration values:
NoConElim

NonBinding

Basic

Definition at line 233 of file master.h.

6.4.2.3 enumABA_MASTER::ENUMSTRAT

Enumeration values:
BestFirst

BreadthFirst

DepthFirst

DiveAndBest

Definition at line 158 of file master.h.

6.4.2.4 enumABA_MASTER::OSISOLVER

This enumeration defines which solvers can be used to solve theLP-relaxations.

Enumeration values:
Cbc

Clp

CPLEX

DyLP

FortMP

GLPK

MOSEK

OSL

SoPlex

SYMPHONY

Vol

XPRESS_MP

Definition at line 280 of file master.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.4 ABA_MASTER Class Reference 117

6.4.2.5 enumABA_MASTER::OUTLEVEL

This enumeration defines the different output levels:

Parameters:
Silent No output at all.

Statistics No output during the optimization, but output of final statistics.

Subproblem In addition to the previous level also a single line of outputafter every subproblem optimization.

LinearProgram In addition to the previous level also a single line of outputafter every solved linear program.

Full Tons of output.

Enumeration values:
Silent

Statistics

Subproblem

LinearProgram

Full

Definition at line 131 of file master.h.

6.4.2.6 enumABA_MASTER::PRIMALBOUNDMODE

This enumeration provides various methods for the initialization of the primal bound.

The modesOptimalPrimalBoundand OptimalOnePrimalBoundcan be useful in the testing phase. For these
modes the value of an optimum solution must stored in the file given by the parameter { OptimumFileName} in
the parameter file.

Parameters:
NoPrimalBound The primal bound is initialized with−∞ for maximization problems and∞ for minimiza-

tion problems, respectively.

OptimalPrimalBound The primal bound is initialized with the value of the optimumsolution.

OptimalOnePrimalBoundThe primal bound is initialized with the value of optimum solution minus 1 for
maximization problems and with the value of the optimum solution plus one for minimization problems,
respectively.

Enumeration values:
NoPrimalBound

Optimum

OptimumOne

Definition at line 202 of file master.h.

6.4.2.7 enumABA_MASTER::SKIPPINGMODE

The way nodes are skipped for the generation of cuts.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

118 Reference Manual

Parameters:
SkipByNodeCuts are only generated in every { SkipFactor} subproblem, where { SkipFactor} can be con-

trolled with the parameter file { .abacus}.

SkipByLevel Cuts are only generated in every { SkipFactor} level of the enumeration tree.

Enumeration values:
SkipByNode

SkipByLevel

Definition at line 218 of file master.h.

6.4.2.8 enumABA_MASTER::STATUS

The various statuses of the optimization process.

Parameters:
Optimal The optimization terminated with an error and without reaching one of the resource limits. If there

is a feasible solution then the optimal solution has been computed.

Error An error occurred during the optimization process.

UnprocessedThe initial status, before the optimization starts.

ProcessingThe status while the optimization is performed.

Guaranteed If not the optimal solution is determined, but the required guarantee is reached, then the status is
Guaranteed.

MaxLevel The status, if subproblems are ignored since the maximum enumeration level is exceeded.

MaxCpuTime The status, if the optimization terminates since the maximum cpu time is exceeded.

MaxCowTime The status, if the optimization terminates since the maximum wall-clock time is exceeded.

ExceptionFathom The status, if at least one subproblem has been fathomed according to a problem specific
criteria determined in the functionABA_SUB::exceptionFathom().

Enumeration values:
Optimal

Error

OutOfMemory

Unprocessed

Processing

Guaranteed

MaxLevel

MaxCpuTime

MaxCowTime

ExceptionFathom

Definition at line 109 of file master.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.4 ABA_MASTER Class Reference 119

6.4.2.9 enumABA_MASTER::VARELIMMODE

This enumeration defines the ways for automatic variable elimination during the column generation algorithm.

Parameters:
NoVarElim No variables are eliminated.

ReducedCostVariables with high absolute reduced costs are eliminated.

Enumeration values:
NoVarElim

ReducedCost

Definition at line 249 of file master.h.

6.4.2.10 enumABA_MASTER::VBCMODE

This enumeration defines what kind of output can be generatedfor the VBCTOOL.

Parameters:
None No output for the tree interface.

File Output for the tree interface is written to a file.

Pipe Output for the tree interface is pipe to the standard output.

Enumeration values:
NoVbc

File

Pipe

Definition at line 266 of file master.h.

6.4.3 Constructor & Destructor Documentation

6.4.3.1 ABA_MASTER::ABA_MASTER (const char ∗ problemName, bool cutting, bool pricing,
ABA_OPTSENSE::SENSEoptSense= ABA_OPTSENSE::Unknown, doubleeps= 1.0e-4,
doublemachineEps= 1.0e-7, double infinity = 1.0e30, bool readParamFromFile= true)

The constructor.

Parameters:
problemNameThe name of the problem being solved. Must not be a 0-pointer.

cutting If true, then cutting planes can be generated if the functionABA_SUB::separate()is redefined.

pricing If true, then inactive variables are priced in, if the functionABA_SUB::pricing()is redefined.

optSenseThe sense of the optimization. The default value isABA_OPTSENSE::Unknown. If the sense is
unknown when this constructor is called, e.g., if it is read from a file in the constructor of the derived
class, then it must be initialized in the constructor of the derived class.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

120 Reference Manual

eps The zero-tolerance used within all member functions of objects which have a pointer to this master (de-
fault value1.0e-4).

machineEpsThe machine dependent zero tolerance (default value1.0e-7).

infinity All values greater thaninfinity are regarded as “infinite big”, all values less than-infinity are regarded
as “infinite small” (default value1.0e30).

readParamFromFile If true, then the parameter file .abacus is read, otherwise the parameters are initialized
with default values (defaulttrue).

The membersprimalBound_anddualBound_stay uninitialized since this can only be done when the senseof op-
timization (minimization or maximization) is known. The initialization is performed automatically in the function
optimize().

6.4.3.2 virtual ABA_MASTER::∼ABA_MASTER () [virtual]

The destructor.

6.4.3.3 ABA_MASTER::ABA_MASTER (const ABA_MASTER & rhs) [private]

6.4.4 Member Function Documentation

6.4.4.1 void ABA_MASTER::_createLpMasters () [private]

6.4.4.2 void ABA_MASTER::_deleteLpMasters () [private]

6.4.4.3 void ABA_MASTER::_initializeLpParameters () [private]

6.4.4.4 void ABA_MASTER::_initializeParameters () [private]

Reads the parameter-file { .abacus}, which is searched in thedirectory given by the environment variable
ABACUS_DIR, and calls the virtual functioninitializeParameters()which can initialize parameters of derived
classes and overwrite parameters of this class.

All parameters are first inserted together with their valuesin a parameter table in the functionreadParameters().
If the virtual dummy functioninitializeParameters()is redefined in a derived class and also reads a parameter file
with the functionreadParameters(), then already inserted parameters can be overwritten.

After all parameters are input we extract with the functionassignParameter()all parameters. Problem specific
parameters should be extracted in a redefined version ofinitializeParameters(). extracted from this table

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.4 ABA_MASTER Class Reference 121

6.4.4.5 void ABA_MASTER::_outputLpStatistics () [private]

Prints the LP solver specific statistics.

This function is implemented in the filelpif.cc.

6.4.4.6 void ABA_MASTER::_printLpParameters () [private]

Prints the LP solver specific parameters.

This function is implemented in the filelpif.cc.

6.4.4.7 void ABA_MASTER::_setDefaultLpParameters () [private]

Initializes the LP solver specific default Parameters if they are not read from the parameter-file { .abacus}.

This function is implemented in the filelpif.cc.

6.4.4.8 void ABA_MASTER::addCons (intn) [inline, private]

Increments the counter for the total number of added constraints byn.

Definition at line 2016 of file master.h.

6.4.4.9 void ABA_MASTER::addVars (int n) [inline, private]

Increments the counter for the total number of added variables byn.

Definition at line 2026 of file master.h.

6.4.4.10 int ABA_MASTER::bestFirstSearch (constABA_SUB ∗ s1, constABA_SUB ∗ s2) const
[protected]

Implements the best first search enumeration.

If the bounds of both subproblems are equal, then the subproblems are compared with the function
equalSubCompare().

Returns:
-1 If subproblems1has a worse dual bound thans2, i.e., if it has a smaller dual bound for minimization or a
larger dual bound for maximization problems.
1 If subproblems2has a worse dual bound thans1.
0 If both subproblems have the same priority in the enumeration strategy.

Parameters:
s1 A subproblem.

s2 A subproblem.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

122 Reference Manual

6.4.4.11 bool ABA_MASTER::betterDual (doublex) const

Returns:
true If x is better than the best known dual bound.
false otherwise.

Parameters:
x The value being compared with the best know dual bound.

6.4.4.12 bool ABA_MASTER::betterPrimal (doublex) const

Can be used to check if a value is better than the best know primal bound.

Returns:
true If x is better than the best known primal bound,
false otherwise.

Parameters:
x The value compared with the primal bound.

6.4.4.13 void ABA_MASTER::branchingStrategy (BRANCHINGSTRAT strat) [inline]

Changes the branching strategy.

Parameters:
strat The new branching strategy.

Definition at line 2266 of file master.h.

6.4.4.14 ABA_MASTER::BRANCHINGSTRAT ABA_MASTER::branchingStrategy () const
[inline]

Returns:
The branching strategy.

Definition at line 2261 of file master.h.

6.4.4.15 constABA_CPUTIMER ∗ ABA_MASTER::branchingTime () const [inline]

Returns:
A pointer to the timer measuring the cpu time spent in finding and selecting the branching rules.

Definition at line 2001 of file master.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.4 ABA_MASTER Class Reference 123

6.4.4.16 int ABA_MASTER::breadthFirstSearch (constABA_SUB ∗ s1, constABA_SUB ∗ s2) const
[protected]

Implements the breadth first search enumeration strategy, i.e., the subproblem with minimumlevel is selected.

If both subproblems have the samelevel, the smaller one is the one which has been generated earlier,i.e., the one
with the smallerid.

Returns:
-1 If subproblems1has higher priority,
0 if both subproblems have equal priority,
1 otherwise.

Parameters:
s1 The first subproblem.

s2 The second subproblem.

6.4.4.17 bool ABA_MASTER::check ()

Can be used to control the correctness of the optimization ifthe value of the optimum solution has been loaded.

This is done, if a file storing the optimum value is specified with the parameter { OptimumFileName} in the
configuration file { .abacus}.

Returns:
true If the optimum solution of the problem is known and equals the primal bound,
false otherwise.

6.4.4.18 void ABA_MASTER::conElimAge (int eps) [inline]

Changes the age for the elimination of constraints.

Parameters:
eps The new age.

Definition at line 2246 of file master.h.

6.4.4.19 int ABA_MASTER::conElimAge () const [inline]

Returns:
The age for the elimination of constraints.

Definition at line 2241 of file master.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

124 Reference Manual

6.4.4.20 void ABA_MASTER::conElimEps (doubleeps) [inline]

Changes the tolerance for the elimination of constraints bythe slack criterion.

Parameters:
eps The new tolerance.

Definition at line 2216 of file master.h.

6.4.4.21 double ABA_MASTER::conElimEps () const [inline]

Returns:
The zero tolerance for the elimination of constraints by theslack criterion.

Definition at line 2211 of file master.h.

6.4.4.22 void ABA_MASTER::conElimMode (CONELIMMODE mode) [inline]

Changes the constraint elimination mode.

Parameters:
mode The new constraint elimination mode.

Definition at line 2196 of file master.h.

6.4.4.23 ABA_MASTER::CONELIMMODE ABA_MASTER::conElimMode () const [inline]

Returns:
The mode for the elimination of constraints.

Definition at line 2191 of file master.h.

6.4.4.24 ABA_STANDARDPOOL < ABA_CONSTRAINT , ABA_VARIABLE > ∗
ABA_MASTER::conPool () const [inline]

Returns:
A pointer to the default pool storing the constraints of the problem formulation.

Definition at line 1937 of file master.h.

6.4.4.25 void ABA_MASTER::countLp () [inline, private]

Increments the counter for linear programs and should be called in each optimization call of the LP-relaxation.

Definition at line 2006 of file master.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.4 ABA_MASTER Class Reference 125

6.4.4.26 ABA_STANDARDPOOL < ABA_CONSTRAINT , ABA_VARIABLE > ∗
ABA_MASTER::cutPool () const [inline]

Returns:
A pointer to the default pool for the generated cutting planes.

Definition at line 1942 of file master.h.

6.4.4.27 bool ABA_MASTER::cutting () const [inline]

Returns:
true If cutting has been set totrue in the call of the constructor of the class ABA_MASTER, i.e.,if cutting
planes should be generated in the subproblem optimization.
false otherwise.

Definition at line 1952 of file master.h.

6.4.4.28 int ABA_MASTER::dbThreshold () const [inline]

Returns:
The number of optimizations of a subproblem until sons are created. For further detatails we refer to
dbThreshold(int).

Definition at line 2366 of file master.h.

6.4.4.29 void ABA_MASTER::dbThreshold (int threshold) [inline]

Sets the number of optimizations of a subproblem until sons are created inABA_SUB::branching().

If this value is 0, then a branching step is performed at the end of the subproblem optimization as usually if the
subproblem can be fathomed. Otherwise, if this value is strictly positive, the subproblem is put back for a later
optimization. This can be advantageous if in the meantime good cutting planes or primal bounds can be generated.
The number of times the subproblem is put back without branching is indicated by this value.

Parameters:
threshold The new value of the delayed branching threshold.

Definition at line 2361 of file master.h.

6.4.4.30 void ABA_MASTER::defaultLpSolver (OSISOLVER osiSolver) [inline]

Changes the default Lp solver.

Parameters:
osiSolver The new solver.

Definition at line 2276 of file master.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

126 Reference Manual

6.4.4.31 ABA_MASTER::OSISOLVER ABA_MASTER::defaultLpSolver () const [inline]

Returns:
The Lp Solver.

Definition at line 2271 of file master.h.

6.4.4.32 bool ABA_MASTER::delayedBranching (intnOpt_) const

Returns:
true If the number of optimizationsnOptof a subproblem exceeds the delayed branching threshold,
false otherwise.

Parameters:
nOpt The number of optimizations of a subproblem.

6.4.4.33 int ABA_MASTER::depthFirstSearch (constABA_SUB ∗ s1, constABA_SUB ∗ s2) const
[protected]

Implements the depth first search enumeration strategy, i.e., the subproblem with maximumlevel is selected.

If the level of both subproblems are equal, then the subproblems are compared with the function
equalSubCompare().

Returns:
-1 If subproblems1has higher priority,
0 if both subproblems have equal priority,
1 otherwise.

Parameters:
s1 The first subproblem.

s2 The second subproblem.

6.4.4.34 int ABA_MASTER::diveAndBestFirstSearch (constABA_SUB ∗ s1, constABA_SUB ∗ s2) const
[protected]

Performs depth-first search until a feasible solution is found, then the search process is continued with best-first
search.

Returns:
-1 If subproblems1has higher priority,
0 if both subproblems have equal priority,
1 otherwise.

Parameters:
s1 The first subproblem.

s2 The second subproblem.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.4 ABA_MASTER Class Reference 127

6.4.4.35 void ABA_MASTER::dualBound (doublex)

This version of the functiondualBound()sets the dual bound tox and makes a new entry in the solution history.

It is an error if the dual bound gets worse.

Parameters:
x The new value of the dual bound.

6.4.4.36 double ABA_MASTER::dualBound () const [inline]

Returns:
The value of the dual bound, i.e., theupperBound()for a maximization problem and thelowerBound()for a
minimization problem, respectively.

Definition at line 1902 of file master.h.

6.4.4.37 void ABA_MASTER::eliminateFixedSet (boolturnOn) [inline]

This version of the functioneliminateFixedSet()can be used to turn the elimination of fixed and set variables on or
off.

Parameters:
turnOn The elimination is turned on ifturnOn is true, otherwise it is turned off.

Definition at line 2156 of file master.h.

6.4.4.38 bool ABA_MASTER::eliminateFixedSet () const [inline]

Returns:
true Then we try to eliminate fixed and set variables from the linear program.
false Fixed or set variables are not eliminated.

Definition at line 2151 of file master.h.

6.4.4.39 virtual int ABA_MASTER::enumerationStrategy (const ABA_SUB ∗ s1, constABA_SUB ∗ s2)
[virtual]

Analyzes the enumeration strategy set in the parameter file {.abacus} and calls the corresponding comparison
function for the subproblemss1 ands2. This function should be redefined for application specific enumeration
strategies.

Returns:
1 If s1has higher priority thans2
0 if s2has higher priority it returns−1 , and if both subproblems have equal priority

Parameters:
s1 A pointer to subproblem.

s2 A pointer to subproblem.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

128 Reference Manual

6.4.4.40 void ABA_MASTER::enumerationStrategy (ENUMSTRAT strat) [inline]

This version of the functionenumerationStrategy()changes the enumeration strategy.

Parameters:
strat The new enumeration strategy.

Definition at line 2256 of file master.h.

6.4.4.41 ABA_MASTER::ENUMSTRAT ABA_MASTER::enumerationStrategy () const [inline]

Returns:
The enumeration strategy.

Definition at line 2251 of file master.h.

6.4.4.42 virtual int ABA_MASTER::equalSubCompare (constABA_SUB ∗ s1, constABA_SUB ∗ s2)
const [protected, virtual]

Is called from the functionbestFirstSearch()and from the functiondepthFirstSearch()if the subproblemss1and
s2have the same priority.

If both subproblems were generated by setting a binary variable, then that subproblem has higher priority of which
the branching variable is set to upper bound.

This function can be redefined to resolve equal subproblems according to problem specific criteria. As the root
node is compared with itself and has no branching rule, we have to insert the first line of this function.

Parameters:
s1 A subproblem.

s2 A subproblem.

Returns:
0 If both subproblems were not generated by setting a variable, or the branching variable of both subproblems
is set to the same bound.
1 If the branching variable of the first subproblem ist set to the upper bound.
-1 If the branching variable of the second subproblem ist setto the upper bound.

6.4.4.43 bool ABA_MASTER::feasibleFound () const

We use this function ,e.g., to adapt the enumeration strategy in theDiveAndBest-Strategy.

This function is only correct if any primal bound better thanplus/minus infinity corresponds to a feasible solution.

Returns:
true If a feasible solution of the optimization problem has been found.
false otherwise.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.4 ABA_MASTER Class Reference 129

6.4.4.44 virtualABA_SUB∗ ABA_MASTER::firstSub () [protected, pure virtual]

Returns:
Should return a pointer to the first subproblem of the optimization, i.e., the root node of the enumeration tree.
This is a pure virtual function since a pointer to a problem specific subproblem should be returned, which is
derived from the classABA_SUB.

6.4.4.45 ABA_FIXCAND ∗ ABA_MASTER::fixCand () const [inline, private]

returns a pointer to the object storing the variables which are candidates for being fixed.

Definition at line 1932 of file master.h.

6.4.4.46 void ABA_MASTER::fixSetByRedCost (boolon) [inline]

Turns fixing and setting variables by reduced cost on or off.

Parameters:
on If true, then variable fixing and setting by reduced cost is turned on. Otherwise it is turned of.

Definition at line 2066 of file master.h.

6.4.4.47 bool ABA_MASTER::fixSetByRedCost () const [inline]

Returns:
true Then variables are fixed and set by reduced cost criteria.
false Then no variables are fixed or set by reduced cost criteria.

Definition at line 2061 of file master.h.

6.4.4.48 double ABA_MASTER::guarantee ()

Can be used to access the guarantee which can be given for the best known feasible solution.

It is an error to call this function if the lower bound is zero,but the upper bound is nonzero.

Returns:
The guarantee for best known feasible solution in percent.

6.4.4.49 bool ABA_MASTER::guaranteed ()

Can be used to check if the guarantee requirements are fulfilled, i.e., the difference between upper bound and the
lower bound in respect to the lowerBound is less than this guarantee value in percent.

If the lower bound is zero, but the upper bound is nonzero, we cannot give any guarantee.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

130 Reference Manual

Warning:
A guarantee for a solution can only be given if the pricing problem is solved exactly or no column generation
is performed at all.

Returns:
true If the guarantee requirements are fulfilled,
false otherwise.

6.4.4.50 int ABA_MASTER::highestLevel () const [inline]

Returns:
The highest level in the tree which has been reached during the implicit enumeration.

Definition at line 2046 of file master.h.

6.4.4.51 ABA_HISTORY ∗ ABA_MASTER::history () const [inline]

Returns:
A pointer to the object storing the solution history of this branch and cut problem.

Definition at line 1922 of file master.h.

6.4.4.52 constABA_CPUTIMER ∗ ABA_MASTER::improveTime () const [inline]

Returns:
A pointer to the timer measuring the cpu time spent in the heuristics for the computation of feasible solutions.

Definition at line 1991 of file master.h.

6.4.4.53 virtual void ABA_MASTER::initializeOptimizatio n () [protected, virtual]

The default implementation ofinitializeOptimization()does nothing.

This virtual function can be used as an entrance point to perform some initializations afteroptimize()is called.

6.4.4.54 void ABA_MASTER::initializeOptSense (ABA_OPTSENSE::SENSEsense) [protected]

Can be used to initialize the sense of the optimization in derived classes, if this has not been already performed
when the constructor of ABA_MASTER has been called.

Parameters:
senseThe sense of the optimization (ABA_OPTSENSE::Minor ABA_OPTSENSE::Max).

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.4 ABA_MASTER Class Reference 131

6.4.4.55 virtual void ABA_MASTER::initializeParameters () [protected, virtual]

Is only a dummy. This function can be used to initialize parameters of derived classes and to overwrite parameters
read from the file { .abacus} by the function ().

6.4.4.56 virtual void ABA_MASTER::initializePools (ABA_BUFFER< ABA_CONSTRAINT
∗ > & constraints, ABA_BUFFER< ABA_CONSTRAINT ∗ > & cuts, ABA_BUFFER<

ABA_VARIABLE ∗ > & Variables, int varPoolSize, int cutPoolSize, bool dynamicCutPool=
false) [protected, virtual]

Is overloaded such that also a first set of cutting planes can be inserted into the cutting plane pool.

Parameters:
constraints The constraints of the problem formulation are inserted in the constraint pool. The size of the

constraint pool equals the number ofconstraints.

cuts The constraints that are inserted in the cutting plane pool.The number of constraints in the buffer must
be less or equal than the size of the cutting plane poolcutPoolSize.

variables The variables of the problem formulation are inserted in thevariable pool.

varPoolSizeThe size of the pool for the variables. If more variables are added the variable pool is automati-
cally reallocated.

cutPoolSizeThe size of the pool for cutting planes.

dynamicCutPool If this argument is true, then the cut is automatically reallocated if more constraints are
inserted thancutPoolSize. Otherwise, non-active constraints are removed if the poolbecomes full. The
default value is false.

6.4.4.57 virtual void ABA_MASTER::initializePools (ABA_BUFFER< ABA_CONSTRAINT ∗ > &
constraints, ABA_BUFFER< ABA_VARIABLE ∗ > & Variables, int varPoolSize, int cutPoolSize,
bool dynamicCutPool= false) [protected, virtual]

Sets up the default pools for variables, constraints, and cutting planes.

Parameters:
constraints The constraints of the problem formulation are inserted in the constraint pool. The size of the

constraint pool equals the number ofconstraints.

variables The variables of the problem formulation are inserted in thevariable pool.

varPoolSizeThe size of the pool for the variables. If more variables are added the variable pool is automati-
cally reallocated.

cutPoolSizeThe size of the pool for cutting planes.

dynamicCutPool If this argument is true, then the cut is automatically reallocated if more constraints are
inserted thancutPoolSize. Otherwise, non-active constraints are removed if the poolbecomes full. The
default value is false.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

132 Reference Manual

6.4.4.58 int ABA_MASTER::initLP () [private]

6.4.4.59 bool ABA_MASTER::knownOptimum (double & optVal)

Opens the file specified with the parameter { OptimumFileName} in the configuration file { .abacus} and tries to
find a line with the name of the problem instance (as specified in the constructor of ABA_MASTER) as first string.

Returns:
true If a line withproblemName_has been found,
false otherwise.

Parameters:
optVal If the return value istrue, thenoptValholds the optimum value found in the line with the name of the

problem instance as first string. Otherwise,optVal is undefined.

6.4.4.60 void ABA_MASTER::logLevel (OUTLEVEL mode) [inline]

This version of the functionlogLevel()sets the output mode for the log-file.

Parameters:
mode The new value of the output mode.

Definition at line 2356 of file master.h.

6.4.4.61 ABA_MASTER::OUTLEVEL ABA_MASTER::logLevel () const [inline]

Returns:
The output mode for the log-file.

Definition at line 2351 of file master.h.

6.4.4.62 double ABA_MASTER::lowerBound () const [inline]

Returns:
The value of the global lower bound.

Definition at line 1885 of file master.h.

6.4.4.63 ABA_LPMASTEROSI ∗ ABA_MASTER::lpMasterOsi () const [inline]

Definition at line 739 of file master.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.4 ABA_MASTER Class Reference 133

6.4.4.64 constABA_CPUTIMER ∗ ABA_MASTER::lpSolverTime () const [inline]

Returns:
A pointer to the timer measuring the cpu time required by the LP solver.

Definition at line 1981 of file master.h.

6.4.4.65 constABA_CPUTIMER ∗ ABA_MASTER::lpTime () const [inline]

Returns:
A pointer to the timer measuring the cpu time spent in membersof the LP-interface.

Definition at line 1976 of file master.h.

6.4.4.66 void ABA_MASTER::maxConAdd (int max) [inline]

Sets the maximal number of constraints that are added in an iteration of the cutting plane algorithm.

Parameters:
max The maximal number of constraints.

Definition at line 2086 of file master.h.

6.4.4.67 int ABA_MASTER::maxConAdd () const [inline]

Returns:
The maximal number of constraints which should be added in every iteration of the cutting plane algorithm.

Definition at line 2081 of file master.h.

6.4.4.68 void ABA_MASTER::maxConBuffered (int max) [inline]

Changes the maximal number of constraints that are bufferedin an iteration of the cutting plane algorithm.

Note:
This function changes only the default value for subproblems that are activated after its call.

Parameters:
max The new maximal number of buffered constraints.

Definition at line 2096 of file master.h.

6.4.4.69 int ABA_MASTER::maxConBuffered () const [inline]

Returns:
The size of the buffer for generated constraints in the cutting plane algorithm.

Definition at line 2091 of file master.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

134 Reference Manual

6.4.4.70 void ABA_MASTER::maxCowTime (constABA_STRING & t) [inline]

This version of the functionmaxCowTime()set the maximal wall-clock time for the optimization.

Parameters:
t The new value of the maximal wall-clock time in the form { hh:mm:ss}.

Definition at line 2311 of file master.h.

6.4.4.71 constABA_STRING & ABA_MASTER::maxCowTime () const [inline]

The functionmaxCowTime().

Returns:
The maximal wall-clock time for the optimization.

Definition at line 2306 of file master.h.

6.4.4.72 void ABA_MASTER::maxCpuTime (constABA_STRING & t) [inline]

Sets the maximal usable cpu time for the optimization.

Parameters:
t The new value of the maximal cpu time in the form { "hh:mm:ss"}.

Definition at line 2301 of file master.h.

6.4.4.73 constABA_STRING & ABA_MASTER::maxCpuTime () const [inline]

Returns:
The maximal cpu time which can be used by the optimization.

Definition at line 2296 of file master.h.

6.4.4.74 void ABA_MASTER::maxIterations (int max) [inline]

Changes the default value for the maximal number of iterations of the optimization of a subproblem.

Note:
This function changes only this value for subproblems that are constructed after this function call. For already
constructed objects the value can be changed with the functionABA_SUB::maxIterations().

Parameters:
max The new maximal number of iterations of the subproblem optimization (-1 means no limit).

Definition at line 2126 of file master.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.4 ABA_MASTER Class Reference 135

6.4.4.75 int ABA_MASTER::maxIterations () const [inline]

Returns:
The maximal number of iterations per subproblem optimization (-1 means no iteration limit).

Definition at line 2121 of file master.h.

6.4.4.76 void ABA_MASTER::maxLevel (int ml)

This version of the functionmaxLevel()changes the maximal enumeration depth.

If it is set to 1 the\ algorithm becomes a pure cutting plane algorithm.

Parameters:
max The new value of the maximal enumeration level.

6.4.4.77 int ABA_MASTER::maxLevel () const [inline]

Returns:
The maximal depth up to which the enumeration should be performed. By default the maximal enumeration
depth isINT .

Definition at line 2291 of file master.h.

6.4.4.78 void ABA_MASTER::maxVarAdd (int max) [inline]

Changes the maximal number of variables that are added in an iteration of the subproblem optimization.

Parameters:
max The new maximal number of added variables.

Definition at line 2106 of file master.h.

6.4.4.79 int ABA_MASTER::maxVarAdd () const [inline]

Returns:
The maximal number of variables which should be added in the column generation algorithm.

Definition at line 2101 of file master.h.

6.4.4.80 void ABA_MASTER::maxVarBuffered (int max) [inline]

Changes the maximal number of variables that are buffered inan iteration of the subproblem optimization.

Note:
This function changes only the default value for subproblems that are activated after its call.

Parameters:
max The new maximal number of buffered variables.

Definition at line 2116 of file master.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

136 Reference Manual

6.4.4.81 int ABA_MASTER::maxVarBuffered () const [inline]

Returns:
The size of the buffer for the variables generated in the column generation algorithm.

Definition at line 2111 of file master.h.

6.4.4.82 void ABA_MASTER::minDormantRounds (int nRounds) [inline]

Sets the number of rounds a subproblem should stay dormant.

Parameters:
nRounds The new minimal number of dormant rounds.

Definition at line 2376 of file master.h.

6.4.4.83 int ABA_MASTER::minDormantRounds () const [inline]

Returns:
The maximal number of rounds, i.e., number of subproblem optimizations, a subproblem is dormant, i.e., it is
not selected from the set of open subproblem if its status isDormant, if possible.

Definition at line 2371 of file master.h.

6.4.4.84 void ABA_MASTER::nBranchingVariableCandidates(int n)

This version of the functionnbranchingVariableCandidates()sets the number of tested branching variable candi-
dates.

Parameters:
n The new value of the number of tested variables for becoming branching variable.

6.4.4.85 int ABA_MASTER::nBranchingVariableCandidates () const [inline]

Returns:
The number of variables that should be tested for the selection of the branching variable.

Definition at line 2281 of file master.h.

6.4.4.86 void ABA_MASTER::newFixed (intn) [inline, private]

Increments the counter of the number of fixed variables byn.

Definition at line 2011 of file master.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.4 ABA_MASTER Class Reference 137

6.4.4.87 void ABA_MASTER::newRootReOptimize (boolon) [inline]

Turns the reoptimization of new root nodes of the remaining branch and bound tree on or off.

Parameters:
on If true, new root nodes are reoptimized.

Definition at line 2166 of file master.h.

6.4.4.88 bool ABA_MASTER::newRootReOptimize () const [inline]

Returns:
true Then a new root of the remaining\ tree is reoptimized such that the associated reduced costs can be used
for the fixing of variables.
false A new root is not reoptimized.

Definition at line 2161 of file master.h.

6.4.4.89 void ABA_MASTER::newSub (intlevel) [private]

Registers a new subproblem which is on levellevel in enumeration tree.

It is called each time a new subproblem is generated.

6.4.4.90 int ABA_MASTER::nLp () const [inline]

Returns:
The number of optimized linear programs (only LP-relaxations).

Definition at line 2041 of file master.h.

6.4.4.91 int ABA_MASTER::nNewRoot () const [inline]

Returns:
The number of root changes of the remaining\ tree.

Definition at line 2051 of file master.h.

6.4.4.92 int ABA_MASTER::nSub () const [inline]

Returns:
The number of generated subproblems.

Definition at line 2036 of file master.h.

6.4.4.93 int ABA_MASTER::nSubSelected () const [inline]

Returns:
The number of subproblems which have already been selected from the set of open subproblems.

Definition at line 2056 of file master.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

138 Reference Manual

6.4.4.94 void ABA_MASTER::objInteger (bool b) [inline]

This version of functionobjInteger()sets the assumption that the objective function values of all feasible solutions
are integer.

Parameters:
b The new value of the assumption.

Definition at line 2321 of file master.h.

6.4.4.95 bool ABA_MASTER::objInteger () const [inline]

Returns:
true Then we assume that all feasible solutions have integral objective function values,
false otherwise.

Definition at line 2316 of file master.h.

6.4.4.96 ABA_OPENSUB∗ ABA_MASTER::openSub () const [inline]

Returns:
A pointer to the set of open subproblems.

Definition at line 1927 of file master.h.

6.4.4.97 constABA_MASTER & ABA_MASTER::operator= (const ABA_MASTER & rhs) [private]

6.4.4.98 STATUS ABA_MASTER::optimize ()

Performs the optimization by .

The status of the optimization.

6.4.4.99 void ABA_MASTER::optimumFileName (const char∗ name) [inline]

Changes the name of the file in which the value of the optimum solution is searched.

Parameters:
name The new name of the file.

Definition at line 2136 of file master.h.

6.4.4.100 constABA_STRING & ABA_MASTER::optimumFileName () const [inline]

Returns:
The name of the file that stores the optimum solutions.

Definition at line 2131 of file master.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.4 ABA_MASTER Class Reference 139

6.4.4.101 constABA_OPTSENSE∗ ABA_MASTER::optSense () const [inline]

Returns:
A pointer to the object holding the optimization sense of theproblem.

Definition at line 1917 of file master.h.

6.4.4.102 void ABA_MASTER::outLevel (OUTLEVEL mode) [inline]

The version of the functionoutLevel()sets the output mode.

Parameters:
mode The new value of the output mode.

Definition at line 2346 of file master.h.

6.4.4.103 ABA_MASTER::OUTLEVEL ABA_MASTER::outLevel () const [inline]

Returns:
The output mode.

Definition at line 2341 of file master.h.

6.4.4.104 virtual void ABA_MASTER::output () [virtual]

Does nothing but can be redefined in derived classes for output before the timing statistics.

6.4.4.105 void ABA_MASTER::pbMode (PRIMALBOUNDMODE mode) [inline]

Sets the mode of the primal bound initialization.

Parameters:
mode The new mode of the primal bound initialization.

Definition at line 2386 of file master.h.

6.4.4.106 ABA_MASTER::PRIMALBOUNDMODE ABA_MASTER::pbMode () const [inline]

Returns:
The mode of the primal bound initialization.

Definition at line 2381 of file master.h.

6.4.4.107 bool ABA_MASTER::pricing () const [inline]

Returns:
true If pricing has been set to true in the call of the constructor of the classABA_MASTER, i.e., if a columns
should be generated in the subproblem optimization.
false otherwise.

Definition at line 1957 of file master.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

140 Reference Manual

6.4.4.108 void ABA_MASTER::pricingFreq (int f)

This version of the functionpricingFreq()sets the number of linear programs being solved between two additional
pricing steps.

Parameters:
f The pricing frequency.

6.4.4.109 int ABA_MASTER::pricingFreq () const [inline]

Returns:
The number of linear programs being solved between two additional pricing steps. If no additional pricing
steps should be executed this parameter has to be set to 0. Thedefault value of the pricing frequency is 0.
This parameter does not influence the execution of pricing steps which are required for the correctness of the
algorithm.

Definition at line 2391 of file master.h.

6.4.4.110 constABA_CPUTIMER ∗ ABA_MASTER::pricingTime () const [inline]

Returns:
A pointer to the timer measuring the cpu time spent in pricing.

Definition at line 1996 of file master.h.

6.4.4.111 void ABA_MASTER::primalBound (doublex)

This version of the functionprimalBound()sets the primal bound tox and makes a new entry in the solution history.
It is an error if the primal bound gets worse.

Parameters:
x The new value of the primal bound.

6.4.4.112 double ABA_MASTER::primalBound () const [inline]

Returns:
The value of the primal bound, i.e., thelowerBound()for a maximization problem and theupperBound()for a
minimization problem, respectively.

Definition at line 1897 of file master.h.

6.4.4.113 bool ABA_MASTER::primalViolated (doublex) const

Can be used to compare a value with the one of the best known primal bound.

If the objective function values of all feasible solutions are integer, then we do not have to be so carefully.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.4 ABA_MASTER Class Reference 141

Returns:
true If x is not better than the best known primal bound,
false otherwise.

Parameters:
x The value being compared with the primal bound.

6.4.4.114 void ABA_MASTER::printGuarantee ()

Writes the guarantee nicely formated on the output stream associated with this object.

If no bounds are available, or the lower bound is zero, but theupper bound is nonzero, then we cannot give any
guarantee.

6.4.4.115 void ABA_MASTER::printLP (bool on) [inline]

Turns the output of the linear program in every iteration on or off.

Parameters:
on If true, then the linear program is output, otherwise it is not output.

Definition at line 2076 of file master.h.

6.4.4.116 bool ABA_MASTER::printLP () const [inline]

Returns:
true Then the linear program is output every iteration of thesubproblem optimization.
false The linear program is not output.

Definition at line 2071 of file master.h.

6.4.4.117 void ABA_MASTER::printParameters ()

Writes all parameters of the class ABA_MASTER together with their values to the global output stream.

6.4.4.118 constABA_STRING∗ ABA_MASTER::problemName () const

Returns:
A pointer to the name of the instance being optimized (as specified in the constructor of this class).

6.4.4.119 void ABA_MASTER::removeCons (intn) [inline, private]

Increments the counter for the total number of removed constraints byn.

Definition at line 2021 of file master.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

142 Reference Manual

6.4.4.120 void ABA_MASTER::removeVars (intn) [inline, private]

Increments the counter for the total number of removed variables byn.

Definition at line 2031 of file master.h.

6.4.4.121 void ABA_MASTER::requiredGuarantee (doubleg)

This version of the functionrequiredGuarantee()changes the guarantee specification.

Parameters:
g The new guarantee specification (in percent). This must be a nonnative value. Note, if the guarantee

specification is changed after a single node of the enumeration tree has been fathomed, then the overall
guarantee might differ from the new value.

6.4.4.122 double ABA_MASTER::requiredGuarantee () const [inline]

The guarantee specification for the optimization.

Definition at line 2286 of file master.h.

6.4.4.123 ABA_SUB ∗ ABA_MASTER::root () const [inline]

Can be used to access the root node of the\ tree.

Returns:
A pointer to the root node of the enumeration tree.

Definition at line 1907 of file master.h.

6.4.4.124 void ABA_MASTER::rootDualBound (doublex) [private]

Updates the final dual bound of the root node.

This function should be only called at the end of the root nodeoptimization.

6.4.4.125 void ABA_MASTER::rRoot (ABA_SUB ∗ newRoot, bool reoptimize) [private]

Sets the root of the remaining\ tree tonewRoot.

If reoptimizeis true a reoptimization of the subproblem∗newRootis performed. This is controlled via a function
argument since it might not be desirable when we find a newrRoot_during the fathoming of a complete subtree
ABA_SUB::FathomTheSubtree().

6.4.4.126 ABA_SUB ∗ ABA_MASTER::rRoot () const [inline]

Returns:
A pointer to the root of the remaining\ tree, i.e., the subproblem which is an ancestor of all open subproblems
and has highest level in the tree.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.4 ABA_MASTER Class Reference 143

Definition at line 1912 of file master.h.

6.4.4.127 ABA_SUB∗ ABA_MASTER::select () [private]

Returns a pointer to an open subproblem for further processing.

If the set of open subproblems is empty or one of the criteria for early termination of the optimization (maximal
cpu time, maximal elapsed time, guarantee) is fulfilled 0 is returned.

6.4.4.128 constABA_CPUTIMER ∗ ABA_MASTER::separationTime () const [inline]

Returns:
A pointer to the timer measuring the cpu time spent in the separation of cutting planes.

Definition at line 1986 of file master.h.

6.4.4.129 virtual bool ABA_MASTER::setSolverParameters (OsiSolverInterface∗ interface, bool
solverIsApprox) [virtual]

Set solver specific parameters. The default does nothing.

Returns:
true if an error has occured otherwise

6.4.4.130 void ABA_MASTER::showAverageCutDistance (boolon) [inline]

Turns the output of the average distance of the added cuts from the fractional solution on or off.

Parameters:
on If true the output is turned on, otherwise it is turned off.

Definition at line 2176 of file master.h.

6.4.4.131 bool ABA_MASTER::showAverageCutDistance () const [inline]

Returns:
true Then the average distance of the fractional solution from all added cutting planes is output every iteration
of the subproblem optimization.
false The average cut distance is not output.

Definition at line 2171 of file master.h.

6.4.4.132 void ABA_MASTER::skipFactor (int f)

This version of the functionskipFactor()sets the frequency for constraint and variable generation.

Parameters:
f The new value of the frequency.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

144 Reference Manual

6.4.4.133 int ABA_MASTER::skipFactor () const [inline]

Returns:
The frequency of subproblems in which constraints or variables should be generated.

Definition at line 2396 of file master.h.

6.4.4.134 ABA_MASTER::SKIPPINGMODE ABA_MASTER::skippingMode () const [inline]

Returns:
The skipping strategy.

Definition at line 2401 of file master.h.

6.4.4.135 void ABA_MASTER::skippingMode (SKIPPINGMODE mode) [inline]

This version of the functionskippingMode()sets the skipping strategy.

Parameters:
mode The new skipping strategy.

Definition at line 2406 of file master.h.

6.4.4.136 bool ABA_MASTER::solveApprox () const [inline]

True, if an approximative solver should be used

Definition at line 1961 of file master.h.

6.4.4.137 void ABA_MASTER::status (STATUS stat) [inline, private]

This version of the functionstatus()sets the status of the ABA_MASTER.

Definition at line 2146 of file master.h.

6.4.4.138 ABA_MASTER::STATUS ABA_MASTER::status () const [inline]

Returns:
The status of the ABA_MASTER.

Definition at line 2141 of file master.h.

6.4.4.139 void ABA_MASTER::tailOffNLp (int n) [inline]

Sets the number of linear programs considered in the tailingoff analysis.

This new value is only relevant for subproblems activated { after} the change of this value.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.4 ABA_MASTER Class Reference 145

Parameters:
n The new number of LPs for the tailing off analysis.

Definition at line 2331 of file master.h.

6.4.4.140 int ABA_MASTER::tailOffNLp () const [inline]

The functiontailOffNLp().

Returns:
The number of linear programs considered in the tailing off analysis.

Definition at line 2326 of file master.h.

6.4.4.141 void ABA_MASTER::tailOffPercent (doublep)

This version of the functiontailOffPercent()sets the minimal change of the dual bound for the tailing off analysis.

This change is only relevant for subproblems activated { after} calling this function.

Parameters:
p The new value for the tailing off analysis.

6.4.4.142 double ABA_MASTER::tailOffPercent () const [inline]

The functiontailOffPercent().

Returns:
The minimal change of the dual bound for the tailing off analysis in percent.

Definition at line 2336 of file master.h.

6.4.4.143 virtual void ABA_MASTER::terminateOptimizatio n () [protected, virtual]

The default implementation ofterminateOptimization()does nothing.

This virtual function can be used as an entrance point after the optimization process is finished.

6.4.4.144 void ABA_MASTER::theFuture () [private]

6.4.4.145 constABA_COWTIMER ∗ ABA_MASTER::totalCowTime () const [inline]

Returns:
A pointer to the timer measuring the total wall clock time.

Definition at line 1966 of file master.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

146 Reference Manual

6.4.4.146 constABA_CPUTIMER ∗ ABA_MASTER::totalTime () const [inline]

Returns:
A pointer to the timer measuring the total cpu time for the optimization.

Definition at line 1971 of file master.h.

6.4.4.147 void ABA_MASTER::treeInterfaceLowerBound (double lb) const [private]

Passes the new lower boundlb to the Tree Interface.

6.4.4.148 void ABA_MASTER::treeInterfaceNewNode (ABA_SUB ∗ sub) const [private]

Adds the subproblemsub to the stream storing information for graphical output of the enumeration tree if this
logging is turned on.

6.4.4.149 void ABA_MASTER::treeInterfaceNodeBounds (intid, double lb, doubleub) [private]

Updates the node information in the node with numberid by writing the lower boundlb and the upper boundub
to the node.

6.4.4.150 void ABA_MASTER::treeInterfacePaintNode (intid, int color) const [private]

Assigns thecolor to the subproblemsubin the Tree Interface.

6.4.4.151 void ABA_MASTER::treeInterfaceUpperBound (double ub) const [private]

Passes the new upper boundub to the Tree Interface.

6.4.4.152 double ABA_MASTER::upperBound () const [inline]

Returns:
The value of the global upper bound.

Definition at line 1891 of file master.h.

6.4.4.153 void ABA_MASTER::varElimAge (int eps) [inline]

Changes the age for the elimination of variables by the reduced cost criterion.

Parameters:
eps The new age.

Definition at line 2236 of file master.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.4 ABA_MASTER Class Reference 147

6.4.4.154 int ABA_MASTER::varElimAge () const [inline]

Returns:
The age for the elimination of variables by the reduced cost criterion.

Definition at line 2231 of file master.h.

6.4.4.155 void ABA_MASTER::varElimEps (doubleeps) [inline]

Changes the tolerance for the elimination of variables by the reduced cost criterion.

Parameters:
eps The new tolerance.

Definition at line 2226 of file master.h.

6.4.4.156 double ABA_MASTER::varElimEps () const [inline]

Returns:
The zero tolerance for the elimination of variables by the reduced cost criterion.

Definition at line 2221 of file master.h.

6.4.4.157 void ABA_MASTER::varElimMode (VARELIMMODE mode) [inline]

Changes the variable elimination mode.

Parameters:
mode The new variable elimination mode.

Definition at line 2206 of file master.h.

6.4.4.158 ABA_MASTER::VARELIMMODE ABA_MASTER::varElimMode () const [inline]

Returns:
The mode for the elimination of variables.

Definition at line 2201 of file master.h.

6.4.4.159 ABA_STANDARDPOOL < ABA_VARIABLE , ABA_CONSTRAINT > ∗
ABA_MASTER::varPool () const [inline]

Returns:
A pointer to the default pool storing the variables.

Definition at line 1947 of file master.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

148 Reference Manual

6.4.4.160 void ABA_MASTER::vbcLog (VBCMODE mode) [inline]

Changes the mode of output for the Vbc-Tool.

This function should only be called before the optimizationis started with the function
ABA_MASTER::optimize().

Parameters:
mode The new mode.

Definition at line 2186 of file master.h.

6.4.4.161 ABA_MASTER::VBCMODE ABA_MASTER::vbcLog () const [inline]

Returns:
The mode of output for the Vbc-Tool.

Definition at line 2181 of file master.h.

6.4.4.162 void ABA_MASTER::writeTreeInterface (const char ∗ info, bool time = true) const
[private]

Writes the stringinfo to the stream associated with the Tree Interface.

A $ is preceded if the output is written to standard out for further pipelining. Iftime is true a time string is written
in front of the information. The default value oftime is true.

6.4.5 Friends And Related Function Documentation

6.4.5.1 friend classABA_FIXCAND [friend]

Definition at line 78 of file master.h.

6.4.5.2 friend classABA_SUB [friend]

Definition at line 77 of file master.h.

6.4.6 Member Data Documentation

6.4.6.1 const char∗ ABA_MASTER::BRANCHINGSTRAT_ [] [static]

Literal values for the enumerators of the corresponding enumeration type. The order of the enumerators is pre-
served. (e.g., { BRANCHINGSTRAT[0]=="CloseHalf"}).

Definition at line 181 of file master.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.4 ABA_MASTER Class Reference 149

6.4.6.2 BRANCHINGSTRAT ABA_MASTER::branchingStrategy_ [private]

The branching strategy.

Definition at line 1592 of file master.h.

6.4.6.3 ABA_CPUTIMER ABA_MASTER::branchingTime_ [private]

The timer for the cpu time spent in determining the branchingrules.

Definition at line 1843 of file master.h.

6.4.6.4 intABA_MASTER::conElimAge_ [private]

The number of iterations an elimination criterion must be satisfied until a constraint can be removed.

Definition at line 1804 of file master.h.

6.4.6.5 doubleABA_MASTER::conElimEps_ [private]

The tolerance for the elimination of constraints by the modeNonBinding/.

Definition at line 1794 of file master.h.

6.4.6.6 CONELIMMODE ABA_MASTER::conElimMode_ [private]

The way constraints are automatically eliminated in the cutting plane algorithm.

Definition at line 1784 of file master.h.

6.4.6.7 const char∗ ABA_MASTER::CONELIMMODE_ [] [static]

Literal values for the enumerators of the corresponding enumeration type. The order of the enumerators is pre-
served. (e.g., { CONELIMMODE[0]=="None"}).

Definition at line 240 of file master.h.

6.4.6.8 ABA_STANDARDPOOL <ABA_CONSTRAINT , ABA_VARIABLE >∗
ABA_MASTER::conPool_ [private]

The default pool with the constraints of the problem formulation.

Definition at line 1607 of file master.h.

6.4.6.9 ABA_STANDARDPOOL <ABA_CONSTRAINT , ABA_VARIABLE >∗ ABA_MASTER::cutPool_
[private]

The default pool of dynamically generated constraints.

Definition at line 1612 of file master.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

150 Reference Manual

6.4.6.10 boolABA_MASTER::cutting_ [private]

If true, then constraints are generated in the optimization.

Definition at line 1636 of file master.h.

6.4.6.11 intABA_MASTER::dbThreshold_ [private]

The number of optimizations of anABA_SUB until branching is performed.

Definition at line 1697 of file master.h.

6.4.6.12 OSISOLVER ABA_MASTER::defaultLpSolver_ [private]

The default LP-Solver.

Definition at line 1601 of file master.h.

6.4.6.13 doubleABA_MASTER::dualBound_ [private]

The best known dual bound.

Definition at line 1624 of file master.h.

6.4.6.14 boolABA_MASTER::eliminateFixedSet_ [private]

If true, then nonbasic fixed and set variables are eliminated.

Definition at line 1764 of file master.h.

6.4.6.15 ENUMSTRAT ABA_MASTER::enumerationStrategy_ [private]

The enumeration strategy.

Definition at line 1588 of file master.h.

6.4.6.16 const char∗ ABA_MASTER::ENUMSTRAT_ [] [static]

Literal values for the enumerators of the corresponding enumeration type. The order of the enumerators is pre-
served. (e.g., { ENUMSTRAT[0]=="BestFirst"}).

Definition at line 163 of file master.h.

6.4.6.17 ABA_FIXCAND ∗ ABA_MASTER::fixCand_ [private]

The variables which are candidates for being fixed.

Definition at line 1632 of file master.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.4 ABA_MASTER Class Reference 151

6.4.6.18 boolABA_MASTER::fixSetByRedCost_ [private]

If true, then variables are fixed and set by reduced cost criteria.

Definition at line 1733 of file master.h.

6.4.6.19 intABA_MASTER::highestLevel_ [private]

The highest level which has been reached in the enumeration tree.

Definition at line 1855 of file master.h.

6.4.6.20 ABA_HISTORY ∗ ABA_MASTER::history_ [private]

The solution history.

Definition at line 1584 of file master.h.

6.4.6.21 ABA_CPUTIMER ABA_MASTER::improveTime_ [private]

The timer for the cpu time spent in the heuristics for the computation of feasible solutions.

Definition at line 1835 of file master.h.

6.4.6.22 OUTLEVEL ABA_MASTER::logLevel_ [private]

The amount of output written to the log file.

Definition at line 1711 of file master.h.

6.4.6.23 ABA_LPMASTEROSI ∗ ABA_MASTER::lpMasterOsi_ [private]

Definition at line 1603 of file master.h.

6.4.6.24 ABA_CPUTIMER ABA_MASTER::lpSolverTime_ [private]

Definition at line 1826 of file master.h.

6.4.6.25 ABA_CPUTIMER ABA_MASTER::lpTime_ [private]

The timer for the cpu time spent in the LP-interface.

Definition at line 1825 of file master.h.

6.4.6.26 intABA_MASTER::maxConAdd_ [private]

The maximal number of added constraints per iteration of thecutting plane algorithm.

Definition at line 1742 of file master.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

152 Reference Manual

6.4.6.27 intABA_MASTER::maxConBuffered_ [private]

The size of the buffer for generated cutting planes.

Definition at line 1746 of file master.h.

6.4.6.28 ABA_STRING ABA_MASTER::maxCowTime_ [private]

The maximal available wall-clock time.

Definition at line 1680 of file master.h.

6.4.6.29 ABA_STRING ABA_MASTER::maxCpuTime_ [private]

The maximal available cpu time.

Definition at line 1676 of file master.h.

6.4.6.30 intABA_MASTER::maxIterations_ [private]

The maximal number of iterations of the cutting plane/column generation algorithm in the subproblem.

Definition at line 1760 of file master.h.

6.4.6.31 intABA_MASTER::maxLevel_ [private]

The maximal level in enumeration tree.

Up to this level subproblems are considered in the enumeration.

Definition at line 1672 of file master.h.

6.4.6.32 intABA_MASTER::maxVarAdd_ [private]

The maximal number of added variables per iteration of the column generation algorithm.

Definition at line 1751 of file master.h.

6.4.6.33 intABA_MASTER::maxVarBuffered_ [private]

The size of the buffer for generated variables.

Definition at line 1755 of file master.h.

6.4.6.34 intABA_MASTER::minDormantRounds_ [private]

The minimal number of rounds, i.e., number of subproblem optimizations, a subproblem is dormant, i.e., it is not
selected from the set of open subproblem if its status isDormant, if possible.

Definition at line 1703 of file master.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.4 ABA_MASTER Class Reference 153

6.4.6.35 intABA_MASTER::nAddCons_ [private]

The total number of added constraints.

Definition at line 1863 of file master.h.

6.4.6.36 intABA_MASTER::nAddVars_ [private]

The total number of added variables.

Definition at line 1871 of file master.h.

6.4.6.37 intABA_MASTER::nBranchingVariableCandidates_ [private]

The number of candidates that are evaluated for branching onvariables.

Definition at line 1597 of file master.h.

6.4.6.38 boolABA_MASTER::newRootReOptimize_ [private]

If true, then an already earlier processed node is reoptimized if itbecomes the new root of the remaining\ tree.

Definition at line 1769 of file master.h.

6.4.6.39 intABA_MASTER::nFixed_ [private]

The total number of fixed variables.

Definition at line 1859 of file master.h.

6.4.6.40 intABA_MASTER::nLp_ [private]

The number of solved LPs.

Definition at line 1851 of file master.h.

6.4.6.41 intABA_MASTER::nNewRoot_ [private]

The number of changes of the root of the remaining\ tree.

Definition at line 1879 of file master.h.

6.4.6.42 intABA_MASTER::nRemCons_ [private]

The total number of removed constraints.

Definition at line 1867 of file master.h.

6.4.6.43 intABA_MASTER::nRemVars_ [private]

The total number of removed variables.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

154 Reference Manual

Definition at line 1875 of file master.h.

6.4.6.44 intABA_MASTER::nSub_ [private]

The number of generated subproblems.

Definition at line 1847 of file master.h.

6.4.6.45 intABA_MASTER::nSubSelected_ [private]

The number of subproblems already selected from the list of open subproblems.

Definition at line 1650 of file master.h.

6.4.6.46 boolABA_MASTER::objInteger_ [private]

true, if all objective function values of feasible solutions areassumed to be integer.

Definition at line 1685 of file master.h.

6.4.6.47 ABA_OPENSUB∗ ABA_MASTER::openSub_ [private]

The set of open subproblems.

Definition at line 1580 of file master.h.

6.4.6.48 ABA_STRING ABA_MASTER::optimumFileName_ [private]

The name of a file storing a list of optimum solutions of problem instances.

Definition at line 1774 of file master.h.

6.4.6.49 ABA_OPTSENSE ABA_MASTER::optSense_ [private]

The sense of the objective function.

Definition at line 1568 of file master.h.

6.4.6.50 const char∗ ABA_MASTER::OSISOLVER_ [] [static]

Array for the literal values for possible Osi solvers.

Definition at line 284 of file master.h.

6.4.6.51 OUTLEVEL ABA_MASTER::outLevel_ [private]

The output mode.

Definition at line 1707 of file master.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.4 ABA_MASTER Class Reference 155

6.4.6.52 const char∗ ABA_MASTER::OUTLEVEL_ [] [static]

Literal values for the enumerators of the corresponding enumeration type. The order of the enumerators is pre-
served. (e.g., { OUTLEVEL[0]=="Silent"}).

Definition at line 138 of file master.h.

6.4.6.53 PRIMALBOUNDMODE ABA_MASTER::pbMode_ [private]

The mode of the primal bound initialization.

Definition at line 1715 of file master.h.

6.4.6.54 boolABA_MASTER::pricing_ [private]

If true, then variables are generated in the optimization.

Definition at line 1640 of file master.h.

6.4.6.55 intABA_MASTER::pricingFreq_ [private]

The number of solved LPs between two additional pricing steps.

Definition at line 1719 of file master.h.

6.4.6.56 ABA_CPUTIMER ABA_MASTER::pricingTime_ [private]

The timer for the cpu time spent in pricing.

Definition at line 1839 of file master.h.

6.4.6.57 doubleABA_MASTER::primalBound_ [private]

The best known primal bound.

Definition at line 1620 of file master.h.

6.4.6.58 const char∗ ABA_MASTER::PRIMALBOUNDMODE_ [] [static]

Literal values for the enumerators of the corresponding enumeration type. The order of the enumerators is pre-
served. (e.g., { PRIMALBOUNDMODE[0]=="None"}).

Definition at line 208 of file master.h.

6.4.6.59 boolABA_MASTER::printLP_ [private]

If true, then the linear program is output every iteration.

Definition at line 1737 of file master.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

156 Reference Manual

6.4.6.60 ABA_STRING ABA_MASTER::problemName_ [private]

The name of the optimized problem.

Definition at line 1563 of file master.h.

6.4.6.61 boolABA_MASTER::readParamFromFile_ [private]

Definition at line 1564 of file master.h.

6.4.6.62 doubleABA_MASTER::requiredGuarantee_ [private]

The guarantee in percent which should be reached when the optimization stops.

If this value is0.0 , then the optimum solution is determined.

Definition at line 1666 of file master.h.

6.4.6.63 ABA_SUB∗ ABA_MASTER::root_ [private]

The root node of the enumeration tree.

Definition at line 1572 of file master.h.

6.4.6.64 doubleABA_MASTER::rootDualBound_ [private]

The best known dual bound at the end of the optimization of theroot node.

Definition at line 1628 of file master.h.

6.4.6.65 ABA_SUB∗ ABA_MASTER::rRoot_ [private]

The root node of the remaining enumeration tree.

Definition at line 1576 of file master.h.

6.4.6.66 ABA_CPUTIMER ABA_MASTER::separationTime_ [private]

The timer for the cpu time spent in the separation

Definition at line 1830 of file master.h.

6.4.6.67 boolABA_MASTER::showAverageCutDistance_ [private]

If true then the average distance of the added cutting planes is output every iteration of the cutting plane algorithm.

Definition at line 1779 of file master.h.

6.4.6.68 intABA_MASTER::skipFactor_ [private]

The frequency constraints or variables are generated depending on the skipping mode.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.4 ABA_MASTER Class Reference 157

Definition at line 1724 of file master.h.

6.4.6.69 SKIPPINGMODE ABA_MASTER::skippingMode_ [private]

Either constraints are generated only everyskipFactor_subproblem (SkipByNode) only everyskipFactor_level
(SkipByLevel).

Definition at line 1729 of file master.h.

6.4.6.70 const char∗ ABA_MASTER::SKIPPINGMODE_ [] [static]

Literal values for the enumerators of the corresponding enumeration type. The order of the enumerators is pre-
served. (e.g., { SKIPPINGMODE[0]=="None"}).

Definition at line 224 of file master.h.

6.4.6.71 boolABA_MASTER::solveApprox_ [private]

If true, then an approximative solver is used to solve linear programs

Definition at line 1645 of file master.h.

6.4.6.72 STATUS ABA_MASTER::status_ [private]

The current status of the optimization.

Definition at line 1813 of file master.h.

6.4.6.73 const char∗ ABA_MASTER::STATUS_ [] [static]

Literal values for the enumerators of the corresponding enumeration type. The order of the enumerators is pre-
served. (e.g., { STATUS[0]=="Optimal"}).

Definition at line 117 of file master.h.

6.4.6.74 intABA_MASTER::tailOffNLp_ [private]

The number of LP-iterations for the tailing off analysis.

Definition at line 1689 of file master.h.

6.4.6.75 doubleABA_MASTER::tailOffPercent_ [private]

The minimal change of the LP-value on the tailing off analysis.

Definition at line 1693 of file master.h.

6.4.6.76 ABA_COWTIMER ABA_MASTER::totalCowTime_ [private]

The timer for the total elapsed time.

Definition at line 1817 of file master.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

158 Reference Manual

6.4.6.77 ABA_CPUTIMER ABA_MASTER::totalTime_ [private]

The timer for the total cpu time for the optimization.

Definition at line 1821 of file master.h.

6.4.6.78 ostream∗ ABA_MASTER::treeStream_ [private]

A pointer to the log stream for the VBC-Tool.

Definition at line 1659 of file master.h.

6.4.6.79 intABA_MASTER::varElimAge_ [private]

The number of iterations an elimination criterion must be satisfied until a variable can be removed.

Definition at line 1809 of file master.h.

6.4.6.80 doubleABA_MASTER::varElimEps_ [private]

The tolerance for the elimination of variables by the modeReducedCost.

Definition at line 1799 of file master.h.

6.4.6.81 VARELIMMODE ABA_MASTER::varElimMode_ [private]

The way variables are automatically eliminated in the column generation algorithm.

Definition at line 1789 of file master.h.

6.4.6.82 const char∗ ABA_MASTER::VARELIMMODE_ [] [static]

Literal values for the enumerators of the corresponding enumeration type. The order of the enumerators is pre-
served. (e.g., { VARELIMMODE[0]=="None"}).

Definition at line 255 of file master.h.

6.4.6.83 ABA_STANDARDPOOL <ABA_VARIABLE , ABA_CONSTRAINT >∗
ABA_MASTER::varPool_ [private]

The default pool with the variables of the problem formulation.

Definition at line 1616 of file master.h.

6.4.6.84 VBCMODE ABA_MASTER::VbcLog_ [private]

Ouput for the Tree Interface is generated depending on the value of this variable.

Definition at line 1655 of file master.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.5 ABA_SUB Class Reference 159

6.4.6.85 const char∗ ABA_MASTER::VBCMODE_ [] [static]

Literal values for the enumerators of the corresponding enumeration type. The order of the enumerators is pre-
served. (e.g., { VBCMODE[0]=="None"}).

Definition at line 272 of file master.h.

The documentation for this class was generated from the following file:

• Include/abacus/master.h

6.5 ABA_SUB Class Reference

class implements an abstract base class for a subproblem of the enumeration, i.e., a node of the\ tree.

#include <sub.h>

Inheritance diagram for ABA_SUB::

ABA_SUB

ABA_ABACUSROOT

Public Types

• enumSTATUS{

Unprocessed, Active, Dormant, Processed,

Fathomed}
• enumPHASE{ Done, Cutting, Branching, Fathoming}

The optimization of the subproblem can be in one of the following phases:.

Public Member Functions

• ABA_SUB (ABA_MASTER∗master, double conRes, double varRes, double nnzRes, bool relativeRes=true,
ABA_BUFFER< ABA_POOLSLOT< ABA_CONSTRAINT, ABA_VARIABLE > ∗ > ∗constraints=0,
ABA_BUFFER< ABA_POOLSLOT< ABA_VARIABLE , ABA_CONSTRAINT> ∗ > ∗variables=0)

The constructor for the root node of the enumeration tree.

• ABA_SUB (ABA_MASTER ∗master,ABA_SUB ∗father,ABA_BRANCHRULE ∗branchRule)

The constructor for non-root nodes of the enumeration tree.

• virtual∼ABA_SUB ()
• bool forceExactSolver() const
• int level () const
• int id () const

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

160 Reference Manual

• STATUS status() const
• int nVar () const
• int maxVar() const
• int nCon() const
• int maxCon() const
• doublelowerBound() const
• doubleupperBound() const
• doubledualBound() const
• void dualBound(double x)

Sets the dual bound of the subproblem, and if the subproblem is the root node of the enumeration tree and the new
value is better than its dual bound, also the global dual bound is updated. It is an error if the dual bound gets worse.

• constABA_SUB ∗ father() const
• ABA_LPSUB∗ lp () const
• void maxIterations(int max)
• ABA_ACTIVE< ABA_CONSTRAINT, ABA_VARIABLE > ∗ actCon() const
• ABA_ACTIVE< ABA_VARIABLE , ABA_CONSTRAINT> ∗ actVar() const
• ABA_CONSTRAINT∗ constraint(int i) const
• ABA_SLACKSTAT ∗ slackStat(int i) const
• ABA_VARIABLE ∗ variable(int i) const
• doublelBound(int i) const
• void lBound(int i, double l)
• doubleuBound(int i) const
• void uBound(int i, double u)

This version of the functionuBound()sets thef local upper bound of a variable.

• ABA_FSVARSTAT∗ fsVarStat(int i) const
• ABA_LPVARSTAT ∗ lpVarStat(int i) const
• doublexVal (int i) const
• doubleyVal (int i) const
• boolancestor(constABA_SUB ∗sub) const
• ABA_MASTER ∗ master() const
• void removeVars(ABA_BUFFER< int > &remove)

With functionremoveVars()variables can be removed from the set of active variables.

• void removeVar(int i)
• doublennzReserve() const
• bool relativeReserve() const
• ABA_BRANCHRULE ∗ branchRule() const
• boolobjAllInteger()

If all variables areBinary or Integerand all objective function coefficients are integral, then all objective function
values of feasible solutions are integral. The functionobjAllInteger()tests this condition for the current set of active
variables.

• virtual void removeCons(ABA_BUFFER< int > &remove)

Adds constraints to the buffer of the removed constraints, which will be removed at the beginning of the next iteration
of the cutting plane algorithm.

• virtual void removeCon(int i)

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.5 ABA_SUB Class Reference 161

The following version of the functionremoveCon()adds a single constraint to the set of constraints which are
removed from the active set at the beginning of the next iteration.

• int addConBufferSpace() const

Can be used to determine the maximal number of the constraints which still can be added to the constraint buffer.

• int addVarBufferSpace() const

Can be used to determine the maximal number of the variables which still canbe added to the variable buffer.

• int nDormantRounds() const
• void ignoreInTailingOff()
• virtual int addBranchingConstraint(ABA_POOLSLOT< ABA_CONSTRAINT, ABA_VARIABLE >

∗slot)

Adds a branching constraint to the constraint buffer such that it is automatically added at the beginning of the cutting
plane algorithm.

Protected Member Functions

• virtual int addCons (ABA_BUFFER< ABA_CONSTRAINT ∗ > &constraints, ABA_POOL<
ABA_CONSTRAINT, ABA_VARIABLE > ∗pool=0, ABA_BUFFER< bool > ∗keepInPool=0,
ABA_BUFFER< double> ∗rank=0)

• virtual int addCons(ABA_BUFFER< ABA_POOLSLOT< ABA_CONSTRAINT, ABA_VARIABLE > ∗
> &newCons)

• virtual int addVars (ABA_BUFFER< ABA_VARIABLE ∗ > &variables, ABA_POOL<
ABA_VARIABLE , ABA_CONSTRAINT > ∗pool=0, ABA_BUFFER< bool > ∗keepInPool=0,
ABA_BUFFER< double> ∗rank=0)

• virtual int addVars(ABA_BUFFER< ABA_POOLSLOT< ABA_VARIABLE , ABA_CONSTRAINT > ∗
> &newVars)

• virtual int variablePoolSeparation(int ranking=0,ABA_POOL< ABA_VARIABLE , ABA_CONSTRAINT
> ∗pool=0, double minViolation=0.001)

• virtual int constraintPoolSeparation (int ranking=0, ABA_POOL< ABA_CONSTRAINT,
ABA_VARIABLE > ∗pool=0, double minViolation=0.001)

• virtual voidactivate()

Does nothing but can be used as an entrance point for problem specific activations by a reimplementation in derived
classes.

• virtual voiddeactivate()

Can be used as entrance point for problem specific deactivations after the subproblem optimization.

• virtual int generateBranchRules(ABA_BUFFER< ABA_BRANCHRULE ∗ > &rules)
• virtual int branchingOnVariable(ABA_BUFFER< ABA_BRANCHRULE ∗ > &rules)

Generates branching rules for two new subproblems by selecting a branching variable with the function
selectBranchingVariable().

• virtual int selectBranchingVariable(int &variable)
• virtual int selectBranchingVariableCandidates(ABA_BUFFER< int > &candidates)

Selects depending on the branching variable strategy given by the parameter { BranchingStrategy} in the file {
.abacus} candidates that for branching variables.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

162 Reference Manual

• virtual int selectBestBranchingSample(int nSamples,ABA_BUFFER< ABA_BRANCHRULE ∗ >

∗∗samples)

Evaluates branching samples (we denote a branching sample the set of rules defining all sons of a subproblem in the
enumeration tree). For each sample the ranks are determined with the function rankBranchingSample(). The ranks
of the various samples are compared with the functioncompareBranchingSample().

• virtual void rankBranchingSample (ABA_BUFFER< ABA_BRANCHRULE ∗ > &sample,
ABA_ARRAY< double> &rank)

Computes for each branching rule of a branching sample a rank with the function rankBranchingRule().

• virtual doublerankBranchingRule(ABA_BRANCHRULE ∗branchRule)
• doublelpRankBranchingRule(ABA_BRANCHRULE ∗branchRule, int iterLimit=-1)

Computes the rank of a branching rule by modifying the linear programmingrelaxation of the subproblem according
to the branching rule and solving it. This modifiction is undone after the solution of the linear program.

• virtual int compareBranchingSampleRanks(ABA_ARRAY< double> &rank1,ABA_ARRAY< double>

&rank2)
• int closeHalfExpensive(int &branchVar,ABA_VARTYPE::TYPEbranchVarType)

Selects a single branching variable of typebranchVarType, with fractional part close to0.5 and high absolute
objective function coefficient.

• int closeHalfExpensive(ABA_BUFFER< int > &variables,ABA_VARTYPE::TYPEbranchVarType)

This version of the functioncloseHalfExpensive()selects several candidates for branching variables of typebranch-
VarType.

• int closeHalf(int &branchVar,ABA_VARTYPE::TYPEbranchVarType)

Searches a branching variable of typebranchVarType, with fraction as close to0.5 as possible.

• int closeHalf(ABA_BUFFER< int > &branchVar,ABA_VARTYPE::TYPEbranchVarType)

Searches searches several possible branching variable of typebranchVarType, with fraction as close to0.5 as pos-
sible.

• int findNonFixedSet(ABA_BUFFER< int > &branchVar,ABA_VARTYPE::TYPEbranchVarType)
• int findNonFixedSet(int &branchVar,ABA_VARTYPE::TYPEbranchVarType)
• virtual int initMakeFeas(ABA_BUFFER< ABA_INFEASCON ∗ > &infeasCon, ABA_BUFFER<

ABA_VARIABLE ∗ > &newVars,ABA_POOL< ABA_VARIABLE , ABA_CONSTRAINT> ∗∗pool)

The default implementation of the virtualinitMakeFeas()does nothing.

• virtual int makeFeasible()

The default implementation ofmakeFeasible()does nothing.

• virtual boolgoodCol(ABA_COLUMN &col, ABA_ARRAY< double> &row, double x, double lb, double
ub)

• virtual void setByLogImp(ABA_BUFFER< int > &variable, ABA_BUFFER< ABA_FSVARSTAT ∗ >

&status)

The default implementation ofsetByLogImp()does nothing.

• virtual boolfeasible()=0

The pure virtual functionfeasible()checks for the feasibility of a solution of the LP-relaxation.

• bool integerFeasible()

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.5 ABA_SUB Class Reference 163

Can be used to check if the solution of the LP-relaxation is primally feasible if forfeasibility an integral value for all
binary and integer variables is sufficient.

• virtual boolprimalSeparation()

Is a virtual function which controls, if during the cutting plane phase a (primal) separation step or a pricing step
(dual separation) should be performed.

• virtual int separate()
• virtual voidconEliminate(ABA_BUFFER< int > &remove)

Can be used as an entry point for application specific elimination of constraints by redefinig it in derived classes.

• virtual voidnonBindingConEliminate(ABA_BUFFER< int > &remove)

Retrieves the dynamic constraints with slack exceeding the value given by theparameter { ConElimEps}.

• virtual voidbasicConEliminate(ABA_BUFFER< int > &remove)
• virtual voidvarEliminate(ABA_BUFFER< int > &remove)

Provides an entry point for application specific variable elimination that can be implemented by redefining this
function in a derived class.

• void redCostVarEliminate(ABA_BUFFER< int > &remove)
• virtual int pricing ()
• virtual int improve(double &primalValue)

Can be redefined in derived classes in order to implement primal heuristics for finding feasible solutions.

• virtual ABA_SUB ∗ generateSon(ABA_BRANCHRULE ∗rule)=0

Returns a pointer to an object of a problem specific subproblem derived from the class ABA_SUB, which is generated
from the current subproblem by the branching rulerule.

• boolboundCrash() const
• virtual boolpausing()
• bool infeasible()
• virtual voidvarRealloc(int newSize)

Reallocates memory that at mostnewSizevariables can be handled in the subproblem.

• virtual voidconRealloc(int newSize)

Reallocates memory that at mostnewSizeconstraints can be handled in the subproblem.

• virtual ABA_LP::METHOD chooseLpMethod(int nVarRemoved, int nConRemoved, int nVarAdded, int
nConAdded)

• virtual booltailingOff ()
• boolbetterDual(double x) const
• virtual voidselectVars()
• virtual voidselectCons()
• virtual int fixByRedCost(bool &newValues, bool saveCand)
• virtual void fixByLogImp (ABA_BUFFER< int > &variable, ABA_BUFFER< ABA_FSVARSTAT ∗ >

&status)

Should collect the numbers of the variables to be fixed invariableand the respective statuses instatus.

• virtual int fixAndSet(bool &newValues)

Tries to fix and set variables both by logical implications and reduced costcriteria.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

164 Reference Manual

• virtual int fixing (bool &newValues, bool saveCand=false)
• virtual int setting(bool &newValues)

Tries to set variables by reduced cost criteria and logical implications likefixing(), but instead of global conditions
only locally valid conditions have to be satisfied.

• virtual int setByRedCost()
• virtual void fathom(bool reoptimize)
• virtual boolfixAndSetTime()
• virtual int fix (int i, ABA_FSVARSTAT∗newStat, bool &newValue)
• virtual int set(int i, ABA_FSVARSTAT∗newStat, bool &newValue)
• virtual int set(int i, ABA_FSVARSTAT::STATUSnewStat, bool &newValue)
• virtual int set(int i, ABA_FSVARSTAT::STATUSnewStat, double value, bool &newValue)
• virtual doubledualRound(double x)
• virtual doubleguarantee()
• virtual boolguaranteed()
• virtual boolremoveNonLiftableCons()
• virtual int prepareBranching(bool &lastIteration)
• virtual void fathomTheSubTree()
• virtual int optimize()
• virtual void reoptimize()
• virtual void initializeVars(int maxVar)
• virtual void initializeCons(int maxCon)
• virtual PHASE branching()

Is called if the global lower bound of a\ node is still strictly less than the local upper bound, but either no violated
cutting planes or variables are found, or we abort the cutting phase for some other strategic reason (e.g., observation
of a tailing off effect, or branch pausing).

• virtual PHASE fathoming()

Fathoms the node, and if certain conditions are satisfied, also its ancestor.

• virtual PHASE cutting()

Iteratively solves the LP-relaxation, generates constraints and/or variables.

• virtual ABA_LPSUB∗ generateLp()
• virtual int initializeLp ()
• virtual int solveLp()
• virtual boolexceptionFathom()

Can be used to specify a problem specific fathoming criterium that is checkedbefore the separation or pricing.

• virtual boolexceptionBranch()
• virtual boolsolveApproxNow()

Protected Attributes

• ABA_MASTER ∗ master_
• ABA_ACTIVE< ABA_CONSTRAINT, ABA_VARIABLE > ∗ actCon_
• ABA_ACTIVE< ABA_VARIABLE , ABA_CONSTRAINT> ∗ actVar_
• ABA_SUB ∗ father_
• ABA_LPSUB∗ lp_

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.5 ABA_SUB Class Reference 165

• ABA_ARRAY< ABA_FSVARSTAT∗ > ∗ fsVarStat_

A pointer to an array storing the status of fixing and setting of the active variables. Although fixed and set variables
are already kept at their value by the adaption of the lower and upper bounds, we store this information, since, e.g.,
a fixed or set variable should not be removed, but a variable with an upper bound equal to the lower bound can be
removed.

• ABA_ARRAY< ABA_LPVARSTAT ∗ > ∗ lpVarStat_

A pointer to an array storing the status of each active variable in the linear program.

• ABA_ARRAY< double> ∗ lBound_
• ABA_ARRAY< double> ∗ uBound_
• ABA_ARRAY< ABA_SLACKSTAT ∗ > ∗ slackStat_

A pointer to an array storing the statuses of the slack variables of the last solved linear program.

• ABA_TAILOFF ∗ tailOff_
• doubledualBound_
• int nIter_
• int lastIterConAdd_
• int lastIterVarAdd_
• ABA_BRANCHRULE ∗ branchRule_
• boolallBranchOnSetVars_

If true, then the branching rule of the subproblem and of all ancestor on the pathto the root node are branching on
a binary variable.

• ABA_LP::METHOD lpMethod_
• ABA_CUTBUFFER< ABA_VARIABLE , ABA_CONSTRAINT> ∗ addVarBuffer_
• ABA_CUTBUFFER< ABA_CONSTRAINT, ABA_VARIABLE > ∗ addConBuffer_
• ABA_BUFFER< int > ∗ removeVarBuffer_

The buffer of the variables which are removed at the beginning of the next iteration.

• ABA_BUFFER< int > ∗ removeConBuffer_

The buffer of the constraints which are removed at the beginning of the next iteration.

• double∗ xVal_
• double∗ yVal_
• double∗ bInvRow_

A row of the basis inverse associated with the infeasible variableinfeasVar_or slack variableinfeasCon_.

• int infeasCon_
• int infeasVar_
• boolgenNonLiftCons_

Private Member Functions

• virtual int _separate()
• virtual int _conEliminate()
• virtual int _varEliminate()
• virtual int _pricing(bool &newValues, bool doFixSet=true)
• virtual int _improve(double &primalValue)
• virtual int _fixByLogImp (bool &newValues)

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

166 Reference Manual

Returns 1, if a contradiction has been found, 0 otherwise.

• virtual voidupdateBoundInLp(int i)
• virtual doublefixSetNewBound(int i)

Returns the value which the upper and lower bounds of a variable should take after it is fixed or set.

• virtual voidnewDormantRound()
• virtual PHASE _activate()

Allocates and initializes memory of the subproblem at the beginning of the optimization.

• virtual void_deactivate()

Deallocates the memory which is not required after the optimization of the subproblem.

• virtual int _initMakeFeas()

Tries to add variables to restore infeasibilities detected at initialization time.

• virtual int _makeFeasible()

Is called if theLP is infeasible and adds inactive variables, which can make theLP feasible again, to the set of active
variables.

• virtual int _setByLogImp(bool &newValues)

Tries to set variables according to logical implications of already set and fixed variables.

• virtual void infeasibleSub()
• virtual voidgetBase()
• virtual voidactivateVars(ABA_BUFFER< ABA_POOLSLOT< ABA_VARIABLE , ABA_CONSTRAINT

> ∗ > &newVars)

Adds the variables stored in the pool slots ofnewVarsto the set of active variables, but not to the linear program.

• virtual void addVarsToLp (ABA_BUFFER< ABA_POOLSLOT< ABA_VARIABLE ,
ABA_CONSTRAINT> ∗ > &newVars,ABA_BUFFER< ABA_FSVARSTAT∗ > ∗localStatus=0)

Adds the variables stored in the pool slots ofnewVarsto the linear program.localStatuscan specify a local status
of fixing and setting.

• virtual void _selectVars(ABA_BUFFER< ABA_POOLSLOT< ABA_VARIABLE , ABA_CONSTRAINT
> ∗ > &newVars)

• virtual void_selectCons(ABA_BUFFER< ABA_POOLSLOT< ABA_CONSTRAINT, ABA_VARIABLE
> ∗ > &newCons)

Selects themaster_->maxConAdd()best constraints from the buffered constraints and stores them innewCons.

• virtual int _removeVars(ABA_BUFFER< int > &remove)
• virtual int _removeCons(ABA_BUFFER< int > &remove)
• ABA_SUB (constABA_SUB &rhs)
• constABA_SUB & operator=(constABA_SUB &rhs)

Private Attributes

• int level_
• int id_
• STATUS status_

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.5 ABA_SUB Class Reference 167

• ABA_BUFFER< ABA_SUB ∗ > ∗ sons_

• int maxIterations_

• int nOpt_

• bool relativeReserve_

If this member istrue then the space reserve of the following three membersvarReserve_, conReserve_, andnnz-
Reserve_is relative to the initial numbers of constraints, variables, and nonzeros, respectively. Otherwise, the values
are casted to integers and regarded as absolute values.

• doublevarReserve_

• doubleconReserve_

• doublennzReserve_

• int nDormantRounds_

The number of subproblem optimizations the subproblem has already the statusDormant.

• boolactivated_

The variable istrue if the functionactivate()has been called from the function_activate(). This memorization is
required such that adeactivate()is only called whenactivate()has been called.

• bool ignoreInTailingOff_

If this flag is set totruethen the next LP-solution is ignored in the tailing-off control. The default value of the variable
is false. It can be set totrueby the functionignoreInTailingOff().

• ABA_LP::METHOD lastLP_

The method that was used to solve the last LP.

• ABA_CPUTIMER localTimer_

• bool forceExactSolver_

Indicates whether to force the use of an exact solver to prepare branching etc.

Friends

• classABA_MASTER

• classABA_BOUNDBRANCHRULE

• classABA_OPENSUB

• classABA_LPSOLUTION< ABA_CONSTRAINT, ABA_VARIABLE >

• classABA_LPSOLUTION< ABA_VARIABLE, ABA_CONSTRAINT >

6.5.1 Detailed Description

class implements an abstract base class for a subproblem of the enumeration, i.e., a node of the\ tree.

Definition at line 75 of file sub.h.

6.5.2 Member Enumeration Documentation

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

168 Reference Manual

6.5.2.1 enumABA_SUB::PHASE

The optimization of the subproblem can be in one of the following phases:.

Parameters:
Done The optimization is done.

Cutting The iterative solution of the LP-relaxation and the generation of cutting planes and/or variables is
currently performed.

Branching We try to generate further subproblems as sons of this subproblem.

Fathoming The subproblem is currently being fathomed.

Enumeration values:
Done

Cutting

Branching

Fathoming

Definition at line 111 of file sub.h.

6.5.2.2 enumABA_SUB::STATUS

A subproblem can have different statuses:

Parameters:
UnprocessedThe status after generation, but before optimization of thesubproblem.

Active The subproblem is currently processed.

Dormant The subproblem is partially processed and waiting in the setof open subproblems for further opti-
mization.

ProcessedThe subproblem is completely processed but could not be fathomed.

Fathomed The subproblem is fathomed.

Enumeration values:
Unprocessed

Active

Dormant

Processed

Fathomed

Definition at line 98 of file sub.h.

6.5.3 Constructor & Destructor Documentation

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.5 ABA_SUB Class Reference 169

6.5.3.1 ABA_SUB::ABA_SUB (ABA_MASTER ∗ master, double conRes, double varRes, double
nnzRes, bool relativeRes= true, ABA_BUFFER< ABA_POOLSLOT < ABA_CONSTRAINT ,
ABA_VARIABLE > ∗ > ∗ constraints= 0, ABA_BUFFER< ABA_POOLSLOT <

ABA_VARIABLE , ABA_CONSTRAINT > ∗ > ∗ variables= 0)

The constructor for the root node of the enumeration tree.

Parameters:
master A pointer to the corresponding master of the optimization.

conResThe additional memory allocated for constraints.

varRes The additional memory allocated for variables.

nnzResThe additional memory allocated for nonzero elements of theconstraint matrix.

relativeResIf this argument istrue, then reserve space for variables, constraints, and nonzeros given by
the previous three arguments, is given in percent of the original numbers. Otherwise, the numbers are
interpreted as absolute values (casted to integer). The default value istrue.

constraints The pool slots of the initial constraints. If the value is 0, then the constraints of the default
constraint pool are taken. The default value is 0.

variables The pool slots of the initial variables. If the value is 0, then the variables of the default variable pool
are taken. The default value is 0.

6.5.3.2 ABA_SUB::ABA_SUB (ABA_MASTER ∗ master, ABA_SUB ∗ father, ABA_BRANCHRULE ∗
branchRule)

The constructor for non-root nodes of the enumeration tree.

Parameters:
master A pointer to the corresponding master of the optimization.

father A pointer to the father in the enumeration tree.

branchRule The rule defining the subspace of the solution space associated with this subproblem.

6.5.3.3 virtual ABA_SUB::∼ABA_SUB () [virtual]

The destructor only deletes the sons of the node.

The deletion of allocated memory is already performed when the node is fathomed. We recursively call the de-
structors of all subproblems contained in the enumeration tree below this subproblem itself.

If a subproblem has no sons and its status is eitherUnprocessedor Dormant, then it is still contained in the set of
open subproblems, where it is removed from.

6.5.3.4 ABA_SUB::ABA_SUB (constABA_SUB & rhs) [private]

6.5.4 Member Function Documentation

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

170 Reference Manual

6.5.4.1 virtual PHASE ABA_SUB::_activate () [private, virtual]

Allocates and initializes memory of the subproblem at the beginning of the optimization.

The function returns the next phase of the optimization. This is eitherCutting or Fathomingif the subproblem
immediately turns out to be infeasible.

Since many objects of the class ABA_SUB can exist at the same time, yet in a sequential algorithm only
one problem is active, a lot of memory can be saved if some memory is dynamically allocated when the
subproblem becomes active and other information is stored in a compressed format for dormant problems.

These allocations and decompressions are performed by the function_activate(), the respective deallocations
and compression of data is executed by the function_deactivate().

Currently for all subproblems which have not been processedalready (except for the root) we initialize the
active constraints and variables with the respective data from the father node adapted by the branching infor-
mation since so we can make sure that all fixed and set variables are active. A more flexible strategy might be
desirable but also dangerous.

The virtual functionactivate()can perform problem specific activations. It is called before variables are fixed
by logical implications, because, e.g., for problems on graphs, the graph associated with the subproblem might
have to be activated.

Moreover, the function_activate()is redundant in the sense that it is called only once and couldbe substituted
by a function. However, having a future generalization to non \ in mind, we keep this function.

6.5.4.2 virtual int ABA_SUB::_conEliminate () [private, virtual]

Returns the number of eliminated constraints.

Only dynamic constraints are eliminated from theLP.

It might be worth to implement problem specific versions of this function.

6.5.4.3 virtual void ABA_SUB::_deactivate () [private, virtual]

Deallocates the memory which is not required after the optimization of the subproblem.

The virtual dummy functiondeactivate()can perform problem specific deactivations.

As the function_activate(), the function_deactivate()is redundant in the sense that it is called only once and
could be substituted by a function. However, having a futuregeneralization to non\ in mind, we keep this
function.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.5 ABA_SUB Class Reference 171

6.5.4.4 virtual int ABA_SUB::_fixByLogImp (bool & newValues) [private, virtual]

Returns 1, if a contradiction has been found, 0 otherwise.

The parameternewValuesis set totrue if a variable is fixed to value different from its value in the last solved linear
program.

6.5.4.5 virtual int ABA_SUB::_improve (double & primalValue) [private, virtual]

Tries to find a better feasible solution.

If a better solution is found its value is stored inprimalValueand we return 1, otherwise we return 0.

If the upper bound has been initialized with the optimum solution or with the optimum solution plus/minus
one these primal heuristics are skipped.

The primal bound, if improved, is either updated in the function cutting(), from which_improved()is called,
are can be updated in the functionimprove()of an application in a derived class.

6.5.4.6 virtual int ABA_SUB::_initMakeFeas () [private, virtual]

Tries to add variables to restore infeasibilities detectedat initialization time.

It returns 0 if variables could be activated which might restore feasibility, otherwise it returns 1.

The function should analyse the constraints stored inABA_LPSUB::infeasCons_and try to add inactive vari-
ables which could restore the infeasibility.

The new variables are only added to the set of active variables but not to the linear program since no linear
program exists when this function is called.

6.5.4.7 virtual int ABA_SUB::_makeFeasible () [private, virtual]

Is called if theLP is infeasible and adds inactive variables, which can make the LP feasible again, to the set of
active variables.

The function returns0 if feasibility might have been restored and1 if it is guaranteed that the linear program is
infeasible on the complete variable set.

6.5.4.8 virtual int ABA_SUB::_pricing (bool & newValues, bool doFixSet= true) [private,
virtual]

If doFixSetis true, then we try to fix and set variables, if all inactive variables price out correctly. In this case
newValuesbecomestrueof a variable is set or fixed to a value different from its valuein the last linear program.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

172 Reference Manual

In a pricing step the reduced costs of inactive variables arecomputed and variables with positive (negative)
reduced costs in a maximization (minimization) problem areactivated.

The function_pricing() returns the 1 if no global optimality can be guaranteed, since variables have nega-
tive reduced costs, it returns 2 if before a pricing step can be performed, non-liftable constraints have to be
removed, and 0 if the LP-solution is global dual feasible.

Also if there are no inactive variables, this function is called since it will also try to fix and set variables.

true is the default value ofdoFixSet. No variables should be fixed or set if_pricing() is called from
_makeFeasible().

6.5.4.9 virtual int ABA_SUB::_removeCons (ABA_BUFFER< int > & remove) [private,
virtual]

Removes the constraints with numbersremovefrom the set of active constraints.

6.5.4.10 virtual int ABA_SUB::_removeVars (ABA_BUFFER< int > & remove) [private,
virtual]

6.5.4.11 virtual void ABA_SUB::_selectCons (ABA_BUFFER< ABA_POOLSLOT <

ABA_CONSTRAINT , ABA_VARIABLE > ∗ > & newCons) [private, virtual]

Selects themaster_->maxConAdd()best constraints from the buffered constraints and stores them innewCons.

6.5.4.12 virtual void ABA_SUB::_selectVars (ABA_BUFFER< ABA_POOLSLOT < ABA_VARIABLE ,
ABA_CONSTRAINT > ∗ > & newVars) [private, virtual]

Selects themaster_->maxVarAdd()best variables from the buffered variables.

Parameters:
newVars Holds the selected variables after the call.

6.5.4.13 virtual int ABA_SUB::_separate () [private, virtual]

Returns the number of generated cutting planes.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.5 ABA_SUB Class Reference 173

6.5.4.14 virtual int ABA_SUB::_setByLogImp (bool & newValues) [private, virtual]

Tries to set variables according to logical implications ofalready set and fixed variables.

Since logical implications are problem specific the virtualfunctionsetByLogImp()is called to find variables which
can be set. If a variable is set to a new value, i.e., a value different from the one in the last solved LP,newValuesis
set totrue. If such a setting implies a contradiction,_setByLogImp()returns 1, otherwise it returns 0.

6.5.4.15 virtual int ABA_SUB::_varEliminate () [private, virtual]

Returns the number of eliminated variables.

Only dynamic variables can be eliminated.

6.5.4.16 ABA_ACTIVE < ABA_CONSTRAINT , ABA_VARIABLE > ∗ ABA_SUB::actCon () const
[inline]

Returns:
A pointer to the currently active constraints.

Definition at line 2249 of file sub.h.

6.5.4.17 virtual void ABA_SUB::activate () [protected, virtual]

Does nothing but can be used as an entrance point for problem specific activations by a reimplementation in derived
classes.

6.5.4.18 virtual void ABA_SUB::activateVars (ABA_BUFFER< ABA_POOLSLOT < ABA_VARIABLE ,
ABA_CONSTRAINT > ∗ > & newVars) [private, virtual]

Adds the variables stored in the pool slots ofnewVarsto the set of active variables, but not to the linear program.

If the new number of variables exceeds the maximal number of variables an automatic reallocation is performed.

6.5.4.19 ABA_ACTIVE < ABA_VARIABLE , ABA_CONSTRAINT > ∗ ABA_SUB::actVar () const
[inline]

Returns:
A pointer to the currently active variables.

Definition at line 2254 of file sub.h.

6.5.4.20 int ABA_SUB::addBranchingConstraint (ABA_POOLSLOT < ABA_CONSTRAINT ,
ABA_VARIABLE > ∗ slot) [inline, virtual]

Adds a branching constraint to the constraint buffer such that it is automatically added at the beginning of the
cutting plane algorithm.

It should be used in definitions of the pure virtual functionBRANCHRULE::extract().

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

174 Reference Manual

Returns:
0 If the constraint could be added,
1 otherwise.

Parameters:
slot A pointer to the pools slot containing the branching constraint.

Definition at line 2143 of file sub.h.

6.5.4.21 int ABA_SUB::addConBufferSpace () const[inline]

Can be used to determine the maximal number of the constraints which still can be added to the constraint buffer.

A separation algorithm should stop as soon as the number of generated constraints reaches this number because
further work is useless.

Returns:
The number of constraints which still can be inserted into the constraint buffer.

Definition at line 2148 of file sub.h.

6.5.4.22 virtual int ABA_SUB::addCons (ABA_BUFFER< ABA_POOLSLOT < ABA_CONSTRAINT ,
ABA_VARIABLE > ∗ > & newCons) [protected, virtual]

Adds constraints to the active constraints and the linear program.

Returns:
The number of added constraints.

Parameters:
newConsA buffer storing the pool slots of the new constraints.

6.5.4.23 virtual int ABA_SUB::addCons (ABA_BUFFER< ABA_CONSTRAINT ∗ > & constraints,
ABA_POOL< ABA_CONSTRAINT , ABA_VARIABLE > ∗ pool = 0, ABA_BUFFER< bool > ∗
keepInPool= 0, ABA_BUFFER< double> ∗ rank = 0) [protected, virtual]

Tries to add new constraints to the constraint buffer and a pool.

The memory management of added constraints is passed to\ by calling this function.

Returns:
The number of added constraints.

Parameters:
constraints The new constraints.

pool The pool in which the new constraints are inserted. If the value of this argument is 0, then the cut pool
of the master is selected. Its default value is 0.

keepInPool If (∗keepInPool)[i] istrue, then the constraint stays in the pool even if it is not activated. The
default value is a 0-pointer.

rank If this pointer to a buffer is nonzero, this buffer should store a rank for each constraint. The greater the
rank, the better the variable. The default value ofrank is 0.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.5 ABA_SUB Class Reference 175

6.5.4.24 int ABA_SUB::addVarBufferSpace () const [inline]

Can be used to determine the maximal number of the variables which still can be added to the variable buffer.

A pricing algorithm should stop as soon as the number of generated variables reaches this number because further
work is useless.

Returns:
The number of variables which still can be inserted into the variable buffer.

Definition at line 2153 of file sub.h.

6.5.4.25 virtual int ABA_SUB::addVars (ABA_BUFFER< ABA_POOLSLOT < ABA_VARIABLE ,
ABA_CONSTRAINT > ∗ > & newVars) [protected, virtual]

Adds both the variables innewVarsto the set of active variables and to the linear program of thesubproblem.

If the new number of variables exceeds the maximal number of variables an automatic reallocation is performed.

Returns:
The number of added variables. We require this feature in derived classes if variables ofnewVarscan be
discarded if they are already active.

Parameters:
newVars A buffer storing the pool slots of the new variables.

6.5.4.26 virtual int ABA_SUB::addVars (ABA_BUFFER< ABA_VARIABLE ∗ > & variables,
ABA_POOL< ABA_VARIABLE , ABA_CONSTRAINT > ∗ pool = 0, ABA_BUFFER< bool > ∗
keepInPool= 0, ABA_BUFFER< double> ∗ rank = 0) [protected, virtual]

Tries to add new variables to the variable buffer and a pool.

The memory management of added variables is passed to\ by calling this function.

Returns:
The number of added variables.

Parameters:
variable The new variables.

pool The pool in which the new variables are inserted. If the valueof this argument is 0, then the default
variable pool is taken. The default value is 0.

keepInPool If (∗keepInPool)[i] istrue, then the variable stays in the pool even if it is not activated. The
default value is a 0-pointer.

rank If this pointer to a buffer is nonzero, this buffer should store a rank for each variable. The greater the
rank, the better the variable. The default value ofrank is 0.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

176 Reference Manual

6.5.4.27 virtual void ABA_SUB::addVarsToLp (ABA_BUFFER< ABA_POOLSLOT <

ABA_VARIABLE , ABA_CONSTRAINT > ∗ > & newVars, ABA_BUFFER< ABA_FSVARSTAT
∗ > ∗ localStatus= 0) [private, virtual]

Adds the variables stored in the pool slots ofnewVarsto the linear program.localStatuscan specify a local status
of fixing and setting.

If the localABA_FSVARSTAT of the added variables differs from their global status, then this local status can be
stated inlocalStatus. Per default the value oflocalStatusis 0.

6.5.4.28 bool ABA_SUB::ancestor (constABA_SUB ∗ sub) const

Returns:
true If thissubproblem is an ancestor of the subproblemsub. We define that a subproblem is its own ancestor,
false otherwise.

Parameters:
sub A pointer to a subproblem.

6.5.4.29 virtual void ABA_SUB::basicConEliminate (ABA_BUFFER< int > & remove) [protected,
virtual]

Retrieves all dynamic constraints having basic slack variable.

Parameters:
remove Stores the nonbinding constraints.

6.5.4.30 bool ABA_SUB::betterDual (doublex) const [protected]

Returns:
true If x is better than the best known dual bound of the subproblem,
false otherwise.

6.5.4.31 bool ABA_SUB::boundCrash () const [protected]

Returns:
true If the dual bound is worse than the best known primal bound,
false otherwise.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.5 ABA_SUB Class Reference 177

6.5.4.32 virtualPHASE ABA_SUB::branching () [protected, virtual]

Is called if the global lower bound of a\ node is still strictly less than the local upper bound, but either no violated
cutting planes or variables are found, or we abort the cutting phase for some other strategic reason (e.g., observation
of a tailing off effect, or branch pausing).

Usually, two new subproblems are generated. However, our implementation ofbranching()is more sophisticated
that allows different branching. Moreover, we also check ifthis node is only paused. If this is the case the node is
put back into the list of open\ nodes without generating sons of this node.

Finally if none of the previous conditions is satisfied we generate new subproblems.

Returns:
Done If sons of the subproblem could be generated,
Fathoming otherwise.

6.5.4.33 virtual int ABA_SUB::branchingOnVariable (ABA_BUFFER< ABA_BRANCHRULE ∗ > &
rules) [protected, virtual]

Generates branching rules for two new subproblems by selecting a branching variable with the function
selectBranchingVariable().

If a new branching variable selection strategy should be used the functionselectBranchingVariable()should be
redefined.

Returns:
0 If branching rules could be found,
1 otherwise}

Parameters:
rules If branching rules are found, then they are stored in this buffer. The length of this buffer is the number

of active variables of the subproblem. If more branching rules are generated a reallocation has to be
performed.

6.5.4.34 ABA_BRANCHRULE ∗ ABA_SUB::branchRule () const [inline]

Returns:
A pointer to the branching rule of the subproblem.

Definition at line 2138 of file sub.h.

6.5.4.35 virtualABA_LP::METHOD ABA_SUB::chooseLpMethod (intnVarRemoved, int nConRemoved,
int nVarAdded, int nConAdded) [protected, virtual]

Controls the method used to solve a linear programming relaxation.

The default implementation chooses the barrier method for the first linear program of the root node and for all
other linear programs it tries to choose a method such that phase 1 of the simplex method is not required.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

178 Reference Manual

Returns:
The method the next linear programming relaxation is solvedwith.

Parameters:
nVarRemovedThe number of removed variables.

nConRemovedThe number of removed constraints.

nVarAdded The number of added variables.

nConAddedThe number of added constraint.

6.5.4.36 int ABA_SUB::closeHalf (ABA_BUFFER< int > & branchVar, ABA_VARTYPE::TYPE
branchVarType) [protected]

Searches searches several possible branching variable of type branchVarType, with fraction as close to0.5 as
possible.

Returns:
0 If at least one branching variable is found,
1 otherwise.

Parameters:
variables Stores the possible branching variables.

branchVartype The type of the branching variable can be restricted either to ABA_VARTYPE::Binary or
ABA_VARTYPE::Integer.

6.5.4.37 int ABA_SUB::closeHalf (int & branchVar, ABA_VARTYPE::TYPE branchVarType)
[protected]

Searches a branching variable of typebranchVarType, with fraction as close to0.5 as possible.

Returns:
0 If a branching variable is found,
1 otherwise.

Parameters:
branchVar Holds the branching variable if one is found.

branchVartype The type of the branching variable can be restricted either to ABA_VARTYPE::Binary or
ABA_VARTYPE::Integer.

6.5.4.38 int ABA_SUB::closeHalfExpensive (ABA_BUFFER< int > & variables, ABA_VARTYPE::TYPE
branchVarType) [protected]

This version of the functioncloseHalfExpensive()selects several candidates for branching variables of typebranch-
VarType.

Thos variables with fractional part close to0.5 and high absolute objective function coefficient are selected..

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.5 ABA_SUB Class Reference 179

Returns:
0 If at least one branching variable is found,
1 otherwise.

Parameters:
branchVar Holds the numbers of possible branching variables if at least one is found. We try to find as many

candidates as fit into this buffer. We abort the function witha fatal error if the size of the buffer is 0.

branchVartype The type of the branching variable can be restricted either to ABA_VARTYPE::Binary or
ABA_VARTYPE::Integer.

6.5.4.39 int ABA_SUB::closeHalfExpensive (int &branchVar, ABA_VARTYPE::TYPE branchVarType)
[protected]

Selects a single branching variable of typebranchVarType, with fractional part close to0.5 and high absolute
objective function coefficient.

This is the default strategy from the TSP project JRT94}.

Returns:
0 If a branching variable is found,
1 otherwise.

Parameters:
branchVar Holds the number of the branching variable if one is found.

branchVartype The type of the branching variable can be restricted either to ABA_VARTYPE::Binary or
ABA_VARTYPE::Integer.

6.5.4.40 virtual int ABA_SUB::compareBranchingSampleRanks (ABA_ARRAY < double > & rank1,
ABA_ARRAY < double> & rank2) [protected, virtual]

Compares the ranks of two branching samples.

For maximimization problem that rank is better for which themaximal rank of a rule is minimal, while for mini-
mization problem the rank is better for which the minimal rank of a rule is maximal. If this value equals for both
ranks we continue with the secand greatest value, etc.

Returns:
1 If rank1 is better.
0 If both ranks are equal.
-1 If rank2 is better.

6.5.4.41 virtual void ABA_SUB::conEliminate (ABA_BUFFER< int > & remove) [protected,
virtual]

Can be used as an entry point for application specific elimination of constraints by redefinig it in derived classes.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

180 Reference Manual

The default implementation of this function calls either the functionnonBindingConEliminate()or the function
basicConEliminate()depending on the constraint elimination mode of the master that is initialized via the param-
eter file.

Parameters:
remove The constraints that should be eliminated must be inserted in this buffer.

6.5.4.42 virtual void ABA_SUB::conRealloc (intnewSize) [protected, virtual]

Reallocates memory that at mostnewSizeconstraints can be handled in the subproblem.

Parameters:
newSizeThe new maximal number of constraints of the subproblem.

6.5.4.43 ABA_CONSTRAINT ∗ ABA_SUB::constraint (int i) const

Returns:
A pointer to thei-th active constraint.

Parameters:
i The constraint being accessed.

6.5.4.44 virtual int ABA_SUB::constraintPoolSeparation(int ranking = 0, ABA_POOL<

ABA_CONSTRAINT , ABA_VARIABLE > ∗ pool = 0, double minViolation = 0.001)
[protected, virtual]

Tries to generate inactive constraints from a pool.

Returns:
The number of generated constraints.

Parameters:
ranking This parameter indicates how the ranks of violated constraints should be computed (0: no ranking; 1:

violation is rank, 2: absolute value of violation is rank, 3:rank determined byABA_CONVAR::rank()).
The default value is 0. }

pool The pool the constraints are generated from. Ifpool is 0, then the default constraint pool is used. The
default value ofpool is 0.

minAbsViolation A violated constraint/variable is only added if the absolute value of its violation is at least
minAbsViolation. The default value is0.001.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.5 ABA_SUB Class Reference 181

6.5.4.45 virtualPHASE ABA_SUB::cutting () [protected, virtual]

Iteratively solves the LP-relaxation, generates constraints and/or variables.

Also generating variables can be regarded as “cutting”, namely as generating cuts for the dual problem. A reader
even studying these lines has been very brave! Therefore, the first reader of these lines is invited to a beer from the
author.

Returns:
Fathoming If one of the conditions for fathoming the subproblem is satisfied.
Branching If the subproblem should be splitted in further subproblems.

6.5.4.46 virtual void ABA_SUB::deactivate () [protected, virtual]

Can be used as entrance point for problem specific deactivations after the subproblem optimization.

The default version of this function does nothing. This function is only called if the functionactivate()for the
subproblem has been executed. This function is called from_deactivate().

6.5.4.47 void ABA_SUB::dualBound (doublex)

Sets the dual bound of the subproblem, and if the subproblem is the root node of the enumeration tree and the new
value is better than its dual bound, also the global dual bound is updated. It is an error if the dual bound gets worse.

In normal applications it is not required to call this function explicitly. This is already done by\ during the
subproblem optimization.

Parameters:
x The new value of the dual bound.

6.5.4.48 double ABA_SUB::dualBound () const [inline]

Returns:
A bound which is better than the optimal solution of the subproblem in respect to the sense of the optimization,
i.e., an upper for a maximization problem or a lower bound fora minimization problem, respectively.

Definition at line 2229 of file sub.h.

6.5.4.49 virtual double ABA_SUB::dualRound (doublex) [protected, virtual]

Returns:
If all objective function values of feasible solutions are integer the functiondualRound()returnsx rounded
up to the next integer if this is a minimization problem, orx rounded down to the next integer if this is a
maximization problem, respectively. Otherwise, the return value isx.

Parameters:
x The value that should be rounded if possible.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

182 Reference Manual

6.5.4.50 virtual bool ABA_SUB::exceptionBranch () [protected, virtual]

Can be used to specify a problem specific criteria for enforcing a branching step.

This criterium is checked before the separation or pricing.The default implementation always returnsfalse.

Returns:
true If the subproblem should be fathomed,
false otherwise.

6.5.4.51 virtual bool ABA_SUB::exceptionFathom () [protected, virtual]

Can be used to specify a problem specific fathoming criteriumthat is checked before the separation or pricing.

The default implementation always returnsfalse.

Returns:
true If the subproblem should be fathomed,
false otherwise.

6.5.4.52 constABA_SUB ∗ ABA_SUB::father () const [inline]

Returns:
A pointer to the father of the subproblem in the\ tree.

Definition at line 2234 of file sub.h.

6.5.4.53 virtual void ABA_SUB::fathom (bool reoptimize) [protected, virtual]

Fathoms a node and recursively tries to fathom its father.

If the root of the remaining\ tree is fathomed we are done since the optimization problem has been solved.

Otherwise, we count the number of unfathomed sons of the father of the subproblem being fathomed. If all
sons of the father are fathomed it is recursively fathomed, too. If the father is the root of the remaining\ tree
and only one of its sons is unfathomed, then this unfathomed son becomes the new root of the remaining\
tree.

We could stop the recursive fathoming already at the root of the remaining\ tree. But, we proceed until the
root of the complete tree was visited to be really correct.

Note:
Use the functionExceptionFathom()for specifying problem specific fathoming criteria.

Parameters:
reoptimize If reoptimizeis true, then we perform a reoptimization in the new root. This is controlled via a

parameter since it might not be desirable when we find a new root during the fathoming of a complete
subtree with the functionfathomTheSubTree().

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.5 ABA_SUB Class Reference 183

6.5.4.54 virtualPHASE ABA_SUB::fathoming () [protected, virtual]

Fathoms the node, and if certain conditions are satisfied, also its ancestor.

The third central phase of the optimization of a subproblem is theFathomingof a subproblem. A subproblem is
fathomed if it can be guaranteed that this subproblem cannotcontain a better solution than the best known one. This
is the case if the global upper bound does not exceed the locallower bound (maximization problem assumed) or the
subproblem cannot contain a feasible solution either if there is a fixing/setting contradiction or theLP-relaxation
turns out to be infeasible.

Note:
Use the functionExceptionFathom()for specifying problem specific fathoming criteria.

The called functionfathom()fathoms the subproblem itself and recursively also tries tofathom its father in the
enumeration tree. The argument offathom()is true as a possibly detected new root should be reoptimized in
order to receive better criteria for fixing variables by reduced costs.

In the parallel version, only the subproblem itself is fathomed. No processed unfathomed nodes are kept in
memory (father_=0).

Returns:
The function always returnsDone.

6.5.4.55 virtual void ABA_SUB::fathomTheSubTree () [protected, virtual]

Fathoms all nodes in the subtree rooted at this subproblem.

DormantandUnprocessednodes are also removed from the set of open subproblems.

If the subproblem is alreadyFathomedwe do not have to proceed in this branch. Otherwise, we fathomthe node
and continue with all its sons. The actual fathoming starts at the unfathomed leaves of the subtree and recursively
goes up through the tree.

6.5.4.56 virtual bool ABA_SUB::feasible () [protected, pure virtual]

The pure virtual functionfeasible()checks for the feasibility of a solution of the LP-relaxation.

If the function returnstrue and the value of the primal bound is worse than the value of this feasible solution, the
value of the primal bound is updated automatically.

Returns:
true If the LP-solution is feasible,
false otherwise.

6.5.4.57 int ABA_SUB::findNonFixedSet (int &branchVar, ABA_VARTYPE::TYPE branchVarType)
[protected]

Selects the first variable that is neither fixed nor set.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

184 Reference Manual

Returns:
0 If a variable neither fixed nor set is found,
1 otherwise.

Parameters:
branchVar Holds the number of the branching variable if one is found.

branchVarType The type of the branching have (ABA_VARTYPE::Binaryor ABA_VARTYPE::Integer).

6.5.4.58 int ABA_SUB::findNonFixedSet (ABA_BUFFER< int > & branchVar, ABA_VARTYPE::TYPE
branchVarType) [protected]

Selects the first variables that are neither fixed nor set.

Returns:
0 If at least one variable neither fixed nor set is found,
1 otherwise.

Parameters:
branchVar Holds the number of the possible branching variables if one is found.

branchVartype The type of the branching variable can be restricted either to ABA_VARTYPE::Binary or
ABA_VARTYPE::Integer.

6.5.4.59 virtual int ABA_SUB::fix (int i, ABA_FSVARSTAT ∗ newStat, bool & newValue) [protected,
virtual]

Fixes a variable.

If the variable which is currently fixed is already set then wemust not change its bounds in the LP since it might
be eliminated.

Returns:
1 If a contradiction is found,
0 otherwise.

Parameters:
i The number of the variable being fixed.

newStat A pointer to an object storing the new status of the variable.

newValue If the variable is fixed to a value different from the one of thelast LP-solution, the argumentnew-
Valueis set totrue. Otherwise, it is set tofalse.

6.5.4.60 virtual int ABA_SUB::fixAndSet (bool & newValues) [protected, virtual]

Tries to fix and set variables both by logical implications and reduced cost criteria.

Actually, variables fixed or set to 0 could be eliminated. However, this could lead to a loss of important structural
information for fixing and setting further variables later,for the computation of feasible solutions, for the separation
and for detecting contradictions. Therefore, we do not eliminate these variables per default.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.5 ABA_SUB Class Reference 185

Returns:
1 If a contradiction is found,
0 otherwise.

Parameters:
newValues If a variables is set or fixed to a value different from the lastLP-solution,newValuesis set totrue,

otherwise it is set tofalse.

6.5.4.61 virtual bool ABA_SUB::fixAndSetTime () [protected, virtual]

Controls if variables should be fixed or set when all variables price out corretly.

The default implementation always returnstrue.

Returns:
true If variables should be fixed and set,
false otherwise.

6.5.4.62 virtual void ABA_SUB::fixByLogImp (ABA_BUFFER< int > & variable, ABA_BUFFER<

ABA_FSVARSTAT ∗ > & status) [protected, virtual]

Should collect the numbers of the variables to be fixed invariableand the respective statuses instatus.

The default implementation offixByLogImp()does nothing. This function has to be redefined if variables should
be fixed by logical implications in derived classes.

Parameters:
variables The variables which should be fixed.

status The statuses these variables should be fixed to.

6.5.4.63 virtual int ABA_SUB::fixByRedCost (bool & newValues, bool saveCand) [protected,
virtual]

Tries to fix variables according to the reduced cost criterion.

Returns:
1 If a contradiction is found,
0 otherwise.

Parameters:
newVales If variables are fixed to different values as in the last solved linear program, thennewValuesbecomes

true.

saveCandIf saveCandis true, then a new list of candidates for later calls is compiled. This is only possible
when the root of the remaining\ is processed.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

186 Reference Manual

6.5.4.64 virtual int ABA_SUB::fixing (bool & newValues, bool saveCand= false) [protected,
virtual]

Tries to fix variables by reduced cost criteria and logical implications.

Returns:
1 If a contradiction is found,
0 otherwise.

Parameters:
newValuesThe parameternewValuesbecomestrue if variables are fixed to other values as in the current

LP-solution.

saveCandIf the parametersaveCandis true a new candidate list of variables for fixing is generated. The
default value ofsaveCandis false. Candidates should not be saved if fixing is performed after the
addition of variables.

6.5.4.65 virtual double ABA_SUB::fixSetNewBound (inti) [private, virtual]

Returns the value which the upper and lower bounds of a variable should take after it is fixed or set.

6.5.4.66 bool ABA_SUB::forceExactSolver () const[inline]

Returns:
Whether using the exact solver is forced.

Definition at line 2207 of file sub.h.

6.5.4.67 ABA_FSVARSTAT ∗ ABA_SUB::fsVarStat (int i) const [inline]

In a \ algorithm we also would have to refer to the global variable status. While this subproblem is processed
another subproblem could change the global status.

Returns:
A pointer to the status of fixing/setting of thei-th variable.

Note:
This is the local status of fixing/setting that might differ from the global status of fixing/setting of the variable
(variable(i)->fsVarStat()).

Parameters:
i The number of the variable.

Definition at line 2192 of file sub.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.5 ABA_SUB Class Reference 187

6.5.4.68 virtual int ABA_SUB::generateBranchRules (ABA_BUFFER< ABA_BRANCHRULE ∗ > &
rules) [protected, virtual]

Tries to find rules for splitting the current subproblem in further subproblems.

Per default we generate rules for branching on variables (branchingOnVariable()). But by redefining this function
in a derived class any other branching strategy can be implemented.

Returns:
0 If branching rules could be found,
1 otherwise.

Parameters:
rules If branching rules are found, then they are stored in this buffer.

6.5.4.69 virtualABA_LPSUB∗ ABA_SUB::generateLp () [protected, virtual]

Instantiates anLP for the solution of theLP-relaxationin this subproblem.

This function is redefined in a derived class for a specificLP-solverinterface

This function is defined in the filelpif.cc.

Returns:
A pointer to an object of typeABA_LPSUB.

6.5.4.70 virtualABA_SUB∗ ABA_SUB::generateSon (ABA_BRANCHRULE ∗ rule) [protected,
pure virtual]

Returns a pointer to an object of a problem specific subproblem derived from the class ABA_SUB, which is
generated from the current subproblem by the branching rulerule.

Parameters:
rule The branching rule with which the subproblem is generated.

6.5.4.71 virtual void ABA_SUB::getBase () [private, virtual]

Updates the status of the variables and the slack variables.

6.5.4.72 virtual bool ABA_SUB::goodCol (ABA_COLUMN & col, ABA_ARRAY < double > & row,
doublex, double lb, doubleub) [protected, virtual]

Returns:
true If the columncol might restore feasibiblity if the variable with valuex turns out to be infeasible,
false otherwise.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

188 Reference Manual

Parameters:
col The column of the variable.

row The row of the basis inverse associated with the infeasible variable.

x The LP-value of the infeasible variable.

lb The lower bound of the infeasible variable.

ub The upper bound of the infeasible variable.

6.5.4.73 virtual double ABA_SUB::guarantee () [protected, virtual]

May not be called if the lower bound is 0 and upper bound not equal to 0.

The guarantee that can be given for the subproblem.

6.5.4.74 virtual bool ABA_SUB::guaranteed () [protected, virtual]

Returns:
true If the lower and the upper bound of the subproblem satisfies the guarantee requirements,
false otherwise.

6.5.4.75 int ABA_SUB::id () const [inline]

Returns:
The identity number of the subproblem.

Definition at line 2217 of file sub.h.

6.5.4.76 void ABA_SUB::ignoreInTailingOff ()

Can be used to control better the tailing-off effect.

If this function is called, the next LP-solution is ignored in the tailing-off control. CallingignoreInTailingOff()
can e.g. be considered in the following situation: If only constraints that are required for the integer programming
formulation of the optimization problem are added then the next LP-value could be ignored in the tailing-off
control. Only “real” cutting planes should be considered inthe tailing-off control (this is only an example strategy
that might not be practical in many situations, but sometimes turned out to be efficient).

6.5.4.77 virtual int ABA_SUB::improve (double & primalValue) [protected, virtual]

Can be redefined in derived classes in order to implement primal heuristics for finding feasible solutions.

The default implementation does nothing.

Returns:
0 If no better solution could be found,
1 otherwise.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.5 ABA_SUB Class Reference 189

Parameters:
primalValue Should hold the value of the feasible solution, if a better one is found.

6.5.4.78 bool ABA_SUB::infeasible () [protected]

Returns:
true If the subproblem does not contain a feasible solution,
false otherwise.

6.5.4.79 virtual void ABA_SUB::infeasibleSub () [private, virtual]

Should be called if a subproblem turns out to be infeasible.

It sets the dual bound of the subproblem correctly.

6.5.4.80 virtual void ABA_SUB::initializeCons (int maxCon) [protected, virtual]

Initializes the active constraint set.

Parameters:
maxCon The maximal number of constraints of the subproblem.

6.5.4.81 virtual int ABA_SUB::initializeLp () [protected, virtual]

Initializes the linear program.

Since not all variables might be active we first have to try making theLP feasible again by the addition of variables.
If this fails, i.e.,_initMakeFeas()has a nonzero return value, we return 1 in order to indicate that the corresponding
subproblem can be fathomed. Otherwise, we continue with theinitialization of theLP.

Returns:
0 If the linear program could be initialized successfully.
1 If the linear program turns out to be infeasible.

6.5.4.82 virtual void ABA_SUB::initializeVars (int maxVar) [protected, virtual]

Initializes the active variable set.

Parameters:
maxVar The maximal number of variables of the subproblem.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

190 Reference Manual

6.5.4.83 virtual int ABA_SUB::initMakeFeas (ABA_BUFFER< ABA_INFEASCON ∗ > & infeasCon,
ABA_BUFFER< ABA_VARIABLE ∗ > & newVars, ABA_POOL< ABA_VARIABLE ,
ABA_CONSTRAINT > ∗∗ pool) [protected, virtual]

The default implementation of the virtualinitMakeFeas()does nothing.

A reimplementation of this function should generate inactive variables until at least one variablev which satisfies
the function ABA_INFEASCON::goodVar(v) for each infeasible constraint is found.

Returns:
0 If the feasibility might have been restored,
1 otherwise.

Parameters:
infeasConsThe infeasible constraints.

newVars The variables that might restore feasibility should be added here.

pool A pointer to the pool to which the new variables should be added. If this is a 0-pointer the variables are
added to the default variable pool. The default value is 0.

6.5.4.84 bool ABA_SUB::integerFeasible ()[protected]

Can be used to check if the solution of the LP-relaxation is primally feasible if for feasibility an integral value for
all binary and integer variables is sufficient.

This function can be called from the functionfeasible()in derived classes.

Returns:
true If the LP-value of all binary and integer variables is integral,
false otherwise.

6.5.4.85 void ABA_SUB::lBound (inti, double l) [inline]

Sets the local lower bound of a variable.

It does not change the global lower bound of the variable. Thebound of a fixed or set variable should not be
changed.

Parameters:
i The number of the variable.

x The new value of the lower bound.

Definition at line 2173 of file sub.h.

6.5.4.86 double ABA_SUB::lBound (inti) const [inline]

Can be used to access the lower of an active variable of the subproblem.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.5 ABA_SUB Class Reference 191

Warning:
This is the lower bound of the variable within the current subproblem which can differ from its global lower
bound.

Returns:
The lower bound of thei-th variable.

Parameters:
i The number of the variable.

Definition at line 2168 of file sub.h.

6.5.4.87 int ABA_SUB::level () const [inline]

Returns:
The level of the subproblem in the\ tree.

Definition at line 2212 of file sub.h.

6.5.4.88 double ABA_SUB::lowerBound () const

Returns:
A lower bound on the optimal solution of the subproblem.

6.5.4.89 ABA_LPSUB ∗ ABA_SUB::lp () const [inline]

Returns:
A pointer to the linear program of the subproblem.

Definition at line 2239 of file sub.h.

6.5.4.90 double ABA_SUB::lpRankBranchingRule (ABA_BRANCHRULE ∗ branchRule, int iterLimit =
-1) [protected]

Computes the rank of a branching rule by modifying the linearprogramming relaxation of the subproblem accord-
ing to the branching rule and solving it. This modifiction is undone after the solution of the linear program.

It is useless, but no error, to call this function for branching rules for which the virtual dummy functions
extract(ABA_LPSUB∗) andunExtract(ABA_LPSUB∗) of the base classABA_BRANCHRULE are not redefined.

Returns:
The value of he linear programming relaxation of the subproblem modified by the branching rule.

Parameters:
branchRule A pointer to a branching rule.

iterLimit The maximal number of iterations that should be performed bythe simplex method. If this number
is negative there is no iteration limit (besides internal limits of the LP-solver). The default value is-1.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

192 Reference Manual

6.5.4.91 ABA_LPVARSTAT ∗ ABA_SUB::lpVarStat (int i) const [inline]

Returns:
A pointer to the status of the variablei in the last solvedlinear program.

Parameters:
i The number of the variable.

Definition at line 2197 of file sub.h.

6.5.4.92 virtual int ABA_SUB::makeFeasible () [protected, virtual]

The default implementation ofmakeFeasible()does nothing.

If there is an infeasible structural variable then it is stored in infeasVar_, otherwiseinfeasVar_is -1. If there is an
infeasible slack variable, it is stored ininfeasCon_, otherwise it is-1. At most one of the two membersinfeasVar_
and infeasCon_can be nonnegative. A reimplementation in a derived class should generate variables to restore
feasibility or confirm that the subproblem is infeasible.

The strategy for the generation of inactive variables is completely problem and user specific. For
testing if a variable might restore again the feasibility the functions ABA_VARIABLE::useful() and
ABA_SUB::goodCol()might be helpful.

Returns:
0 If feasibility can be restored,
1 otherwise.

6.5.4.93 ABA_MASTER ∗ ABA_SUB::master () const [inline]

Definition at line 2118 of file sub.h.

6.5.4.94 int ABA_SUB::maxCon () const [inline]

Returns:
The maximum number of constraints which can be handled without reallocation.

Definition at line 2274 of file sub.h.

6.5.4.95 void ABA_SUB::maxIterations (intmax)

Sets the maximal number of iterations in the cutting plane phase.

Setting this value to 1 implies that no cuts are generated in the optimization process of the subproblem.

Parameters:
max The maximal number of iterations.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.5 ABA_SUB Class Reference 193

6.5.4.96 int ABA_SUB::maxVar () const [inline]

Returns:
The maximum number of variables which can be handled withoutreallocation.

Definition at line 2269 of file sub.h.

6.5.4.97 int ABA_SUB::nCon () const [inline]

Returns:
The number of active constraints.

Definition at line 2264 of file sub.h.

6.5.4.98 int ABA_SUB::nDormantRounds () const [inline]

Returns:
The number of subproblem optimization the subproblem is already dormant.

Definition at line 2158 of file sub.h.

6.5.4.99 void ABA_SUB::newDormantRound () [inline, private, virtual]

Increments the counter for the number of rounds the subproblem is dormant.

This function is called, when the set of open subproblems is scanned for the selection of the next subproblem.

Definition at line 2163 of file sub.h.

6.5.4.100 double ABA_SUB::nnzReserve () const[inline]

Returns:
The additional space for nonzero elements of the constraintmatrix when it is passed to the LP-solver.

Definition at line 2128 of file sub.h.

6.5.4.101 virtual void ABA_SUB::nonBindingConEliminate (ABA_BUFFER< int > & remove)
[protected, virtual]

Retrieves the dynamic constraints with slack exceeding thevalue given by the parameter { ConElimEps}.

Parameters:
remove Stores the nonbinding constraints.

6.5.4.102 int ABA_SUB::nVar () const [inline]

Returns:
The number of active variables.

Definition at line 2259 of file sub.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

194 Reference Manual

6.5.4.103 bool ABA_SUB::objAllInteger ()

If all variables areBinary or Integerand all objective function coefficients are integral, then all objective function
values of feasible solutions are integral. The functionobjAllInteger() tests this condition for the current set of
active variables.

Note:
The result of this function can only be used to set the global parameter ifactVarcontains all variables of the
problem formulation.

Returns:
true If this condition is satisfied by the currently active variable set,
false otherwise.

6.5.4.104 constABA_SUB& ABA_SUB::operator= (const ABA_SUB & rhs) [private]

6.5.4.105 virtual int ABA_SUB::optimize () [protected, virtual]

Performs the optimization of the subproblem.

After activating the subproblem, i.e., allocating and initializing memory, and initializing theLP, the optimization
process constitutes of the three phasesCutting, Branching, andFathoming, which are alternately processed. The
function fathoming()always returnsDone. However, we think that the code is better readable instead of taking
it out of thewhile loop. The optimization stops if thePHASE Doneis reached. Note,Donedoes not necessarily
mean that the subproblem is solved to optimality!

After the node is processed we deallocate memory, which is not required for further computations or of which
the corresponding data can be easily reconstructed. This isperformed in_deactivate().

Returns:
0 If the optimization has been performed without error,
1 otherwise.

6.5.4.106 virtual bool ABA_SUB::pausing () [protected, virtual]

Sometimes it is appropriate to put a subproblem back into thelist of open subproblems. This is calledpausing. In
the default implementation the virtual functionpausing()always returnsfalse.

It could be useful to enforce pausing a node if a tailing off effect is observed during its first optimization.

Returns:
true The functionpausing()should returntrue if this condition is satisfied,
false otherwise.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.5 ABA_SUB Class Reference 195

6.5.4.107 virtual int ABA_SUB::prepareBranching (bool & lastIteration) [protected, virtual]

Is called before a branching step to remove constraints.

Returns:
1 If constraints have been removed,
0 otherwise.

Parameters:
lastIteration This argument is always set totrue in the function call.

6.5.4.108 virtual int ABA_SUB::pricing () [protected, virtual]

Should generate inactive variables which do not price out correctly.

The default implementation does nothing and returns 0.

Returns:
The number of new variables.

6.5.4.109 virtual bool ABA_SUB::primalSeparation () [protected, virtual]

Is a virtual function which controls, if during the cutting plane phase a (primal) separation step or a pricing step
(dual separation) should be performed.

Per default a pure cutting plane algorithm performs always aprimal separation step, a pure column generation
algorithm never performs a primal separation, and a hybrid algorithm generates usually cutting planes but from
time to time also inactive variables are priced out depending on thepricingFrequency().

Returns:
true Then cutting planes are generated in this iteration.
false Then columns are generated in this iteration.

6.5.4.110 virtual double ABA_SUB::rankBranchingRule (ABA_BRANCHRULE ∗ branchRule)
[protected, virtual]

Computes the rank of a branching rule.

This default implementation computes the rank with the function lpRankBranchingRule(). By redefining this
virtual function the rank for a branching rule can be computed differently.

Returns:
The rank of the branching rule.

Parameters:
branchRule A pointer to a branching rule.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

196 Reference Manual

6.5.4.111 virtual void ABA_SUB::rankBranchingSample (ABA_BUFFER< ABA_BRANCHRULE ∗ > &
sample, ABA_ARRAY < double> & rank) [protected, virtual]

Computes for each branching rule of a branching sample a rankwith the functionrankBranchingRule().

Parameters:
sample A branching sample.

rank An array storing the rank for each branching rule in the sample after the function call.

6.5.4.112 void ABA_SUB::redCostVarEliminate (ABA_BUFFER< int > & remove) [protected]

Retrieves all variables with “wrong” reduced costs.

Parameters:
remove The variables with “wrong” reduced cost are stored in this buffer.

6.5.4.113 bool ABA_SUB::relativeReserve () const[inline]

Returns:
true If the reserve space for variables, constraints, and nonzeros is given in percent of the original space, and
falseif its given as absolute value,
false otherwise.

Definition at line 2133 of file sub.h.

6.5.4.114 virtual void ABA_SUB::removeCon (inti) [virtual]

The following version of the functionremoveCon()adds a single constraint to the set of constraints which are
removed from the active set at the beginning of the next iteration.

Parameters:
i The number of the constraint being removed.

6.5.4.115 virtual void ABA_SUB::removeCons (ABA_BUFFER< int > & remove) [virtual]

Adds constraints to the buffer of the removed constraints, which will be removed at the beginning of the next
iteration of the cutting plane algorithm.

Parameters:
remove The constraints which should be removed.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.5 ABA_SUB Class Reference 197

6.5.4.116 virtual bool ABA_SUB::removeNonLiftableCons () [protected, virtual]

Returns:
true If all active constraints can be lifted.
false otherwise. In this case the non-liftable constraintsare removed andgenNonLiftCons_is set tofalse to
avoid the generation of non-liftable constraints in the next cutting plane iterations.

6.5.4.117 void ABA_SUB::removeVar (inti) [inline]

Can be used to remove a single variable from the set of active variables.

Like in the functionremoveVars()the variable is buffered and removed at the beginning of the next iteration.

Parameters:
i The variable which should be removed.

Definition at line 2123 of file sub.h.

6.5.4.118 void ABA_SUB::removeVars (ABA_BUFFER< int > & remove)

With functionremoveVars()variables can be removed from the set of active variables.

The variables are not removed when this function is called, but are buffered and removed at the beginning of the
next iteration.

Parameters:
remove The variables which should be removed.

6.5.4.119 virtual void ABA_SUB::reoptimize () [protected, virtual]

Repeats the optimization of an already optimized subproblem.

This function is used to determine the reduced costs for fixing variables of a new root of the remaining\ tree.

As the subproblem has been processed already earlier it is sufficient to perform the cutting plane algorithm. If the
subproblem is fathomed the complete subtree rooted at this subproblem can be fathomed, too. Since this function
is usually only called for the root of the remaining\ tree, we are done in this case.

It is not guaranteed that all constraints and variables of this subproblem can be regenerated in_activate(). There-
fore, the result of a call toreoptimize()can differ from the result obtained by the cutting plane algorithm in
optimize().

6.5.4.120 virtual int ABA_SUB::selectBestBranchingSample (int nSamples, ABA_BUFFER<

ABA_BRANCHRULE ∗ > ∗∗ samples) [protected, virtual]

Evaluates branching samples (we denote a branching sample the set of rules defining all sons of a subproblem in
the enumeration tree). For each sample the ranks are determined with the functionrankBranchingSample(). The
ranks of the various samples are compared with the functioncompareBranchingSample().

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

198 Reference Manual

Returns:
The number of the best branching sample, or-1 in case of an internal error.

Parameters:
nSamplesThe number of branching samples.

samplesAn array of pointer to buffers storing the branching rules ofeach sample.

6.5.4.121 virtual int ABA_SUB::selectBranchingVariable(int & variable) [protected, virtual]

Chooses a branching variable.

The functionselectBranchingVariableCandidates()is asked to generate depending in the parameter { NBranching-
VariableCandidates} of the file { .abacus} candidates for branching variables. If only one candidate is generate,
this one becomes the branching variable. Otherwise, the pairs of branching rules are generated for all candidates
and the “best” branching variables is determined with the functionselectBestBranchingSample().

Returns:
0 If a branching variable is found,
1 otherwise.

Parameters:
variable Holds the branching variable if one is found.

6.5.4.122 virtual int ABA_SUB::selectBranchingVariableCandidates (ABA_BUFFER< int > &
candidates) [protected, virtual]

Selects depending on the branching variable strategy givenby the parameter { BranchingStrategy} in the file {
.abacus} candidates that for branching variables.

Currently two branching variable selection strategies areimplemented. The first one (CloseHalf) first searches the
binary variables with fractional part closest to0.5 . If there is no fractional binary variable it repeats this process
with the integer variables.

The second strategy (CloseHalfExpensive) first tries to find binary variables with fraction close to0.5 and high
absolute objective function coefficient. If this fails, it tries to find an integer variable with fractional part close
to 0.5 and high absolute objective function coefficient.

If neither a binary nor an integer variable with fractional value is found then for both strategies we try to find
non-fixed and non-set binary variables. If this fails we repeat this process with the integer variables.

Other branching variable selection strategies can be implemented by redefining this virtual function in a de-
rived class.

Returns:
0 If a candidate is found,
1 otherwise.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.5 ABA_SUB Class Reference 199

Parameters:
candidatesThe candidates for branching variables are stored in this buffer. We try to find as many variables

as fit into the buffer.

6.5.4.123 virtual void ABA_SUB::selectCons () [protected, virtual]

Is called before constraint are selected from the constraint buffer.

It can be redefined in a derived class e.g., to remove multiplyinserted constraints from the buffer.

6.5.4.124 virtual void ABA_SUB::selectVars () [protected, virtual]

Is called before variables are selected from the variable buffer.

It can be redefined in a derived class e.g., to remove multiplyinserted variables from the buffer.

6.5.4.125 virtual int ABA_SUB::separate () [protected, virtual]

Must be redefined in derived classes for the generation of cutting planes.

The default implementation does nothing.

Returns:
The number of generated cutting planes.

6.5.4.126 virtual int ABA_SUB::set (int i, ABA_FSVARSTAT::STATUS newStat, doublevalue, bool &
newValue) [protected, virtual]

Sets a variable.

Returns:
1 If a contradiction is found,
0 otherwise.

Parameters:
i The number of the variable being set.

newStat The new status of the variable.

value The value the variable is set to.

newValue If the variable is set to a value different from the one of the last LP-solution,newValueis set to
true. Otherwise, it is set tofalse.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

200 Reference Manual

6.5.4.127 virtual int ABA_SUB::set (int i, ABA_FSVARSTAT::STATUS newStat, bool & newValue)
[protected, virtual]

Sets a variable.

Returns:
1 If a contradiction is found,
0 otherwise.

Parameters:
i The number of the variable being set.

newStat The new status of the variable.

newValue If the variable is set to a value different from the one of the last LP-solution,newValueis set to
true. Otherwise, it is set tofalse.

6.5.4.128 virtual int ABA_SUB::set (int i, ABA_FSVARSTAT ∗ newStat, bool & newValue)
[protected, virtual]

Sets a variable.

Returns:
1 If a contradiction is found,
0 otherwise.

Parameters:
i The number of the variable being set.

newStat A pointer to the object storing the new status of the the variable.

newValue If the variable is set to a value different from the one of the last LP-solution,newValueis set to
true. Otherwise, it is set tofalse.

6.5.4.129 virtual void ABA_SUB::setByLogImp (ABA_BUFFER< int > & variable, ABA_BUFFER<

ABA_FSVARSTAT ∗ > & status) [protected, virtual]

The default implementation ofsetByLogImp()does nothing.

In derived classes this function can be reimplemented.

Parameters:
variable The variables which should be set have to be inserted in this buffer.

status The status of the set variables.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.5 ABA_SUB Class Reference 201

6.5.4.130 virtual int ABA_SUB::setByRedCost () [protected, virtual]

Tries to set variables according to the reduced cost criterion.

Returns:
1 If a contradiction is found,
0 otherwise.

6.5.4.131 virtual int ABA_SUB::setting (bool & newValues) [protected, virtual]

Tries to set variables by reduced cost criteria and logical implications likefixing(), but instead of global conditions
only locally valid conditions have to be satisfied.

Returns:
1 If a contradiction has been found,
0 otherwise.

Parameters:
newValuesThe parameternewValuesbecomestrue if variables are fixed to other values as in the current

LP-solution (setByRedCost()cannot set variables to new values).

6.5.4.132 ABA_SLACKSTAT ∗ ABA_SUB::slackStat (int i) const [inline]

Returns:
A pointer to the status of the slack variablei in the last solved linear program.

Parameters:
i The number of the slack variable.

Definition at line 2202 of file sub.h.

6.5.4.133 virtual bool ABA_SUB::solveApproxNow () [protected, virtual]

Returns:
True, if the approximative solver should be used to solve thenext linear program, false otherwise.

The default implementation always returns false.

6.5.4.134 virtual int ABA_SUB::solveLp () [protected, virtual]

Solves the LP-relaxation of the subproblem.

As soon as theLP-relaxationbecomes infeasible in a static branch and cut algorithm the respective subproblem
can be fathomed. Otherwise, we memorize the value of the LP-solution to control the tailing off effect.

{ We assume that theLP is never primal unbounded.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

202 Reference Manual

Returns:
0 The linear program has an optimimal solution.
1 If the linear program is infeasible.
2 If the linear program is infeasible for the current variable set, but non-liftable constraints have to be removed
before a pricing step can be performed.

6.5.4.135 ABA_SUB::STATUS ABA_SUB::status () const [inline]

Returns:
The status of the subproblem optimization.

Definition at line 2244 of file sub.h.

6.5.4.136 virtual bool ABA_SUB::tailingOff () [protected, virtual]

Is called when a tailing off effect according to the parameters { TailOffPercent} and { TailOffNLps} of the param-
eter file is observed.

This function can be redefined in derived classes in order to perform actions to resolve the tailing off (e.g., switching
on an enhanced separation strategy).

Returns:
true If a branching step should be enforced. But before branching a pricing operation is perfored. The branch-
ing step is only performed if no variables are added. Otherwise, the cutting plane algorithm is continued.
false If the cutting plane algorithm should be continued.

6.5.4.137 void ABA_SUB::uBound (inti, doubleu) [inline]

This version of the functionuBound()sets thef local upper bound of a variable.

This does not change the global lower bound of the variable. The bound of a fixed or set variable should not be
changed.

Parameters:
i The number of the variable.

x The new value of the upper bound.

Definition at line 2185 of file sub.h.

6.5.4.138 double ABA_SUB::uBound (inti) const [inline]

Can be used to access the upper of an active variable of the subproblem.

Warning:
This is the upper bound of the variable within the current subproblem which can differ from its global upper
bound.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.5 ABA_SUB Class Reference 203

Returns:
The upper bound of thei-th variable.

Parameters:
i The number of the variable.

Definition at line 2180 of file sub.h.

6.5.4.139 virtual void ABA_SUB::updateBoundInLp (int i) [private, virtual]

Adapts the bound of a fixed or set variablei also in the linear program.

This can be only done if a linear program is available and the variable is not eliminated.

6.5.4.140 double ABA_SUB::upperBound () const

Returns:
An upper bound on the optimal solution of the subproblem.

6.5.4.141 virtual void ABA_SUB::varEliminate (ABA_BUFFER< int > & remove) [protected,
virtual]

Provides an entry point for application specific variable elimination that can be implemented by redefining this
function in a derived class.

The default implementation selects the variables with the functionredCostVarEliminate().

Parameters:
remove The variables that should be removed have to be stored in thisbuffer.

6.5.4.142 ABA_VARIABLE ∗ ABA_SUB::variable (int i) const

Returns:
A pointer to thei-th active variable.

Parameters:
i The number of the variable being accessed.

6.5.4.143 virtual int ABA_SUB::variablePoolSeparation (int ranking = 0, ABA_POOL<

ABA_VARIABLE , ABA_CONSTRAINT > ∗ pool = 0, double minViolation = 0.001)
[protected, virtual]

Tries to generate inactive variables from a pool.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

204 Reference Manual

Returns:
The number of generated variables.

Parameters:
ranking This parameter indicates how the ranks of geneated variables should be computed (0: no ranking; 1:

violation is rank, 2: absolute value of violation is rank 3: rank determined byABA_CONVAR::rank()).
The default value is 0. }

pool The pool the variables are generated from. Ifpool is 0, then the default variable pool is used. The default
value ofpool is 0.

minAbsViolation A violated constraint/variable is only added if the absolute value of its violation is at least
minAbsViolation. The default value is 0.001.

6.5.4.144 virtual void ABA_SUB::varRealloc (intnewSize) [protected, virtual]

Reallocates memory that at mostnewSizevariables can be handled in the subproblem.

Parameters:
newSizeThe new maximal number of variables in the subproblem.

6.5.4.145 double ABA_SUB::xVal (inti) const [inline]

Parameters:
i The number of the variable under consideration.

Returns:
The value of thei-th variable in the last solved linear program.

Definition at line 2108 of file sub.h.

6.5.4.146 double ABA_SUB::yVal (inti) const [inline]

Parameters:
i The number of the variable under consideration.

Returns:
The value of thei-th dual variable in the last solved linear program.

Definition at line 2113 of file sub.h.

6.5.5 Friends And Related Function Documentation

6.5.5.1 friend classABA_BOUNDBRANCHRULE [friend]

Definition at line 77 of file sub.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.5 ABA_SUB Class Reference 205

6.5.5.2 friend classABA_LPSOLUTION < ABA_CONSTRAINT , ABA_VARIABLE > [friend]

Definition at line 79 of file sub.h.

6.5.5.3 friend classABA_LPSOLUTION < ABA_VARIABLE , ABA_CONSTRAINT > [friend]

Definition at line 80 of file sub.h.

6.5.5.4 friend classABA_MASTER [friend]

Definition at line 76 of file sub.h.

6.5.5.5 friend classABA_OPENSUB [friend]

Definition at line 78 of file sub.h.

6.5.6 Member Data Documentation

6.5.6.1 ABA_ACTIVE <ABA_CONSTRAINT , ABA_VARIABLE >∗ ABA_SUB::actCon_
[protected]

The active constraints of the subproblem.

Definition at line 1660 of file sub.h.

6.5.6.2 boolABA_SUB::activated_ [private]

The variable istrue if the functionactivate()has been called from the function_activate(). This memorization is
required such that adeactivate()is only called whenactivate()has been called.

Definition at line 2080 of file sub.h.

6.5.6.3 ABA_ACTIVE <ABA_VARIABLE , ABA_CONSTRAINT >∗ ABA_SUB::actVar_
[protected]

The active variables of the subproblem.

Definition at line 1664 of file sub.h.

6.5.6.4 ABA_CUTBUFFER<ABA_CONSTRAINT , ABA_VARIABLE >∗ ABA_SUB::addConBuffer_
[protected]

The buffer of the newly generated constraints.

Definition at line 1741 of file sub.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

206 Reference Manual

6.5.6.5 ABA_CUTBUFFER<ABA_VARIABLE , ABA_CONSTRAINT >∗ ABA_SUB::addVarBuffer_
[protected]

The buffer of the newly generated variables.

Definition at line 1737 of file sub.h.

6.5.6.6 boolABA_SUB::allBranchOnSetVars_ [protected]

If true, then the branching rule of the subproblem and of all ancestor on the path to the root node are branching on
a binary variable.

Definition at line 1729 of file sub.h.

6.5.6.7 double∗ ABA_SUB::bInvRow_ [protected]

A row of the basis inverse associated with the infeasible variable infeasVar_or slack variableinfeasCon_.

Definition at line 1764 of file sub.h.

6.5.6.8 ABA_BRANCHRULE ∗ ABA_SUB::branchRule_ [protected]

The branching rule for the subproblem.

Definition at line 1723 of file sub.h.

6.5.6.9 doubleABA_SUB::conReserve_ [private]

The additional space for constraints.

Definition at line 2064 of file sub.h.

6.5.6.10 doubleABA_SUB::dualBound_ [protected]

The dual bound of the subproblem.

Definition at line 1707 of file sub.h.

6.5.6.11 ABA_SUB∗ ABA_SUB::father_ [protected]

A pointer to the father in the\ tree.

Definition at line 1668 of file sub.h.

6.5.6.12 boolABA_SUB::forceExactSolver_ [private]

Indicates whether to force the use of an exact solver to prepare branching etc.

Definition at line 2096 of file sub.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.5 ABA_SUB Class Reference 207

6.5.6.13 ABA_ARRAY <ABA_FSVARSTAT∗>∗ ABA_SUB::fsVarStat_ [protected]

A pointer to an array storing the status of fixing and setting of the active variables. Although fixed and set variables
are already kept at their value by the adaption of the lower and upper bounds, we store this information, since, e.g.,
a fixed or set variable should not be removed, but a variable with an upper bound equal to the lower bound can be
removed.

Definition at line 1681 of file sub.h.

6.5.6.14 boolABA_SUB::genNonLiftCons_ [protected]

If true, then the management of non-liftable constraints is performed.

Definition at line 1776 of file sub.h.

6.5.6.15 intABA_SUB::id_ [private]

The number of the subproblem.

Definition at line 2028 of file sub.h.

6.5.6.16 boolABA_SUB::ignoreInTailingOff_ [private]

If this flag is set totrue then the next LP-solution is ignored in the tailing-off control. The default value of the
variable isfalse. It can be set totrueby the functionignoreInTailingOff().

Definition at line 2086 of file sub.h.

6.5.6.17 intABA_SUB::infeasCon_ [protected]

The number of an infeasible constraint.

Definition at line 1768 of file sub.h.

6.5.6.18 intABA_SUB::infeasVar_ [protected]

The number of an infeasible variable.

Definition at line 1772 of file sub.h.

6.5.6.19 intABA_SUB::lastIterConAdd_ [protected]

The last iteration in which constraints have been added.

Definition at line 1715 of file sub.h.

6.5.6.20 intABA_SUB::lastIterVarAdd_ [protected]

The last iteration in which variables have been added.

Definition at line 1719 of file sub.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

208 Reference Manual

6.5.6.21 ABA_LP::METHOD ABA_SUB::lastLP_ [private]

The method that was used to solve the last LP.

Definition at line 2089 of file sub.h.

6.5.6.22 ABA_ARRAY <double>∗ ABA_SUB::lBound_ [protected]

A pointer to an array with the local lower bound of the active variables.

Definition at line 1690 of file sub.h.

6.5.6.23 intABA_SUB::level_ [private]

The level of the subproblem in the enumeration tree.

Definition at line 2024 of file sub.h.

6.5.6.24 ABA_CPUTIMER ABA_SUB::localTimer_ [private]

Definition at line 2091 of file sub.h.

6.5.6.25 ABA_LPSUB∗ ABA_SUB::lp_ [protected]

A pointer to the corresponding linear program.

Definition at line 1672 of file sub.h.

6.5.6.26 ABA_LP::METHOD ABA_SUB::lpMethod_ [protected]

The solution method for the next linear program.

Definition at line 1733 of file sub.h.

6.5.6.27 ABA_ARRAY <ABA_LPVARSTAT ∗>∗ ABA_SUB::lpVarStat_ [protected]

A pointer to an array storing the status of each active variable in the linear program.

Definition at line 1686 of file sub.h.

6.5.6.28 ABA_MASTER ∗ ABA_SUB::master_ [protected]

A pointer to the corresponding master of the optimization.

Definition at line 1656 of file sub.h.

6.5.6.29 intABA_SUB::maxIterations_ [private]

The maximum number of iterations in the cutting plane phase.

Definition at line 2043 of file sub.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.5 ABA_SUB Class Reference 209

6.5.6.30 intABA_SUB::nDormantRounds_ [private]

The number of subproblem optimizations the subproblem has already the statusDormant.

Definition at line 2073 of file sub.h.

6.5.6.31 intABA_SUB::nIter_ [protected]

The number of iterations in the cutting plane phase.

Definition at line 1711 of file sub.h.

6.5.6.32 doubleABA_SUB::nnzReserve_ [private]

The additional space for nonzeros.

Definition at line 2068 of file sub.h.

6.5.6.33 intABA_SUB::nOpt_ [private]

The number of optimizations of the subproblem.

Definition at line 2047 of file sub.h.

6.5.6.34 boolABA_SUB::relativeReserve_ [private]

If this member istrue then the space reserve of the following three membersvarReserve_, conReserve_, andnnz-
Reserve_is relative to the initial numbers of constraints, variables, and nonzeros, respectively. Otherwise, the
values are casted to integers and regarded as absolute values.

Definition at line 2056 of file sub.h.

6.5.6.35 ABA_BUFFER<int>∗ ABA_SUB::removeConBuffer_ [protected]

The buffer of the constraints which are removed at the beginning of the next iteration.

Definition at line 1751 of file sub.h.

6.5.6.36 ABA_BUFFER<int>∗ ABA_SUB::removeVarBuffer_ [protected]

The buffer of the variables which are removed at the beginning of the next iteration.

Definition at line 1746 of file sub.h.

6.5.6.37 ABA_ARRAY <ABA_SLACKSTAT ∗>∗ ABA_SUB::slackStat_ [protected]

A pointer to an array storing the statuses of the slack variables of the last solved linear program.

Definition at line 1699 of file sub.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

210 Reference Manual

6.5.6.38 ABA_BUFFER<ABA_SUB∗>∗ ABA_SUB::sons_ [private]

The sons of the node in the\ tree.

Definition at line 2039 of file sub.h.

6.5.6.39 STATUS ABA_SUB::status_ [private]

The status of the subproblem.

Definition at line 2035 of file sub.h.

6.5.6.40 ABA_TAILOFF ∗ ABA_SUB::tailOff_ [protected]

A pointer to the tailing off manager.

Definition at line 1703 of file sub.h.

6.5.6.41 ABA_ARRAY <double>∗ ABA_SUB::uBound_ [protected]

A pointer to an array with the local upper bounds of the activevariables.

Definition at line 1694 of file sub.h.

6.5.6.42 doubleABA_SUB::varReserve_ [private]

The additional space for variables.

Definition at line 2060 of file sub.h.

6.5.6.43 double∗ ABA_SUB::xVal_ [protected]

The last LP-solution.

Definition at line 1755 of file sub.h.

6.5.6.44 double∗ ABA_SUB::yVal_ [protected]

The dual variables of the last linear program.

Definition at line 1759 of file sub.h.

The documentation for this class was generated from the following file:

• Include/abacus/sub.h

6.6 ABA_CONVAR Class Reference

ABA_CONVAR is the common base class for constraints and variables, which are implemented in the derived
classesABA_CONSTRAINT andABA_VARIABLE , respectively.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.6 ABA_CONVAR Class Reference 211

#include <convar.h>

Inheritance diagram for ABA_CONVAR::

ABA_CONVAR

ABA_ABACUSROOT

ABA_CONSTRAINT ABA_VARIABLE

ABA_NUMCON ABA_ROWCON ABA_COLVAR ABA_NUMVAR

ABA_SROWCON

Public Member Functions

• ABA_CONVAR (ABA_MASTER ∗master, constABA_SUB ∗sub, bool dynamic, bool local)
• virtual∼ABA_CONVAR ()
• boolactive() const
• bool local () const
• boolglobal() const
• virtual booldynamic() const
• constABA_SUB ∗ sub() const
• void sub(ABA_SUB ∗sub)

This version of the functionsub()associates a new subproblem with the constraint/variable.

• virtual unsignedhashKey()

Should provide a key for the constraint/variable that can be used to insert itinto a hash table.

• virtual const char∗ name()
• virtual boolequal(ABA_CONVAR ∗cv)

Should compare if the constraint/variable is identical (in a mathematical sense) with the constraint/variablecv.

• virtual doublerank()

The function should return a rank associated with the constraint/variable. The default implementation returns 0.

Constraints/Variables often have to be stored in a format different from the format used in the linear program.
One reason is to save memory and the other reason is that if constraints and/or variable sets are dynamic, then
we require a format to compute the coefficients of later activated variables/constraints.

The disadvantage of such a constraint format is that the computation of a single constraint coefficient can
be very time consuming. Often it cannot be done in constant time. Hence we provide a mechanism which
converts a constraint/variable to a format enabling efficient computation of coefficients. The following
functions provide this feature.

• boolexpanded() const
• void _expand()
• void _compress()
• virtual voidprint (ostream &out)

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

212 Reference Manual

Protected Attributes

• ABA_MASTER ∗ master_
• constABA_SUB ∗ sub_

A pointer to the subproblem associated with the constraint/variable. This may be also the 0-pointer.

• boolexpanded_
• int nReferences_

The number of references to the pool slot the constraint is storedABA_POOLSLOTREF.

• booldynamic_

If this member istrue then the constraint/variable can be also removed from the active formulation after it is added
the first time. For constraints/variables which should be never removed from the active formulation this member
should be set tofalse.

• int nActive_

The number of active subproblems of which the constraint/variable belongs to the set of active constraints/variables.

• int nLocks_
• bool local_

This flag istrue if the constraint/variable is only locally valid, otherwise it is false.

Private Member Functions

• void activate()

Must be called if the constraint/variable is added to the active formulation of an active subproblem.

• void deactivate()

Is the counterpart toactivate()and is also called within members of the classABA_SUBto indicate that the con-
straint/variable does not belong any more to the active formulation of an activesubproblem.

• int nReferences() const

Returns the number of references to the pool slotABA_POOLSLOTREFstoring this constraint/variable.

• void addReference()

Indicates that there is a new reference to the pool slot storing this constraint/variable.

• void removeReference()

Is the counterpart of the functionaddReference()and indicates the removal of a reference to this constraint.

• virtual booldeletable() const
• virtual voidexpand()
• virtual voidcompress()

If a constraint/variable has just been separated and added to the buffer of currently separated con-
straints/variables, then this item should not be removed before the buffer is emptied at the beginning of the
next iteration. Hence, we provide a locking mechanism for constraints/variables by the following three func-
tions.

• bool locked() const

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.6 ABA_CONVAR Class Reference 213

• void lock ()
Adds an additional lock to the constraint/variable.

• void unlock()

Friends

• classABA_POOLSLOT< ABA_CONSTRAINT, ABA_VARIABLE >

• classABA_POOLSLOT< ABA_VARIABLE, ABA_CONSTRAINT >

• classABA_POOLSLOTREF< ABA_CONSTRAINT, ABA_VARIABLE >

• classABA_POOLSLOTREF< ABA_VARIABLE, ABA_CONSTRAINT >

• classABA_STANDARDPOOL< ABA_CONSTRAINT, ABA_VARIABLE >

• classABA_STANDARDPOOL< ABA_VARIABLE, ABA_CONSTRAINT >

• classABA_CUTBUFFER< ABA_CONSTRAINT, ABA_VARIABLE >

• classABA_CUTBUFFER< ABA_VARIABLE, ABA_CONSTRAINT >

• classABA_SUB

6.6.1 Detailed Description

ABA_CONVAR is the common base class for constraints and variables, which are implemented in the derived
classesABA_CONSTRAINT andABA_VARIABLE , respectively.

Definition at line 79 of file convar.h.

6.6.2 Constructor & Destructor Documentation

6.6.2.1 ABA_CONVAR::ABA_CONVAR (ABA_MASTER ∗ master, constABA_SUB ∗ sub, bool dynamic,
bool local)

The constructor.

Parameters:
master A pointer to the corresponding master of the optimization.

sub A pointer the subproblem the constraint/variable is associated with. If the item is not associated with any
subproblem, then this can also be the 0-pointer.

dynamic If this paramument istrue, then the constraint/variable can also be removed again from the set of
active constraints/variables after it is added once.

local If local is true, then the constraint/variable is only locally valid.

6.6.2.2 virtual ABA_CONVAR::∼ABA_CONVAR () [virtual]

The destructor.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

214 Reference Manual

6.6.3 Member Function Documentation

6.6.3.1 void ABA_CONVAR::_compress ()

Removes the expanded format of the constraint/variable.

This will be only possible if the virtual functioncompress()is redefined for the specific constraint/variable.

6.6.3.2 void ABA_CONVAR::_expand ()

Tries to generate the expanded format of the constraint/variable.

This will be only possible if the virtual functionexpand()is redefined for the specific constraint/variable.

6.6.3.3 void ABA_CONVAR::activate () [inline, private]

Must be called if the constraint/variable is added to the active formulation of an active subproblem.

This function is only called within member functions of the classABA_SUB.

Definition at line 473 of file convar.h.

6.6.3.4 bool ABA_CONVAR::active () const [inline]

Checks if the constraint/variable is active in at least one active subproblem.

In the parallel implementation this can be more than one subproblem when multithreading occurs. Only those
subproblems are taken into account which are related to the pool in which the constraint/variable is stored.

Returns:
true If the constraint/variable is active,
false otherwise.

Definition at line 467 of file convar.h.

6.6.3.5 void ABA_CONVAR::addReference () [inline, private]

Indicates that there is a new reference to the pool slot storing this constraint/variable.

The function is only called from members of the classABA_POOLSLOTREF.

Definition at line 483 of file convar.h.

6.6.3.6 virtual void ABA_CONVAR::compress () [private, virtual]

Also the default implementation of the functioncompress()is void. It should be redefined in derived classes.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.6 ABA_CONVAR Class Reference 215

6.6.3.7 void ABA_CONVAR::deactivate () [private]

Is the counterpart toactivate()and is also called within members of the classABA_SUB to indicate that the
constraint/variable does not belong any more to the active formulation of an active subproblem.

6.6.3.8 virtual bool ABA_CONVAR::deletable () const [private, virtual]

Returnstrue if the constraint/variable can be destructed.

This is per default only possible if the reference counter is0 and no lock is set. The function is declared virtual
such that problem specific implementations are possible.

6.6.3.9 virtual bool ABA_CONVAR::dynamic () const [virtual]

Returns:
true If the constraint/variable can be also removed from theset of active constraints/var\-i\-a\-bles after it has
been activated,
false otherwise.

6.6.3.10 virtual bool ABA_CONVAR::equal (ABA_CONVAR ∗ cv) [virtual]

Should compare if the constraint/variable is identical (ina mathematical sense) with the constraint/variablecv.

Using RTTI or its emulation provided by the functionname()| it is sufficient to implement this functions for
constraints/variables of the same type.

This function is required if the constraint/variable is stored in a pool of the classABA_NONDUPLPOOL.

The default implementation shows a warning and callsexit(). This function is not a pure virtual function because
in the default version of\ it is not required.

The redundant return statement is required to suppress compiler warnings.

Returns:
true If the constraint/variable represented by this objectrepresents the same item as the constraint/variablecv,
false otherwise.

Parameters:
cv The constraint/variable that should be compared with this object.

6.6.3.11 virtual void ABA_CONVAR::expand () [private, virtual]

The default implementation of the functionexpand()is void. It should be redefined in derived classes.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

216 Reference Manual

6.6.3.12 bool ABA_CONVAR::expanded () const [inline]

Returns:
true If the expanded format of a constraint/variable is available,
false otherwise.

Definition at line 524 of file convar.h.

6.6.3.13 bool ABA_CONVAR::global () const [inline]

Returns:
true If the constraint/variable is globally valid,
false otherwise.

Definition at line 504 of file convar.h.

6.6.3.14 virtual unsigned ABA_CONVAR::hashKey () [virtual]

Should provide a key for the constraint/variable that can beused to insert it into a hash table.

As usual for hashing, it is not required that any two items have different keys.

This function is required if the constraint/variable is stored in a pool of the classABA_NONDUPLPOOL.

The default implementation shows a warning and callsexit(). This function is not a pure virtual function
because in the default version of\ it is not required.

We do not usedoubleas result type because typical problems in floating point arithmetic might give slightly
different hash keys for two constraints that are equal from amathematical point of view.

The redundant return statement is required to suppress compiler warnings.

Returns:
An integer providing a hash key for the constraint/variable.

6.6.3.15 bool ABA_CONVAR::local () const [inline]

Returns:
true If the constraint/variable is only locally valid,
false otherwise.

Definition at line 499 of file convar.h.

6.6.3.16 void ABA_CONVAR::lock () [inline, private]

Adds an additional lock to the constraint/variable.

Definition at line 494 of file convar.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.6 ABA_CONVAR Class Reference 217

6.6.3.17 bool ABA_CONVAR::locked () const [inline, private]

Returns:
true if at least one lock is set on the constraint/variable
falseotherwise.

Definition at line 488 of file convar.h.

6.6.3.18 virtual const char∗ ABA_CONVAR::name () [virtual]

Should return the name of the constraint/variable.

This function is required to emulate a simple run time type information (RTTI) that is still missing in /. This
function will be removed as soon as RTTI is supported sufficiently.

A user must take care that for each redefined version of this function in a derived class a unique name is
returned. Otherwise fatal run time errors can occur. Therefore, we recommend to return always the name of
the class.

This function is required if the constraint/variable is stored in a pool of the classABA_NONDUPLPOOL.

The default implementation shows a warning and callsexit(). This function is not a pure virtual function
because in the default version of\ it is not required.

The redundant return statement is required to suppress compiler warnings.

Returns:
The name of the constraint/variable.

6.6.3.19 int ABA_CONVAR::nReferences () const [inline, private]

Returns the number of references to the pool slotABA_POOLSLOTREFstoring this constraint/variable.

We require the bookkeeping of the references in order to determine if a constraint/variable can be deleted without
causing any harm.

Definition at line 478 of file convar.h.

6.6.3.20 virtual void ABA_CONVAR::print (ostream & out) [virtual]

The function writes the constraint/variable on the streamout.

This function is used since the output operator cannot be declared virtual. The default implementation writes
"ABA_CONVAR::print() is only a dummy."on the streamout. We do not declare this function pure virtual since it
is not really required, mainly only for debugging. In this case a constraint/variable specific redefinition is strongly
recommended.

Normally, the implementationout << ∗this should be sufficient.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

218 Reference Manual

Parameters:
out The output stream.

Reimplemented inABA_COLVAR, ABA_NUMCON, andABA_ROWCON.

6.6.3.21 virtual double ABA_CONVAR::rank () [virtual]

The function should return a rank associated with the constraint/variable. The default implementation returns 0.

Returns:
The rank of the constraint/variable.

6.6.3.22 void ABA_CONVAR::removeReference () [private]

Is the counterpart of the functionaddReference()and indicates the removal of a reference to this constraint.

It is only called from members of the classABA_POOLSLOTREF.

6.6.3.23 void ABA_CONVAR::sub (ABA_SUB ∗ sub) [inline]

This version of the functionsub()associates a new subproblem with the constraint/variable.

Parameters:
sub The new subproblem associated with the constraint/variable.

Definition at line 519 of file convar.h.

6.6.3.24 constABA_SUB ∗ ABA_CONVAR::sub () const [inline]

Returns:
A pointer to the subproblem associated with the constraint/variable. Note, this can also be the 0-pointer.

Definition at line 514 of file convar.h.

6.6.3.25 void ABA_CONVAR::unlock () [private]

Removes one lock from the constraint/variable.

6.6.4 Friends And Related Function Documentation

6.6.4.1 friend classABA_CUTBUFFER< ABA_CONSTRAINT , ABA_VARIABLE > [friend]

Definition at line 86 of file convar.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.6 ABA_CONVAR Class Reference 219

6.6.4.2 friend classABA_CUTBUFFER< ABA_VARIABLE , ABA_CONSTRAINT > [friend]

Definition at line 87 of file convar.h.

6.6.4.3 friend classABA_POOLSLOT < ABA_CONSTRAINT , ABA_VARIABLE > [friend]

Definition at line 80 of file convar.h.

6.6.4.4 friend classABA_POOLSLOT < ABA_VARIABLE , ABA_CONSTRAINT > [friend]

Definition at line 81 of file convar.h.

6.6.4.5 friend classABA_POOLSLOTREF < ABA_CONSTRAINT , ABA_VARIABLE > [friend]

Definition at line 82 of file convar.h.

6.6.4.6 friend classABA_POOLSLOTREF < ABA_VARIABLE , ABA_CONSTRAINT > [friend]

Definition at line 83 of file convar.h.

6.6.4.7 friend classABA_STANDARDPOOL < ABA_CONSTRAINT , ABA_VARIABLE > [friend]

Definition at line 84 of file convar.h.

6.6.4.8 friend classABA_STANDARDPOOL < ABA_VARIABLE , ABA_CONSTRAINT > [friend]

Definition at line 85 of file convar.h.

6.6.4.9 friend classABA_SUB [friend]

Definition at line 88 of file convar.h.

6.6.5 Member Data Documentation

6.6.5.1 boolABA_CONVAR::dynamic_ [protected]

If this member istrue then the constraint/variable can be also removed from the active formulation after it is added
the first time. For constraints/variables which should be never removed from the active formulation this member
should be set tofalse.

Definition at line 356 of file convar.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

220 Reference Manual

6.6.5.2 boolABA_CONVAR::expanded_ [protected]

true, if expanded version of constraint/variables available.

Definition at line 342 of file convar.h.

6.6.5.3 boolABA_CONVAR::local_ [protected]

This flag istrue if the constraint/variable is only locally valid, otherwise it is false.

Definition at line 377 of file convar.h.

6.6.5.4 ABA_MASTER ∗ ABA_CONVAR::master_ [protected]

A pointer to the corresponding master of the optimization.

Definition at line 333 of file convar.h.

6.6.5.5 intABA_CONVAR::nActive_ [protected]

The number of active subproblems of which the constraint/variable belongs to the set of active constraints/variables.

This value is always 0 after construction and has to be set andreset during the subproblem optimization. This
member is mainly used to accelerate pool separation and to control that the same variable is not multiply included
into a set of active variables.

Definition at line 368 of file convar.h.

6.6.5.6 intABA_CONVAR::nLocks_ [protected]

The number of locks which have been set on the constraint/variable.

Definition at line 372 of file convar.h.

6.6.5.7 intABA_CONVAR::nReferences_ [protected]

The number of references to the pool slot the constraint is storedABA_POOLSLOTREF.

Definition at line 347 of file convar.h.

6.6.5.8 constABA_SUB∗ ABA_CONVAR::sub_ [protected]

A pointer to the subproblem associated with the constraint/variable. This may be also the 0-pointer.

Definition at line 338 of file convar.h.

The documentation for this class was generated from the following file:

• Include/abacus/convar.h

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.7 ABA_CONSTRAINT Class Reference 221

6.7 ABA_CONSTRAINT Class Reference

class forms the virtual base class for all possible constraints given in pool format and is derived from the common
base classABA_CONVAR of all constraints and variables.

#include <constraint.h>

Inheritance diagram for ABA_CONSTRAINT::

ABA_CONSTRAINT

ABA_CONVAR

ABA_ABACUSROOT

ABA_NUMCON ABA_ROWCON

ABA_SROWCON

Public Member Functions

• ABA_CONSTRAINT (ABA_MASTER ∗master, constABA_SUB ∗sub, ABA_CSENSE::SENSEsense,
double rhs, bool dynamic, bool local, bool liftable)

• ABA_CONSTRAINT (ABA_MASTER ∗master)
• ABA_CONSTRAINT (constABA_CONSTRAINT &rhs)
• virtual∼ABA_CONSTRAINT ()
• ABA_CSENSE∗ sense()
• virtual doublecoeff (ABA_VARIABLE ∗v)=0
• virtual doublerhs()
• bool liftable () const
• virtual boolvalid (ABA_SUB ∗sub)
• virtual int genRow(ABA_ACTIVE< ABA_VARIABLE , ABA_CONSTRAINT> ∗var,ABA_ROW &row)
• virtual doubleslack(ABA_ACTIVE< ABA_VARIABLE , ABA_CONSTRAINT> ∗variables, double∗x)

Computes the slack of the vectorx associated with the variable setvariables.

• virtual boolviolated(ABA_ACTIVE< ABA_VARIABLE , ABA_CONSTRAINT> ∗variables, double∗x,
double∗sl=0)

• virtual boolviolated(double slack) const

This version of functionviolated()checks for the violation given the slack of a vector.

• void printRow(ostream &out,ABA_ACTIVE< ABA_VARIABLE , ABA_CONSTRAINT> ∗var)

Writes the row format of the constraint associated with the variable setvaron an output stream.

• virtual doubledistance(double∗x, ABA_ACTIVE< ABA_VARIABLE , ABA_CONSTRAINT> ∗actVar)
• ABA_CONSTRAINT∗ duplicate()
• ABA_CONCLASS∗ classification(ABA_ACTIVE< ABA_VARIABLE , ABA_CONSTRAINT> ∗var=0)

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

222 Reference Manual

Protected Member Functions

• virtual ABA_INFEASCON::INFEAS voidLhsViolated(double newRhs) const

Can be called if after variable elimination the left hand side of the constraint hasbecome void and the right hand
side has been adapted tonewRhs.

• virtual ABA_CONCLASS ∗ classify (ABA_ACTIVE< ABA_VARIABLE , ABA_CONSTRAINT >

∗var)

The default implementation of the functionclassify()returns a 0 pointer.

Protected Attributes

• ABA_CSENSE sense_
• doublerhs_
• ABA_CONCLASS∗ conClass_
• bool liftable_

This member istrue if also coefficients of variables which have been inactive at generation timecan be computed,
falseotherwise.

Private Member Functions

• constABA_CONSTRAINT & operator=(constABA_CONSTRAINT &rhs)

Friends

• classABA_LPSUB

6.7.1 Detailed Description

class forms the virtual base class for all possible constraints given in pool format and is derived from the common
base classABA_CONVAR of all constraints and variables.

Definition at line 55 of file constraint.h.

6.7.2 Constructor & Destructor Documentation

6.7.2.1 ABA_CONSTRAINT::ABA_CONSTRAINT (ABA_MASTER ∗ master, constABA_SUB ∗ sub,
ABA_CSENSE::SENSEsense, double rhs, bool dynamic, bool local, bool liftable)

The constructor.

Parameters:
master A pointer to the corresponding master of the optimization.

sub A pointer to the subproblem associated with the constraint.This can be also the 0-pointer.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.7 ABA_CONSTRAINT Class Reference 223

senseThe sense of the constraint.

rhs The right hand side of the constraint.

dynamic If this paramument istrue, then the constraint can be removed from the active constraint set during
the cutting plane phase of the subproblem optimization.

local If this paramument istrue, then the constraint is considered to be only locally valid.In this case the
paramument sub must not be 0 as each locally valid constraintis associated with a subproblem. }

liftable If this paramument istrue, then a lifting procedure must be available, i.e., that the coefficients of
variables which have not been active at generation time of the constraint can be computed.

6.7.2.2 ABA_CONSTRAINT::ABA_CONSTRAINT (ABA_MASTER ∗ master)

The following constructor initializes an empty constraint.

This constructor is, e.g., useful if parallel separation isapplied. In this case the constraint can be constructed and
receive later its data by message passing.

Parameters:
master A pointer to the corresponding master of the optimization.

6.7.2.3 ABA_CONSTRAINT::ABA_CONSTRAINT (const ABA_CONSTRAINT & rhs)

The copy constructor.

Parameters:
rhs The constraint being copied.

6.7.2.4 virtual ABA_CONSTRAINT:: ∼ABA_CONSTRAINT () [virtual]

The destructor.

6.7.3 Member Function Documentation

6.7.3.1 ABA_CONCLASS∗ ABA_CONSTRAINT::classification (ABA_ACTIVE < ABA_VARIABLE ,
ABA_CONSTRAINT > ∗ var = 0)

Returns a pointer to the classification of the constraint.

If no classification is available then we try to classify the constraint. In this casevar must not be a 0-pointer. Per
defaultvar is 0.

A constraint classification can only be generated if the function classify()is redefined in a derived class.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

224 Reference Manual

6.7.3.2 virtual ABA_CONCLASS∗ ABA_CONSTRAINT::classify (ABA_ACTIVE < ABA_VARIABLE ,
ABA_CONSTRAINT > ∗ var) [protected, virtual]

The default implementation of the functionclassify()returns a 0 pointer.

6.7.3.3 virtual double ABA_CONSTRAINT::coeff (ABA_VARIABLE ∗ v) [pure virtual]

Parameters:
v A pointer to a variable.

Returns:
The coefficient of the variablev in the constraint.

Implemented inABA_NUMCON, andABA_ROWCON.

6.7.3.4 virtual double ABA_CONSTRAINT::distance (double∗ x, ABA_ACTIVE < ABA_VARIABLE ,
ABA_CONSTRAINT > ∗ actVar) [virtual]

The distance of a pointx and a hyperplaneaT x = β can be computed in the following way: Lety be the
intersection of the hyperplaneaT x = β and the line defined byx and the vectora . Then the distanced is the
length of the vector||x − y|| .

Returns:
The Euclidean distance of the vectorx associated with the variable setactVar to the hyperplane induced by
the constraint.

Parameters:
x The point for which the distance should be computed.

actVar The variables associated withx.

6.7.3.5 ABA_CONSTRAINT ∗ ABA_CONSTRAINT::duplicate () [inline]

Definition at line 245 of file constraint.h.

6.7.3.6 virtual int ABA_CONSTRAINT::genRow (ABA_ACTIVE < ABA_VARIABLE ,
ABA_CONSTRAINT > ∗ var, ABA_ROW & row) [virtual]

Generates the row format of the constraint associated with the variable setvar.

This function is declared virtual since faster constraint specific implementations might be desirable.

All nonzero coefficients are added to the row format. Before we generate the coefficients we try to expand the
constraint, afterwards it is compressed again.

Returns:
The number of nonzero elements in the row formatrow.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.7 ABA_CONSTRAINT Class Reference 225

Parameters:
var The variable set for which the row format should be computed.

row Stores the row format after calling this function.

Reimplemented inABA_SROWCON.

6.7.3.7 bool ABA_CONSTRAINT::liftable () const [inline]

Checks if the constraint is liftable,

i.e., if the coefficients of variables inactive at generation time of the constraint can be computed later.

Returns:
true If the constraint can be lifted,
false otherwise.

Definition at line 308 of file constraint.h.

6.7.3.8 constABA_CONSTRAINT & ABA_CONSTRAINT::operator= (const ABA_CONSTRAINT &
rhs) [private]

6.7.3.9 void ABA_CONSTRAINT::printRow (ostream & out, ABA_ACTIVE < ABA_VARIABLE ,
ABA_CONSTRAINT > ∗ var)

Writes the row format of the constraint associated with the variable setvar on an output stream.

Parameters:
out The output stream.

var The variables for which the row format should be written.

6.7.3.10 virtual double ABA_CONSTRAINT::rhs () [virtual]

Returns:
The right hand side of the constraint.

6.7.3.11 ABA_CSENSE∗ ABA_CONSTRAINT::sense () [inline]

Returns:
A pointer to the sense of the constraint.

Definition at line 303 of file constraint.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

226 Reference Manual

6.7.3.12 virtual double ABA_CONSTRAINT::slack (ABA_ACTIVE < ABA_VARIABLE ,
ABA_CONSTRAINT > ∗ variables, double∗ x) [virtual]

Computes the slack of the vectorx associated with the variable setvariables.

Returns:
The slack induced by the vectorx.

Parameters:
variables The variable set associated with the vectorx.

x The values of the variables.

Reimplemented inABA_SROWCON.

6.7.3.13 virtual bool ABA_CONSTRAINT::valid (ABA_SUB ∗ sub) [virtual]

Checks if the constraint is valid for the subproblem sub.

Per default, this is the case if the constraint is globally valid, or the subproblem associated with the constraint is an
ancestor of the subproblem sub in the enumeration tree.

Returns:
true If the constraint is valid for the subproblem sub,
false otherwise.

Parameters:
sub The subproblem for which the validity is checked.

6.7.3.14 virtual bool ABA_CONSTRAINT::violated (double slack) const [virtual]

This version of functionviolated()checks for the violation given the slack of a vector.

Returns:
true If the constraint is an equation and theslackis nonzero, or if the constraint is a≤ -inequality and the slack
is negative, or the constraint is a≥ -inequality and the slack is positive,
false otherwise.

Parameters:
slack The slack of a vector.

6.7.3.15 virtual bool ABA_CONSTRAINT::violated (ABA_ACTIVE < ABA_VARIABLE ,
ABA_CONSTRAINT > ∗ variables, double∗ x, double∗ sl = 0) [virtual]

Checks if a constraint is violated by a vectorx associated with a variable set.

Returns:
true If the constraint is violated,
false otherwise.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.7 ABA_CONSTRAINT Class Reference 227

Parameters:
variables The variables associated with the vectorx.

x The vector for which the violation is checked.

sl If sl is nonzero, then∗sl will store the value of the violation, i.e., the slack.

6.7.3.16 virtualABA_INFEASCON::INFEAS ABA_CONSTRAINT::voidLhsViolated (double newRhs)
const [protected, virtual]

Can be called if after variable elimination the left hand side of the constraint has become void and the right hand
side has been adapted tonewRhs.

Then this function checks if the constraint is violated.

Returns:
{TooLparame or TooSmall} If the valuenewRhsviolates the sense of the constraint, i.e, it is< / > / != 0 and
the sense of the constraint is>= / <= / = ,
Feasible otherwise.

Parameters:
newRhs The right hand side of the constraint after the elimination of the variables.

6.7.4 Friends And Related Function Documentation

6.7.4.1 friend classABA_LPSUB [friend]

Definition at line 56 of file constraint.h.

6.7.5 Member Data Documentation

6.7.5.1 ABA_CONCLASS∗ ABA_CONSTRAINT::conClass_ [protected]

Definition at line 290 of file constraint.h.

6.7.5.2 boolABA_CONSTRAINT::liftable_ [protected]

This member istrue if also coefficients of variables which have been inactive atgeneration time can be computed,
falseotherwise.

Definition at line 296 of file constraint.h.

6.7.5.3 doubleABA_CONSTRAINT::rhs_ [protected]

The right hand side of the constraint.

Definition at line 289 of file constraint.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

228 Reference Manual

6.7.5.4 ABA_CSENSE ABA_CONSTRAINT::sense_ [protected]

The sense of the constraint.

Definition at line 285 of file constraint.h.

The documentation for this class was generated from the following file:

• Include/abacus/constraint.h

6.8 ABA_VARIABLE Class Reference

class forms the virtual base class for all possible variables given in pool format

#include <variable.h>

Inheritance diagram for ABA_VARIABLE::

ABA_VARIABLE

ABA_CONVAR

ABA_ABACUSROOT

ABA_COLVAR ABA_NUMVAR

Public Member Functions

• ABA_VARIABLE (ABA_MASTER ∗master, constABA_SUB ∗sub, bool dynamic, bool local, double obj,
double lBound, double uBound,ABA_VARTYPE::TYPEtype)

• virtual∼ABA_VARIABLE ()

The destructor.

• ABA_VARTYPE::TYPE varType() const
• booldiscrete()
• boolbinary()
• bool integer()
• virtual doubleobj ()
• doubleuBound() const
• void uBound(double newValue)

This version of the functionuBound()sets the upper bound of the variable.

• doublelBound() const
• void lBound(double newValue)

This version of the functionlBound()sets the lower bound of the variable.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.8 ABA_VARIABLE Class Reference 229

• ABA_FSVARSTAT∗ fsVarStat()

• virtual boolvalid (ABA_SUB ∗sub)

• virtual int genColumn (ABA_ACTIVE< ABA_CONSTRAINT, ABA_VARIABLE > ∗actCon,
ABA_COLUMN &col)

Computes the columncol of the variable associated with the active constraints∗actCon.

• virtual doublecoeff (ABA_CONSTRAINT∗con)

• virtual boolviolated(double rc) const

Checks, if a variable does not price out correctly, i.e., if the reducedcostrc is positive for a maximization problem
and negative for a minimization problem, respectively.

• virtual bool violated (ABA_ACTIVE< ABA_CONSTRAINT, ABA_VARIABLE > ∗constraints, double
∗y, double∗slack=0)

This version of the functionviolated()checks if the variable does not price out correctly, i.e., if the reducedcost of
the variable associated with the constraint setconstraintsand the dual variablesy are positive for a maximization
problem and negative for a minimization problem, respectively.

• virtual doubleredCost(ABA_ACTIVE< ABA_CONSTRAINT, ABA_VARIABLE > ∗actCon, double
∗y)

Computes the reduced cost of the variable corresponding the constraint setactConand the dual variablesy.

• virtual booluseful(ABA_ACTIVE< ABA_CONSTRAINT, ABA_VARIABLE > ∗actCon, double∗y, dou-
ble lpVal)

An (inactive) discrete variable is considered asuseful()if its activation might not produce only solutions worse than
the best known feasible solution.

• void printCol(ostream &out,ABA_ACTIVE< ABA_CONSTRAINT, ABA_VARIABLE > ∗constraints)

Writes the column of the variable corresponding to theconstraintson the streamout.

Protected Attributes

• ABA_FSVARSTAT fsVarStat_

• doubleobj_

• doublelBound_

• doubleuBound_

• ABA_VARTYPE type_

6.8.1 Detailed Description

class forms the virtual base class for all possible variables given in pool format

Definition at line 55 of file variable.h.

6.8.2 Constructor & Destructor Documentation

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

230 Reference Manual

6.8.2.1 ABA_VARIABLE::ABA_VARIABLE (ABA_MASTER ∗ master, constABA_SUB ∗ sub, bool
dynamic, bool local, doubleobj, double lBound, doubleuBound, ABA_VARTYPE::TYPE type)

The constructor.

Parameters:
master A pointer to the corresponding master of the optimization.

sub A pointer to the subproblem associated with the variable. This can also be the 0-pointer.

dynamic If this argument istrue, then the variable can also be removed again from the set of active variables
after it is added once.

local If this argument istrue, then the variable is only locally valid, otherwise it is globally valid. As a locally
valid variable is always associated with a subproblem, the argumentsubmust not be 0 iflocal is true.

obj The objective function coefficient.

lBound The lower bound of the variable.

uBound The upper bound of the variable.

type The type of the variable.

6.8.2.2 virtual ABA_VARIABLE:: ∼ABA_VARIABLE () [virtual]

The destructor.

6.8.3 Member Function Documentation

6.8.3.1 bool ABA_VARIABLE::binary () [inline]

Returns:
true If the type of the variable isBinary,
false otherwise.

Definition at line 312 of file variable.h.

6.8.3.2 virtual double ABA_VARIABLE::coeff (ABA_CONSTRAINT ∗ con) [virtual]

Computes the coefficient of the variable in the constraintcon.

Per default the coefficient of a variable is computed indirectly via the coefficient of a constraint. Problem specific
redefinitions might be required.

Returns:
The coefficient of the variable in the constraintcon.

Parameters:
con The constraint of which the coefficient should be computed.

Reimplemented inABA_COLVAR.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.8 ABA_VARIABLE Class Reference 231

6.8.3.3 bool ABA_VARIABLE::discrete () [inline]

Returns:
true If the type of the variable isIntegeror Binary,
false otherwise.

Definition at line 307 of file variable.h.

6.8.3.4 ABA_FSVARSTAT ∗ ABA_VARIABLE::fsVarStat () [inline]

Returns:
A pointer to the global status of fixing and setting of the variable.

Note:
This is the global status of fixing/setting that might differfrom the local status of fixing/setting a variable
returned by the functionABA_SUB::fsVarStat().

Definition at line 342 of file variable.h.

6.8.3.5 virtual int ABA_VARIABLE::genColumn (ABA_ACTIVE < ABA_CONSTRAINT ,
ABA_VARIABLE > ∗ actCon, ABA_COLUMN & col) [virtual]

Computes the columncol of the variable associated with the active constraints∗actCon.

Note:
The upper and lower bound of the column are initialized with the global upper and lower bound of the variable.
Therefore, an adaption with the local bounds might be required.

Returns:
The number of nonzero entries incol.

Parameters:
actCon The constraints for which the column of the variable should be computed.

col Stores the column when the function terminates.

6.8.3.6 bool ABA_VARIABLE::integer () [inline]

Returns:
true If the type of the variable isInteger,
false otherwise.

Definition at line 317 of file variable.h.

6.8.3.7 void ABA_VARIABLE::lBound (double newValue) [inline]

This version of the functionlBound()sets the lower bound of the variable.

Parameters:
newBound The new value of the lower bound.

Definition at line 327 of file variable.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

232 Reference Manual

6.8.3.8 double ABA_VARIABLE::lBound () const [inline]

Returns:
The lower bound of the variable.

Definition at line 322 of file variable.h.

6.8.3.9 virtual double ABA_VARIABLE::obj () [virtual]

Returns:
The objective function coefficient.

6.8.3.10 void ABA_VARIABLE::printCol (ostream & out, ABA_ACTIVE < ABA_CONSTRAINT ,
ABA_VARIABLE > ∗ constraints)

Writes the column of the variable corresponding to theconstraintson the streamout.

Parameters:
out The output stream.

constraints The constraints for which the column should be written.

6.8.3.11 virtual double ABA_VARIABLE::redCost (ABA_ACTIVE < ABA_CONSTRAINT ,
ABA_VARIABLE > ∗ actCon, double∗ y) [virtual]

Computes the reduced cost of the variable corresponding theconstraint setactConand the dual variablesy.

Given the dual variablesy , then the reduced cost of a variable with objective functioncoefficientce , columna.e

are defined asce − yTa.e .

Returns:
The reduced cost of the variable.

Parameters:
actCon The constraints associated with the dual variablesy.

y The dual variables of the constraint.

6.8.3.12 void ABA_VARIABLE::uBound (double newValue) [inline]

This version of the functionuBound()sets the upper bound of the variable.

Parameters:
newBound The new value of the upper bound.

Definition at line 337 of file variable.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.8 ABA_VARIABLE Class Reference 233

6.8.3.13 double ABA_VARIABLE::uBound () const [inline]

Returns:
The upper bound of the variable.

Definition at line 332 of file variable.h.

6.8.3.14 virtual bool ABA_VARIABLE::useful (ABA_ACTIVE < ABA_CONSTRAINT ,
ABA_VARIABLE > ∗ actCon, double∗ y, double lpVal) [virtual]

An (inactive) discrete variable is considered asuseful()if its activation might not produce only solutions worse
than the best known feasible solution.

This is the same criterion for fixing inactive variables by reduced cost criteria.

Returns:
true If the variable is considered as useful,
false otherwise.

Parameters:
actCon The active constraints.

y The dual variables of these constraints.

lpVal The value of the linear program.

6.8.3.15 virtual bool ABA_VARIABLE::valid (ABA_SUB ∗ sub) [virtual]

Returns:
true If the variable is globally valid, or the subproblemsub is an ancestor in the enumeration tree of the
subproblem associated with the variable,
false otherwise.

Parameters:
sub The subproblem for which validity of the variable is checked.

6.8.3.16 ABA_VARTYPE::TYPE ABA_VARIABLE::varType () const [inline]

Returns:
The type of the variable.

Definition at line 302 of file variable.h.

6.8.3.17 virtual bool ABA_VARIABLE::violated (ABA_ACTIVE < ABA_CONSTRAINT ,
ABA_VARIABLE > ∗ constraints, double∗ y, double∗ slack= 0) [virtual]

This version of the functionviolated()checks if the variable does not price out correctly, i.e., ifthe reduced cost of
the variable associated with the constraint setconstraintsand the dual variablesy are positive for a maximization
problem and negative for a minimization problem, respectively.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

234 Reference Manual

Returns:
true If the variable does not price out correctly.
false otherwise.

Parameters:
constraints The constraints associated with the dual variablesy.

y The dual variables of the constraint.

r If r is not the 0-pointer, it will store the reduced cost after thefunction call. Per defaultr is 0.

6.8.3.18 virtual bool ABA_VARIABLE::violated (double rc) const [virtual]

Checks, if a variable does not price out correctly, i.e., if the reduced costrc is positive for a maximization problem
and negative for a minimization problem, respectively.

Returns:
true If the variable does not price out correctly.
false otherwise.

Parameters:
rc The reduced cost of the variable.

6.8.4 Member Data Documentation

6.8.4.1 ABA_FSVARSTAT ABA_VARIABLE::fsVarStat_ [protected]

The global status of fixing and setting of the variable.

Definition at line 282 of file variable.h.

6.8.4.2 doubleABA_VARIABLE::lBound_ [protected]

The lower bound of the variable.

Definition at line 290 of file variable.h.

6.8.4.3 doubleABA_VARIABLE::obj_ [protected]

The objective function coefficient of the variable.

Definition at line 286 of file variable.h.

6.8.4.4 ABA_VARTYPE ABA_VARIABLE::type_ [protected]

The type of the variable.

Definition at line 298 of file variable.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.9 ABA_LPSOLUTION< BaseType, CoType> Class Template Reference 235

6.8.4.5 doubleABA_VARIABLE::uBound_ [protected]

The upper bound of the variable.

Definition at line 294 of file variable.h.

The documentation for this class was generated from the following file:

• Include/abacus/variable.h

6.9 ABA_LPSOLUTION< BaseType, CoType> Class Template Refer-
ence

template class implements an LP solution. This class is necessary when using the classABA_SEPARATORfor
separation.

#include <lpsolution.h>

Inheritance diagram for ABA_LPSOLUTION< BaseType, CoType>::

ABA_LPSOLUTION< BaseType, CoType >

ABA_ABACUSROOT

Public Member Functions

• ABA_LPSOLUTION (ABA_SUB ∗sub, bool primalVariables,ABA_ACTIVE< BaseType, CoType>
∗active)

• ABA_LPSOLUTION(ABA_MASTER ∗master)
• ABA_LPSOLUTION(constABA_LPSOLUTION< BaseType, CoType> &rhs)
• ∼ABA_LPSOLUTION()

The destructor.

• int nVarCon() const
• double∗ zVal ()
• ABA_ACTIVE< BaseType, CoType> ∗ active()
• int idSub() const
• int idLp () const

Protected Attributes

• ABA_MASTER ∗ master_
• int nVarCon_
• int idSub_
• int idLp_
• ABA_ARRAY< double> zVal_
• ABA_ACTIVE< BaseType, CoType> ∗ active_

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

236 Reference Manual

Private Member Functions

• constABA_LPSOLUTION< BaseType, CoType> & operator=(constABA_LPSOLUTION< BaseType,
CoType> &rhs)

Friends

• classABA_SEPARATOR< CoType, BaseType>
• ostream &operator<< (ostream &out, constABA_LPSOLUTION< BaseType, CoType> &rhs)

6.9.1 Detailed Description

template<class BaseType, class CoType> class ABA_LPSOLUTION< BaseType, CoType>

template class implements an LP solution. This class is necessary when using the classABA_SEPARATORfor
separation.

Parameters:
ABA_MASTER ∗master_ A pointer to the corresponding master of the optimization.

int nVarCon_ The number of variables/constraints.

int idSub_ The Id of the subproblem in which the LP solution was generated.

int idLp_ The Id of the LP in which the LP solution was generated.

ABA_ARRAY<double> ∗ zVal_ The primal/dual variables of the LP solution.

ABA_ACTIVE<BaseType,CoType> ∗active_ The active variables/constraints.

Definition at line 61 of file lpsolution.h.

6.9.2 Constructor & Destructor Documentation

6.9.2.1 template<class BaseType, class CoType> ABA_LPSOLUTION < BaseType, CoType
>::ABA_LPSOLUTION (ABA_SUB ∗ sub, bool primalVariables, ABA_ACTIVE < BaseType,
CoType> ∗ active)

The constructor.

Parameters:
sub A pointer to the subproblem in which the LP solution is generated.

primalVariables True if ABA_LPSOLUTION contains the primal variables. In this caseBaseTypemust be
ABA_VARIABLE . If primaVariablesis false, thenBaseTypemust beABA_CONSTRAINT.

active The active variables/constraints that are associated withthe LP solution. The default argument is 0.
Then the set of active variables/constraints is not stored,but is assumed to be fixed and known.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.9 ABA_LPSOLUTION< BaseType, CoType> Class Template Reference 237

6.9.2.2 template<class BaseType, class CoType> ABA_LPSOLUTION < BaseType, CoType
>::ABA_LPSOLUTION (ABA_MASTER ∗ master)

The constructor.

Parameters:
master A pointer toABA_MASTER.

6.9.2.3 template<class BaseType, class CoType> ABA_LPSOLUTION < BaseType, CoType
>::ABA_LPSOLUTION (constABA_LPSOLUTION < BaseType, CoType> & rhs)

The copy constructor.

Parameters:
rhs The LP solution that is copied.

6.9.2.4 template<class BaseType, class CoType> ABA_LPSOLUTION < BaseType, CoType
>::∼ABA_LPSOLUTION ()

The destructor.

6.9.3 Member Function Documentation

6.9.3.1 template<class BaseType, class CoType> ABA_ACTIVE <BaseType, CoType>∗
ABA_LPSOLUTION < BaseType, CoType>::active ()

Returns:
The active variables/constraints.

6.9.3.2 template<class BaseType, class CoType> int ABA_LPSOLUTION < BaseType, CoType>::idLp
() const

Returns:
The Id of the LP in which the LP solution was generated.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

238 Reference Manual

6.9.3.3 template<class BaseType, class CoType> int ABA_LPSOLUTION < BaseType, CoType>::idSub
() const

Returns:
The Id of the subproblem in which the LP solution was generated.

6.9.3.4 template<class BaseType, class CoType> int ABA_LPSOLUTION < BaseType, CoType
>::nVarCon () const

Returns:
The number of variables (ifBaseTypeis ABA_VARIABLE) or the number of constraints (ifBaseTypeis
ABA_CONSTRAINT), resp.

6.9.3.5 template<class BaseType, class CoType> constABA_LPSOLUTION <BaseType, CoType>&
ABA_LPSOLUTION < BaseType, CoType>::operator= (const ABA_LPSOLUTION < BaseType,
CoType> & rhs) [private]

6.9.3.6 template<class BaseType, class CoType> double∗ ABA_LPSOLUTION < BaseType, CoType
>::zVal ()

Returns:
The primal/dual variables of the LP solution.

6.9.4 Friends And Related Function Documentation

6.9.4.1 template<class BaseType, class CoType> friend classABA_SEPARATOR< CoType, BaseType>
[friend]

Definition at line 62 of file lpsolution.h.

6.9.4.2 template<class BaseType, class CoType> ostream& operator<< (ostream & out, const
ABA_LPSOLUTION < BaseType, CoType> & rhs) [friend]

The output operator writes the lpsolution to an output stream.

Returns:
A reference to the output stream.

Parameters:
out The output stream.

rhs The lpsolution being output.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.10 ABA_SEPARATOR< BaseType, CoType> Class Template Reference 239

6.9.5 Member Data Documentation

6.9.5.1 template<class BaseType, class CoType> ABA_ACTIVE <BaseType, CoType>∗
ABA_LPSOLUTION < BaseType, CoType>::active_ [protected]

Definition at line 159 of file lpsolution.h.

6.9.5.2 template<class BaseType, class CoType> int ABA_LPSOLUTION < BaseType, CoType>:: idLp_
[protected]

Definition at line 154 of file lpsolution.h.

6.9.5.3 template<class BaseType, class CoType> int ABA_LPSOLUTION < BaseType, CoType
>:: idSub_ [protected]

Definition at line 153 of file lpsolution.h.

6.9.5.4 template<class BaseType, class CoType> ABA_MASTER ∗ ABA_LPSOLUTION < BaseType,
CoType>::master_ [protected]

Definition at line 151 of file lpsolution.h.

6.9.5.5 template<class BaseType, class CoType> int ABA_LPSOLUTION < BaseType, CoType
>::nVarCon_ [protected]

Definition at line 152 of file lpsolution.h.

6.9.5.6 template<class BaseType, class CoType> ABA_ARRAY <double> ABA_LPSOLUTION <

BaseType, CoType>::zVal_ [protected]

Definition at line 158 of file lpsolution.h.

The documentation for this class was generated from the following file:

• Include/abacus/lpsolution.h

6.10 ABA_SEPARATOR< BaseType, CoType> Class Template Refer-
ence

abstract template class can be used to implement a separation routine

#include <separator.h>

Inheritance diagram for ABA_SEPARATOR< BaseType, CoType>::

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

240 Reference Manual

ABA_SEPARATOR< BaseType, CoType >

ABA_ABACUSROOT

Public Member Functions

• ABA_SEPARATOR(ABA_LPSOLUTION< CoType, BaseType> ∗lpSolution, bool nonDuplications, int
maxGen=300)

• virtual∼ABA_SEPARATOR()

The destructor.

• virtual voidseparate()=0

This function has to be redefined and should implement the separation routine.

• ABA_SEPARATOR_CUTFOUND cutFound(BaseType∗)

The functioncutFound(BaseType∗cv) passes a cut (constraint or variable) to the buffer.

• virtual boolterminateSeparation()

• ABA_BUFFER< BaseType∗ > & cutBuffer()

• int nGen() const

• int nDuplications() const

• int nCollisions() const

• int maxGen() const

• doubleminAbsViolation() const

• void minAbsViolation(double minAbsVio)

Set a new value forminAbsViolation.

• ABA_LPSOLUTION< CoType, BaseType> ∗ lpSolution()

The lpSolution to be separated.

• void watchNonDuplPool(ABA_NONDUPLPOOL< BaseType, CoType> ∗pool)

If the separator checks for duplication of cuts, the test is also done for constraints/variables that are in the pool
passed as argument.

Protected Member Functions

• bool find (BaseType∗)

Protected Attributes

• ABA_MASTER ∗ master_

• ABA_LPSOLUTION< CoType, BaseType> ∗ lpSol_

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.10 ABA_SEPARATOR< BaseType, CoType> Class Template Reference 241

Private Member Functions

• ABA_SEPARATOR(constABA_SEPARATOR< BaseType, CoType> &rhs)
• constABA_SEPARATOR< BaseType, CoType> & operator=(constABA_SEPARATOR< BaseType, Co-

Type> &rhs)

Private Attributes

• doubleminAbsViolation_
• ABA_BUFFER< BaseType∗ > newCons_
• ABA_HASH< unsigned, BaseType∗ > ∗ hash_
• int nDuplications_
• bool sendConstraints_
• ABA_NONDUPLPOOL< BaseType, CoType> ∗ pool_

6.10.1 Detailed Description

template<class BaseType, class CoType> class ABA_SEPARATOR< BaseType, CoType>

abstract template class can be used to implement a separation routine

Parameters:
ABA_MASTER ∗master A pointer to the corresponding master of the optimization.

ABA_LPSOLUTION<CoType,BaseType> ∗lpSol The LP solution to be separated.

Definition at line 67 of file separator.h.

6.10.2 Constructor & Destructor Documentation

6.10.2.1 template<class BaseType, class CoType> ABA_SEPARATOR< BaseType, CoType
>::ABA_SEPARATOR (ABA_LPSOLUTION < CoType, BaseType> ∗ lpSolution, bool
nonDuplications, int maxGen= 300)

The constructor.

Parameters:
master A pointer to the corresponding master of the optimization.

lpSolution The LP solution to be separated.

maxGen The maximal number of cutting planes which are stored.

nonDuplications If this flag is set, then the same constraint/variable is stored at most once in the buffer. In
this case for constraints/variables the virtual member functionsname(), hashKey(), andequal()of the
base classABA_CONVAR have to be defined. Using these three functions, we check in the function
cutFoundif a constraint or variable is already stored in the buffer.

sendConstraintIn the parallel version this parameter determines if the constraints should be sent to their
corresponding stores.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

242 Reference Manual

6.10.2.2 template<class BaseType, class CoType> virtual ABA_SEPARATOR< BaseType, CoType
>::∼ABA_SEPARATOR () [virtual]

The destructor.

6.10.2.3 template<class BaseType, class CoType> ABA_SEPARATOR< BaseType, CoType
>::ABA_SEPARATOR (constABA_SEPARATOR< BaseType, CoType> & rhs) [private]

6.10.3 Member Function Documentation

6.10.3.1 template<class BaseType, class CoType> ABA_BUFFER<BaseType∗>& ABA_SEPARATOR<

BaseType, CoType>::cutBuffer ()

Returns:
The buffer with the generated constraints/variable.

6.10.3.2 template<class BaseType, class CoType> ABA_SEPARATOR_CUTFOUND
ABA_SEPARATOR< BaseType, CoType>::cutFound (BaseType∗)

The functioncutFound(BaseType∗cv) passes a cut (constraint or variable) to the buffer.

If the buffer is full or the cut already exists, the cut is deleted.

Returns:
ABAAdded, if the cut is added to the buffer;
ABADuplication, if the cut is already in the buffer;
ABAFull, if the buffer is full.

Parameters:
cv A pointer to a new constraint/variable found by the separation algorithm.

6.10.3.3 template<class BaseType, class CoType> bool ABA_SEPARATOR< BaseType, CoType>::find
(BaseType∗) [protected]

Returns:
The function checks if a constraint/variable that is equivalent to cv according to the function
ABA_CONVAR::equal()is already stored in the buffer by using the hashtable.

Parameters:
cv A pointer to a constraint/variable for which it should be checked if an equivalent item is already contained

in the buffer.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.10 ABA_SEPARATOR< BaseType, CoType> Class Template Reference 243

6.10.3.4 template<class BaseType, class CoType> ABA_LPSOLUTION <CoType, BaseType>∗
ABA_SEPARATOR< BaseType, CoType>::lpSolution () [inline]

The lpSolution to be separated.

Definition at line 149 of file separator.h.

6.10.3.5 template<class BaseType, class CoType> int ABA_SEPARATOR< BaseType, CoType
>::maxGen () const

Returns:
The maximal number of generated cutting planes.

6.10.3.6 template<class BaseType, class CoType> void ABA_SEPARATOR< BaseType, CoType
>::minAbsViolation (double minAbsVio) [inline]

Set a new value forminAbsViolation.

Definition at line 145 of file separator.h.

6.10.3.7 template<class BaseType, class CoType> double ABA_SEPARATOR< BaseType, CoType
>::minAbsViolation () const

Returns:
The absolute value for considering a constraint/variable as violated.

6.10.3.8 template<class BaseType, class CoType> int ABA_SEPARATOR< BaseType, CoType
>::nCollisions () const

Returns:
The number of collisions in the hash table.

6.10.3.9 template<class BaseType, class CoType> int ABA_SEPARATOR< BaseType, CoType
>::nDuplications () const

Returns:
The number of duplicated constraints/variables which are discarded.

6.10.3.10 template<class BaseType, class CoType> int ABA_SEPARATOR< BaseType, CoType>::nGen
() const

Returns:
The number of generated cutting planes.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

244 Reference Manual

6.10.3.11 template<class BaseType, class CoType> constABA_SEPARATOR<BaseType, CoType>&
ABA_SEPARATOR< BaseType, CoType>::operator= (const ABA_SEPARATOR< BaseType,
CoType> & rhs) [private]

6.10.3.12 template<class BaseType, class CoType> virtual void ABA_SEPARATOR< BaseType, CoType
>::separate () [pure virtual]

This function has to be redefined and should implement the separation routine.

6.10.3.13 template<class BaseType, class CoType> virtual bool ABA_SEPARATOR< BaseType, CoType
>::terminateSeparation () [inline, virtual]

Returns:
The function returns true if the separation should be terminated. In the default implementation, this is the case
if maxGenconstraints/variables are in the cutBuffer.

Definition at line 117 of file separator.h.

6.10.3.14 template<class BaseType, class CoType> void ABA_SEPARATOR< BaseType, CoType
>::watchNonDuplPool (ABA_NONDUPLPOOL < BaseType, CoType> ∗ pool) [inline]

If the separator checks for duplication of cuts, the test is also done for constraints/variables that are in the pool
passed as argument.

This can be useful if already cuts are generated by performing constraint pool separation of this pool.

Definition at line 160 of file separator.h.

6.10.4 Member Data Documentation

6.10.4.1 template<class BaseType, class CoType> ABA_HASH<unsigned, BaseType∗>∗
ABA_SEPARATOR< BaseType, CoType>::hash_ [private]

Definition at line 178 of file separator.h.

6.10.4.2 template<class BaseType, class CoType> ABA_LPSOLUTION <CoType, BaseType>∗
ABA_SEPARATOR< BaseType, CoType>:: lpSol_ [protected]

Definition at line 174 of file separator.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.11 System Classes 245

6.10.4.3 template<class BaseType, class CoType> ABA_MASTER ∗ ABA_SEPARATOR< BaseType,
CoType>::master_ [protected]

Definition at line 173 of file separator.h.

6.10.4.4 template<class BaseType, class CoType> double ABA_SEPARATOR< BaseType, CoType
>::minAbsViolation_ [private]

Definition at line 176 of file separator.h.

6.10.4.5 template<class BaseType, class CoType> int ABA_SEPARATOR< BaseType, CoType
>::nDuplications_ [private]

Definition at line 179 of file separator.h.

6.10.4.6 template<class BaseType, class CoType> ABA_BUFFER<BaseType∗> ABA_SEPARATOR<

BaseType, CoType>::newCons_ [private]

Definition at line 177 of file separator.h.

6.10.4.7 template<class BaseType, class CoType> ABA_NONDUPLPOOL <BaseType, CoType>∗
ABA_SEPARATOR< BaseType, CoType>::pool_ [private]

Definition at line 181 of file separator.h.

6.10.4.8 template<class BaseType, class CoType> bool ABA_SEPARATOR< BaseType, CoType
>::sendConstraints_ [private]

Definition at line 180 of file separator.h.

The documentation for this class was generated from the following file:

• Include/abacus/separator.h

%

6.11 System Classes

This section documents (almost) all internal system classes ofABACUS. This classes are usually not involved in
the derivation process for the implementation. However forretrieving special information (e.g., about the linear
program) or for advanced usage we provide here a detailed documentation.

6.12 ABA_OPTSENSE Class Reference

We can either minimize or maximize the objective function. We encapsulate this information in a class since it is
required in various classes.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

246 Reference Manual

#include <optsense.h>

Inheritance diagram for ABA_OPTSENSE::

ABA_OPTSENSE

ABA_ABACUSROOT

Public Types

• enumSENSE{ Min, Max, Unknown}

Public Member Functions

• ABA_OPTSENSE(SENSEs=Unknown)

• void sense(SENSEs)

This version of the functionsense()sets the optimization sense.

• SENSE sense() const

• boolmin () const

• boolmax() const

• boolunknown() const

Private Attributes

• SENSE sense_

Friends

• ostream &operator<< (ostream &out, constABA_OPTSENSE&rhs)

The output operator writes the optimization sense on an output stream in the form { maximize}, { minimize}, or {
unknown}.

6.12.1 Detailed Description

We can either minimize or maximize the objective function. We encapsulate this information in a class since it is
required in various classes.

Definition at line 43 of file optsense.h.

6.12.2 Member Enumeration Documentation

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.12 ABA_OPTSENSE Class Reference 247

6.12.2.1 enumABA_OPTSENSE::SENSE

The enumeration defining the sense of optimization.

Parameters:
Min Minimization problem.

Max Maximization problem.

Unknown Unknown optimization sense, required to recognize uninitialized object.

Enumeration values:
Min

Max

Unknown

Definition at line 53 of file optsense.h.

6.12.3 Constructor & Destructor Documentation

6.12.3.1 ABA_OPTSENSE::ABA_OPTSENSE (SENSEs = Unknown) [inline]

The constructor initializes the optimization sense.

Parameters:
s The sense of the optimization. The default value isUnknown.

Definition at line 106 of file optsense.h.

6.12.4 Member Function Documentation

6.12.4.1 bool ABA_OPTSENSE::max () const[inline]

Returns:
true If it is maximization problem,
false otherwise.

Definition at line 126 of file optsense.h.

6.12.4.2 bool ABA_OPTSENSE::min () const [inline]

Returns:
true If it is minimization problem,
false otherwise.

Definition at line 121 of file optsense.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

248 Reference Manual

6.12.4.3 ABA_OPTSENSE::SENSEABA_OPTSENSE::sense () const [inline]

Returns:
The sense of the optimization.

Definition at line 111 of file optsense.h.

6.12.4.4 void ABA_OPTSENSE::sense (SENSEs) [inline]

This version of the functionsense()sets the optimization sense.

Parameters:
s The new sense of the optimization.

Definition at line 116 of file optsense.h.

6.12.4.5 bool ABA_OPTSENSE::unknown () const [inline]

Returns:
true If the optimization sense is unknown,
false otherwise.

Definition at line 131 of file optsense.h.

6.12.5 Friends And Related Function Documentation

6.12.5.1 ostream& operator<< (ostream & out, constABA_OPTSENSE& rhs) [friend]

The output operator writes the optimization sense on an output stream in the form { maximize}, { minimize}, or {
unknown}.

Returns:
The output stream.

Parameters:
out The output stream.

rhs The sense being output.

6.12.6 Member Data Documentation

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.13 ABA_CSENSE Class Reference 249

6.12.6.1 SENSE ABA_OPTSENSE::sense_[private]

The optimization sense.

Definition at line 102 of file optsense.h.

The documentation for this class was generated from the following file:

• Include/abacus/optsense.h

6.13 ABA_CSENSE Class Reference

we implement the sense of optimization as a class since we require it both in the classesABA_CONSTRAINTand
ABA_ROW.

#include <csense.h>

Inheritance diagram for ABA_CSENSE::

ABA_CSENSE

ABA_ABACUSROOT

Public Types

• enumSENSE{ Less, Equal, Greater}

Public Member Functions

• ABA_CSENSE(ABA_GLOBAL ∗glob)
• ABA_CSENSE(ABA_GLOBAL ∗glob,SENSEs)
• ABA_CSENSE(ABA_GLOBAL ∗glob, char s)

With this constructor the sense of the constraint can also be initialized with a single letter.

• constABA_CSENSE& operator=(SENSErhs)

The default assignment operator is overloaded such that also the enumeration SENSEcan be used on the right hand
side.

• SENSE sense() const
• void sense(SENSEs)

This overloaded version ofsense()changes the sense of the constraint.

• void sense(char s)

The sense can also be changed by a character as in the constructorABA_CSENSE(ABA_GLOBAL∗glob, char s).

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

250 Reference Manual

Private Attributes

• ABA_GLOBAL ∗ glob_
• SENSE sense_

Friends

• ostream &operator<< (ostream &out, constABA_CSENSE&rhs)

The output operator writes the sense on an output stream in the form<=, =, or >=.

6.13.1 Detailed Description

we implement the sense of optimization as a class since we require it both in the classesABA_CONSTRAINTand
ABA_ROW.

Definition at line 50 of file csense.h.

6.13.2 Member Enumeration Documentation

6.13.2.1 enumABA_CSENSE::SENSE

Parameters:
Less ≤

Equal =

Greater ≥

Enumeration values:
Less

Equal

Greater

Definition at line 57 of file csense.h.

6.13.3 Constructor & Destructor Documentation

6.13.3.1 ABA_CSENSE::ABA_CSENSE (ABA_GLOBAL ∗ glob)

If the default constructor is used, the sense is undefined.

Parameters:
glob A pointer to the corresponding global object.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.13 ABA_CSENSE Class Reference 251

6.13.3.2 ABA_CSENSE::ABA_CSENSE (ABA_GLOBAL ∗ glob, SENSEs)

This constructor initializes the sense.

Parameters:
glob A pointer to the corresponding global object.

s The sense.

6.13.3.3 ABA_CSENSE::ABA_CSENSE (ABA_GLOBAL ∗ glob, char s)

With this constructor the sense of the constraint can also beinitialized with a single letter.

Parameters:
glob A pointer to the corresponding global object.

s A character representing the sense: { E} or { e} stand forEqual, { G} and { g} stand forGreater, and { L}
or { l} stand for Less.

6.13.4 Member Function Documentation

6.13.4.1 constABA_CSENSE& ABA_CSENSE::operator= (SENSErhs) [inline]

The default assignment operator is overloaded such that also the enumerationSENSEcan be used on the right hand
side.

Returns:
A reference to the sense.

Parameters:
rhs The new sense.

Definition at line 146 of file csense.h.

6.13.4.2 void ABA_CSENSE::sense (chars)

The sense can also be changed by a character as in the constructor ABA_CSENSE(ABA_GLOBAL∗glob, char s).

Parameters:
s The new sense.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

252 Reference Manual

6.13.4.3 void ABA_CSENSE::sense (SENSEs) [inline]

This overloaded version ofsense()changes the sense of the constraint.

Parameters:
s The new sense.

Definition at line 157 of file csense.h.

6.13.4.4 ABA_CSENSE::SENSEABA_CSENSE::sense () const [inline]

Returns:
The sense of the constraint.

Definition at line 152 of file csense.h.

6.13.5 Friends And Related Function Documentation

6.13.5.1 ostream& operator<< (ostream & out, constABA_CSENSE& rhs) [friend]

The output operator writes the sense on an output stream in the form<= , = , or >= .

Returns:
The output stream.

Parameters:
out The output stream.

rhs The sense being output.

6.13.6 Member Data Documentation

6.13.6.1 ABA_GLOBAL ∗ ABA_CSENSE::glob_ [private]

Definition at line 138 of file csense.h.

6.13.6.2 SENSE ABA_CSENSE::sense_[private]

Stores the sense of a constraint.

Definition at line 142 of file csense.h.

The documentation for this class was generated from the following file:

• Include/abacus/csense.h

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.14 ABA_VARTYPE Class Reference 253

6.14 ABA_VARTYPE Class Reference

Variables can be of three different types:Continuous, Integer or Binary. We distinguishInteger and Binary
variables since some operations are performed differently(e.g., branching).

#include <vartype.h>

Inheritance diagram for ABA_VARTYPE::

ABA_VARTYPE

ABA_ABACUSROOT

Public Types

• enumTYPE { Continuous, Integer, Binary }

Public Member Functions

• ABA_VARTYPE ()

The default constructor lets the type of the variable uninitialized.

• ABA_VARTYPE (TYPE t)
• TYPE type() const
• void type(TYPE t)

This version of the functiontype()sets the variable type.

• booldiscrete() const
• boolbinary() const
• bool integer() const

Private Attributes

• TYPE type_

Friends

• ostream &operator<< (ostream &out, constABA_VARTYPE &rhs)

The output operator writes the variable type to an output stream in the format{ Continuous}, { Integer}, or { Binary}.

6.14.1 Detailed Description

Variables can be of three different types:Continuous, Integer or Binary. We distinguishInteger and Binary
variables since some operations are performed differently(e.g., branching).

Definition at line 45 of file vartype.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

254 Reference Manual

6.14.2 Member Enumeration Documentation

6.14.2.1 enumABA_VARTYPE::TYPE

The enumeration with the different variable types.

Parameters:
Continuous A continuous variable.

Integer A general integer variable.

Binary A variable having value 0 or 1.

Enumeration values:
Continuous
Integer
Binary

Definition at line 54 of file vartype.h.

6.14.3 Constructor & Destructor Documentation

6.14.3.1 ABA_VARTYPE::ABA_VARTYPE () [inline]

The default constructor lets the type of the variable uninitialized.

Definition at line 126 of file vartype.h.

6.14.3.2 ABA_VARTYPE::ABA_VARTYPE (TYPE t) [inline]

This constructor initializes the variable type.

Parameters:
t The variable type.

Definition at line 130 of file vartype.h.

6.14.4 Member Function Documentation

6.14.4.1 bool ABA_VARTYPE::binary () const [inline]

Returns:
true If the type of the variableBinary,
false otherwise.

Definition at line 151 of file vartype.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.14 ABA_VARTYPE Class Reference 255

6.14.4.2 bool ABA_VARTYPE::discrete () const [inline]

Returns:
true If the type of the variable isIntegeror Binary,
false otherwise.

Definition at line 145 of file vartype.h.

6.14.4.3 bool ABA_VARTYPE::integer () const

Returns:
true If the type of the variable isInteger,
false otherwise.

6.14.4.4 void ABA_VARTYPE::type (TYPE t) [inline]

This version of the functiontype()sets the variable type.

Parameters:
t The new type of the variable.

Definition at line 140 of file vartype.h.

6.14.4.5 ABA_VARTYPE::TYPE ABA_VARTYPE::type () const [inline]

Returns:
The type of the variable.

Definition at line 135 of file vartype.h.

6.14.5 Friends And Related Function Documentation

6.14.5.1 ostream& operator<< (ostream & out, constABA_VARTYPE & rhs) [friend]

The output operator writes the variable type to an output stream in the format { Continuous}, { Integer}, or {
Binary}.

Returns:
A reference to the output stream.

Parameters:
out The output stream.

rhs The variable type being output.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

256 Reference Manual

6.14.6 Member Data Documentation

6.14.6.1 TYPE ABA_VARTYPE::type_ [private]

The type of the variable.

Definition at line 122 of file vartype.h.

The documentation for this class was generated from the following file:

• Include/abacus/vartype.h

6.15 ABA_FSVARSTAT Class Reference

status of fixed and set variables.

#include <fsvarstat.h>

Inheritance diagram for ABA_FSVARSTAT::

ABA_FSVARSTAT

ABA_ABACUSROOT

Public Types

• enumSTATUS{

Free, SetToLowerBound, Set, SetToUpperBound,

FixedToLowerBound, Fixed, FixedToUpperBound}

The enumeration defining the different statuses of variables from the pointof view of fixing and setting:.

Public Member Functions

• ABA_FSVARSTAT (ABA_GLOBAL ∗glob)

This constructor initializes the status asFree.

• ABA_FSVARSTAT (ABA_GLOBAL ∗glob,STATUSstatus)

This constructor initializes the status explicitely.

• ABA_FSVARSTAT (ABA_GLOBAL ∗glob,STATUSstatus, double value)

This constructor initializes the status explicitely toFixedor Set.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.15 ABA_FSVARSTAT Class Reference 257

• ABA_FSVARSTAT (ABA_FSVARSTAT∗fsVarStat)

• STATUS status() const

• void status(STATUSstat)

This version of the functionstatus()assigns a new status.

• void status(STATUSstat, double val)

This version of the functionstatus()can assign a new status also for the statusesFixedandSet.

• void status(constABA_FSVARSTAT∗stat)

A version ofstatus()for assigning the status of an other object of the class ABA_FSVARSTAT.

• doublevalue() const

• void value(double val)

This version ofvalue()assigns a new value of fixing or setting.

• bool fixed () const

• bool set() const

• bool fixedOrSet() const

• bool contradiction(ABA_FSVARSTAT∗fsVarStat) const

We say there is a contradiction between two status if they are fixed/set to different bounds or values. However, two
statuses are not contradiction if one of them is “fixed” and the other one is “set”, if this fixing/setting refers to the
same bound or value.

• bool contradiction(STATUSstatus, double value=0) const

Private Attributes

• ABA_GLOBAL ∗ glob_

• STATUS status_

• doublevalue_

Friends

• ostream &operator<< (ostream &out, constABA_FSVARSTAT &rhs)

The output operator writes the status and, if the status isFixedor Set, also its value on an output stream.

6.15.1 Detailed Description

status of fixed and set variables.

Definition at line 49 of file fsvarstat.h.

6.15.2 Member Enumeration Documentation

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

258 Reference Manual

6.15.2.1 enumABA_FSVARSTAT::STATUS

The enumeration defining the different statuses of variables from the point of view of fixing and setting:.

Parameters:
Free The variable is neither fixed nor set.

SetToLowerBoundThe variable is set to its lower bound.

Set The variable is set to a value which can be accessed with the member function|value()|.

SetToUpperboundThe variable is set to its upper bound.

FixedToLowerBound The variable is fixed to its lower bound.

Fixed The variable is fixed to a value which can be accessed with the member function|value()|.

FixedToUpperBoundThe variable is fixed to its upper bound.

Enumeration values:
Free

SetToLowerBound

Set

SetToUpperBound

FixedToLowerBound

Fixed

FixedToUpperBound

Definition at line 65 of file fsvarstat.h.

6.15.3 Constructor & Destructor Documentation

6.15.3.1 ABA_FSVARSTAT::ABA_FSVARSTAT (ABA_GLOBAL ∗ glob) [inline]

This constructor initializes the status asFree.

Parameters:
glob A pointer to a global object.

Definition at line 227 of file fsvarstat.h.

6.15.3.2 ABA_FSVARSTAT::ABA_FSVARSTAT (ABA_GLOBAL ∗ glob, STATUS status)

This constructor initializes the status explicitely.

Parameters:
glob A pointer to a global object.

status The initial status that must neither beFixednor Set. For these two statuses the next constructor has to
be used.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.15 ABA_FSVARSTAT Class Reference 259

6.15.3.3 ABA_FSVARSTAT::ABA_FSVARSTAT (ABA_GLOBAL ∗ glob, STATUS status, doublevalue)

This constructor initializes the status explicitely toFixedor Set.

Parameters:
glob A pointer to a global object.

status The initial status that must beFixedor Set.

value The value associated with the statusFixedor Set.

6.15.3.4 ABA_FSVARSTAT::ABA_FSVARSTAT (ABA_FSVARSTAT ∗ fsVarStat)

This constructor makes a copy.

Parameters:
fsVarStat The status is initialized with a copy of∗fsVarStat.

6.15.4 Member Function Documentation

6.15.4.1 bool ABA_FSVARSTAT::contradiction (STATUS status, doublevalue= 0) const

Another version of the functioncontradiction().

Returns:
true If there is a contradiction between the status of this object and (status, value),
false otherwise.

Parameters:
status The status with which contradiction is checked.

value The value with which contradiction is checked. The default value ofvalueis 0.

6.15.4.2 bool ABA_FSVARSTAT::contradiction (ABA_FSVARSTAT ∗ fsVarStat) const

We say there is a contradiction between two status if they arefixed/set to different bounds or values. However, two
statuses are not contradiction if one of them is “fixed” and the other one is “set”, if this fixing/setting refers to the
same bound or value.

Returns:
true If there is a contradiction between the status of this object andfsVarStat,
false otherwise.

Parameters:
fsVarStat A pointer to the status with which contradiction is is tested.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

260 Reference Manual

6.15.4.3 bool ABA_FSVARSTAT::fixed () const

Returns:
true If the status isFixedToLowerBound, Fixed, or FixedToUpperBound,
false otherwise.

6.15.4.4 bool ABA_FSVARSTAT::fixedOrSet () const [inline]

Returns:
false If the status isFree,
true otherwise.

Definition at line 265 of file fsvarstat.h.

6.15.4.5 bool ABA_FSVARSTAT::set () const

Returns:
true If the status isSetToLowerBound, Set, or SetToUpperBound,
false otherwise.

6.15.4.6 void ABA_FSVARSTAT::status (constABA_FSVARSTAT ∗ stat) [inline]

A version ofstatus()for assigning the status of an other object of the class ABA_FSVARSTAT.

Parameters:
stat A pointer to the object that status and value is copied.

Definition at line 249 of file fsvarstat.h.

6.15.4.7 void ABA_FSVARSTAT::status (STATUS stat, doubleval) [inline]

This version of the functionstatus()can assign a new status also for the statusesFixedandSet.

Parameters:
stat The new status.

val A value associated with the new status.

Definition at line 243 of file fsvarstat.h.

6.15.4.8 void ABA_FSVARSTAT::status (STATUS stat) [inline]

This version of the functionstatus()assigns a new status.

For specifying also a value in case of the statusesFixedor Setthe next version of this function can be use.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.15 ABA_FSVARSTAT Class Reference 261

Parameters:
stat The new status.

Definition at line 238 of file fsvarstat.h.

6.15.4.9 ABA_FSVARSTAT::STATUS ABA_FSVARSTAT::status () const [inline]

Returns:
The status of fixing or setting.

Definition at line 233 of file fsvarstat.h.

6.15.4.10 void ABA_FSVARSTAT::value (doubleval) [inline]

This version ofvalue()assigns a new value of fixing or setting.

Parameters:
val The new value.

Definition at line 260 of file fsvarstat.h.

6.15.4.11 double ABA_FSVARSTAT::value () const [inline]

Returns:
The value of fixing or setting if the variable has statusFixedor Set.

Definition at line 255 of file fsvarstat.h.

6.15.5 Friends And Related Function Documentation

6.15.5.1 ostream& operator<< (ostream & out, constABA_FSVARSTAT & rhs) [friend]

The output operator writes the status and, if the status isFixedor Set, also its value on an output stream.

Returns:
A reference to the output stream.

Parameters:
out The output stream.

rhs The variable status being output.

6.15.6 Member Data Documentation

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

262 Reference Manual

6.15.6.1 ABA_GLOBAL ∗ ABA_FSVARSTAT::glob_ [private]

A pointer to the corresponding global object.

Definition at line 213 of file fsvarstat.h.

6.15.6.2 STATUS ABA_FSVARSTAT::status_ [private]

The status of the variable.

Definition at line 217 of file fsvarstat.h.

6.15.6.3 doubleABA_FSVARSTAT::value_ [private]

The value the variable is fixed/set to.

This member is only used for the statusesFixedandSet.

Definition at line 223 of file fsvarstat.h.

The documentation for this class was generated from the following file:

• Include/abacus/fsvarstat.h

6.16 ABA_LPVARSTAT Class Reference

After the solution of a linear program by the simplex method each variable receives a status indicating if the
variable is contained in the basis of the optimal solution, or is nonbasic and has a value equal to its lower or upper
bound, or is a free variable not contained in the basis.

#include <lpvarstat.h>

Inheritance diagram for ABA_LPVARSTAT::

ABA_LPVARSTAT

ABA_ABACUSROOT

Public Types

• enumSTATUS{

AtLowerBound, Basic, AtUpperBound, NonBasicFree,

Eliminated, Unknown}

The enumeration of the statuses a variable gets from the linear program solver:.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.16 ABA_LPVARSTAT Class Reference 263

Public Member Functions

• ABA_LPVARSTAT (ABA_GLOBAL ∗glob)
• ABA_LPVARSTAT (ABA_GLOBAL ∗glob,STATUSstatus)
• ABA_LPVARSTAT (ABA_LPVARSTAT ∗lpVarStat)
• STATUS status() const
• void status(STATUSstat)

This version ofstatus()sets the status.

• void status(constABA_LPVARSTAT ∗stat)

Another version of the functionstatus()for setting the status.

• boolatBound() const
• boolbasic() const

Private Attributes

• ABA_GLOBAL ∗ glob_
• STATUS status_

Friends

• ostream &operator<< (ostream &out, constABA_LPVARSTAT &rhs)

The output operator writes theSTATUS to an output stream in the form { AtLowerBound}, { Basic}, { AtUpper\-
Bound}, { NonBasicFree}, { Eliminated}, { Unknown}.

6.16.1 Detailed Description

After the solution of a linear program by the simplex method each variable receives a status indicating if the
variable is contained in the basis of the optimal solution, or is nonbasic and has a value equal to its lower or upper
bound, or is a free variable not contained in the basis.

Definition at line 51 of file lpvarstat.h.

6.16.2 Member Enumeration Documentation

6.16.2.1 enumABA_LPVARSTAT::STATUS

The enumeration of the statuses a variable gets from the linear program solver:.

Parameters:
AtLowerBound The variable is at its lower bound, but not in the basis.

Basic The variable is in the basis.

AtUpperBound The variable is at its upper bound , but not in the basis.

NonBasicFree The variable is unbounded and not in the basis.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

264 Reference Manual

Eliminated The variable has been removed by our preprocessor in the class ABA_LPSUB. So, it is not
present in the LP-solver.

Unknown The LP-status of the variable is unknown since no LP has been solved. This status is also assigned
to variables which are fixed or set, yet still contained in theLP to avoid a wrong setting or fixing by
reduced costs.

Enumeration values:
AtLowerBound

Basic

AtUpperBound

NonBasicFree

Eliminated

Unknown

Definition at line 73 of file lpvarstat.h.

6.16.3 Constructor & Destructor Documentation

6.16.3.1 ABA_LPVARSTAT::ABA_LPVARSTAT (ABA_GLOBAL ∗ glob) [inline]

This constructor initializes the status asUnknown.

Parameters:
glob A pointer to the corresponding global object.

Definition at line 164 of file lpvarstat.h.

6.16.3.2 ABA_LPVARSTAT::ABA_LPVARSTAT (ABA_GLOBAL ∗ glob, STATUS status) [inline]

This constructor initializes the ABA_LPVARSTAT.

Parameters:
glob A pointer to the corresponding global object.

status The initial status.

Definition at line 170 of file lpvarstat.h.

6.16.3.3 ABA_LPVARSTAT::ABA_LPVARSTAT (ABA_LPVARSTAT ∗ lpVarStat) [inline]

This constructor make a copy of∗lpVarStat.

Parameters:
lpVarStat A copy of this object is made.

Definition at line 176 of file lpvarstat.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.16 ABA_LPVARSTAT Class Reference 265

6.16.4 Member Function Documentation

6.16.4.1 bool ABA_LPVARSTAT::atBound () const [inline]

Returns:
true If the variable status isAtUpperBoundor AtLowerBound,
false otherwise.

Definition at line 197 of file lpvarstat.h.

6.16.4.2 bool ABA_LPVARSTAT::basic () const [inline]

Returns:
true If the status isBasic,
false otherwise.

Definition at line 203 of file lpvarstat.h.

6.16.4.3 void ABA_LPVARSTAT::status (constABA_LPVARSTAT ∗ stat) [inline]

Another version of the functionstatus()for setting the status.

Parameters:
stat The new LP-status.

Definition at line 192 of file lpvarstat.h.

6.16.4.4 void ABA_LPVARSTAT::status (STATUS stat) [inline]

This version ofstatus()sets the status.

Parameters:
stat The new LP-status.

Definition at line 187 of file lpvarstat.h.

6.16.4.5 ABA_LPVARSTAT::STATUS ABA_LPVARSTAT::status () const [inline]

Returns:
The LP-status.

Definition at line 182 of file lpvarstat.h.

6.16.5 Friends And Related Function Documentation

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

266 Reference Manual

6.16.5.1 ostream& operator<< (ostream & out, constABA_LPVARSTAT & rhs) [friend]

The output operator writes theSTATUSto an output stream in the form { AtLowerBound}, { Basic}, { AtUpper\-
Bound}, { NonBasicFree}, { Eliminated}, { Unknown}.

Returns:
A reference to the output stream.

Parameters:
out The output stream.

rhs The status being output.

6.16.6 Member Data Documentation

6.16.6.1 ABA_GLOBAL ∗ ABA_LPVARSTAT::glob_ [private]

A pointer to the corresponding global object.

Definition at line 156 of file lpvarstat.h.

6.16.6.2 STATUS ABA_LPVARSTAT::status_ [private]

The LP-status.

Definition at line 160 of file lpvarstat.h.

The documentation for this class was generated from the following file:

• Include/abacus/lpvarstat.h

6.17 ABA_SLACKSTAT Class Reference

As for the structural variables the simplex method also assigns a unique status to each slack variable. A slack
variable can be a basic or a nonbasic variable.

#include <slackstat.h>

Inheritance diagram for ABA_SLACKSTAT::

ABA_SLACKSTAT

ABA_ABACUSROOT

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.17 ABA_SLACKSTAT Class Reference 267

Public Types

• enumSTATUS{ Basic, NonBasicZero, NonBasicNonZero, Unknown}

Public Member Functions

• ABA_SLACKSTAT (constABA_GLOBAL ∗glob)

This constructor initializes the status asUnknown.

• ABA_SLACKSTAT (constABA_GLOBAL ∗glob,STATUSstatus)
• STATUS status() const
• void status(STATUSstat)

This version of the functionstatus()sets the status of the slack variable.

• void status(constABA_SLACKSTAT ∗stat)

This version of the functionstatus()sets the status to the one of∗stat.

Private Attributes

• constABA_GLOBAL ∗ glob_
• STATUS status_

Friends

• ostream &operator<< (ostream &out, constABA_SLACKSTAT &rhs)

The output operator writes the status to an output stream in the format { Basic}, { NonBasicZero}, { Non\-Basic\-
Non\-Zero}, or { Unknown}.

6.17.1 Detailed Description

As for the structural variables the simplex method also assigns a unique status to each slack variable. A slack
variable can be a basic or a nonbasic variable.

Definition at line 50 of file slackstat.h.

6.17.2 Member Enumeration Documentation

6.17.2.1 enumABA_SLACKSTAT::STATUS

The different statuses of a slack variable:

Parameters:
Basic The slack variable belongs to the basis.

NonBasicZero The slack variable does not belong to the basis and has value zero.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

268 Reference Manual

NonBasicNonZeroThe slack variable does not belong to the basis and has a nonzero value.

Unknown The status of the slack variable is not known since no linear program with the corresponding
constraint has been solved.

Enumeration values:
Basic

NonBasicZero

NonBasicNonZero

Unknown

Definition at line 64 of file slackstat.h.

6.17.3 Constructor & Destructor Documentation

6.17.3.1 ABA_SLACKSTAT::ABA_SLACKSTAT (const ABA_GLOBAL ∗ glob) [inline]

This constructor initializes the status asUnknown.

Parameters:
glob A pointer to the corresponding global object.

Definition at line 137 of file slackstat.h.

6.17.3.2 ABA_SLACKSTAT::ABA_SLACKSTAT (const ABA_GLOBAL ∗ glob, STATUS status)
[inline]

A constructor with initialization.

Parameters:
glob A pointer to the corresponding global object.

status The slack variable receives the statusstatus.

Definition at line 143 of file slackstat.h.

6.17.4 Member Function Documentation

6.17.4.1 void ABA_SLACKSTAT::status (constABA_SLACKSTAT ∗ stat) [inline]

This version of the functionstatus()sets the status to the one of∗stat.

Parameters:
stat The status of the slack variable is set to∗stat.

Definition at line 159 of file slackstat.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.17 ABA_SLACKSTAT Class Reference 269

6.17.4.2 void ABA_SLACKSTAT::status (STATUS stat) [inline]

This version of the functionstatus()sets the status of the slack variable.

Parameters:
stat The new status of the slack variable.

Definition at line 154 of file slackstat.h.

6.17.4.3 ABA_SLACKSTAT::STATUS ABA_SLACKSTAT::status () const [inline]

Returns:
The status of the slack variable.

Definition at line 149 of file slackstat.h.

6.17.5 Friends And Related Function Documentation

6.17.5.1 ostream& operator<< (ostream & out, constABA_SLACKSTAT & rhs) [friend]

The output operator writes the status to an output stream in the format { Basic}, { NonBasicZero}, { Non\-Basic\-
Non\-Zero}, or { Unknown}.

Returns:
A reference to the output stream.

Parameters:
out The output stream.

rhs The status being output.

6.17.6 Member Data Documentation

6.17.6.1 constABA_GLOBAL ∗ ABA_SLACKSTAT::glob_ [private]

A pointer to the corresponding global object.

Definition at line 129 of file slackstat.h.

6.17.6.2 STATUS ABA_SLACKSTAT::status_ [private]

The status of the slack variable.

Definition at line 133 of file slackstat.h.

The documentation for this class was generated from the following file:

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

270 Reference Manual

• Include/abacus/slackstat.h

6.18 ABA_LP Class Reference

section provides a generic interface class to linear programs, from which we will derive further classes both for the
solution of LP-relaxations (ABA_LPSUB) with a\ algorithm and for interfaces to LP-solvers (ABA_OSIIF).

#include <lp.h>

Inheritance diagram for ABA_LP::

ABA_LP

ABA_ABACUSROOT

ABA_LPSUB ABA_OSIIF

ABA_LPSUBOSI ABA_LPSUBOSI

Public Types

• enumOPTSTAT{

Optimal, Unoptimized, Error, Feasible,

Infeasible, Unbounded}
• enumSOLSTAT{ Available, Missing}

This enumeration describes if parts of the solution likex -values, reduced costs, etc. are available.

• enumMETHOD {

Primal, Dual, BarrierAndCrossover, BarrierNoCrossover,

Approximate}

Public Member Functions

• ABA_LP (ABA_MASTER ∗master)
• virtual∼ABA_LP ()

The destructor.

• void initialize (ABA_OPTSENSEsense, int nRow, int maxRow, int nCol, int maxCol,ABA_ARRAY< dou-
ble > &obj, ABA_ARRAY< double> &lBound, ABA_ARRAY< double> &uBound,ABA_ARRAY<

ABA_ROW ∗ > &rows)
• void initialize (ABA_OPTSENSEsense, int nRow, int maxRow, int nCol, int maxCol,ABA_ARRAY< dou-

ble > &obj, ABA_ARRAY< double> &lBound, ABA_ARRAY< double> &uBound,ABA_ARRAY<

ABA_ROW ∗ > &rows, ABA_ARRAY< ABA_LPVARSTAT::STATUS > &lpVarStat, ABA_ARRAY<

ABA_SLACKSTAT::STATUS> &slackStat)

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.18 ABA_LP Class Reference 271

This version of the functioninitialize() performs like its previous version, but also initializes the basis with the
arguments:.

• virtual void loadBasis(ABA_ARRAY< ABA_LPVARSTAT::STATUS > &lpVarStat, ABA_ARRAY<

ABA_SLACKSTAT::STATUS> &slackStat)
• ABA_OPTSENSE sense() const
• void sense(constABA_OPTSENSE&newSense)
• int nRow() const
• int maxRow() const
• int nCol () const
• int maxCol() const
• int nnz() const
• doubleobj (int i) const
• doublelBound(int i) const
• doubleuBound(int i) const
• void row (int i, ABA_ROW &r) const
• doublerhs(int i) const
• virtual doublevalue() const
• virtual doublexVal (int i)
• virtual doublebarXVal (int i)
• virtual doublereco(int i)
• virtual doubleyVal (int c)
• virtual doubleslack(int c)
• SOLSTAT xValStatus() const
• SOLSTAT barXValStatus() const
• SOLSTAT yValStatus() const
• SOLSTAT recoStatus() const
• SOLSTAT slackStatus() const
• SOLSTAT basisStatus() const
• int nOpt() const
• virtual boolinfeasible() const
• virtual int getInfeas(int &infeasRow, int &infeasCol, double∗bInvRow)

Can be called if the last linear program has been solved with the dual simplexmethod and is infeasible and all
inactive variables price out correctly.

• virtual ABA_LPVARSTAT::STATUS lpVarStat(int i)
• virtual ABA_SLACKSTAT::STATUS slackStat(int i)
• virtual OPTSTAT optimize(METHOD method)
• void remRows(ABA_BUFFER< int > &ind)
• void addRows(ABA_BUFFER< ABA_ROW ∗ > &newRows)
• void remCols(ABA_BUFFER< int > &cols)
• void addCols(ABA_BUFFER< ABA_COLUMN ∗ > &newCols)
• void changeRhs(ABA_ARRAY< double> &newRhs)
• virtual voidchangeLBound(int i, double newLb)
• virtual voidchangeUBound(int i, double newUb)
• virtual int pivotSlackVariableIn(ABA_BUFFER< int > &rows)
• void rowRealloc(int newSize)
• void colRealloc(int newSize)
• int writeBasisMatrix(const char∗fileName)

Writes the complete basis of an optimal linear program to a file.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

272 Reference Manual

• int setSimplexIterationLimit(int limit)
• int getSimplexIterationLimit(int &limit)
• ABA_CPUTIMER∗ lpSolverTime()

Protected Member Functions

• void colsNnz(int nRow,ABA_ARRAY< ABA_ROW ∗ > &rows, ABA_ARRAY< int > &nnz)
• void rows2cols(int nRow,ABA_ARRAY< ABA_ROW ∗ > &rows, ABA_ARRAY< ABA_SPARVEC∗

> &cols)
• void rowRangeCheck(int r) const
• void colRangeCheck(int i) const
• virtual ABA_OPTSENSE _sense() const =0

The pure virtual function_sense()must be defined by the used LP-solver and return the sense of the optimization.

• virtual void_sense(constABA_OPTSENSE&newSense)=0
• virtual int _nRow() const =0

The pure virtual function_nRow()must be defined by the used LP-solver and return the number of rows of the
problem.

• virtual int _maxRow() const =0

The pure virtual function_maxRow()must be defined by the used LP-solver and return the maximal number of rows.

• virtual int _nCol() const =0

The pure virtual function_nCol()must be defined by the used LP-solver and return the number of columns.

• virtual int _maxCol() const =0

The pure virtual function_maxCol()must be defined by the the used LP-solver and return the maximal number of
columns.

• virtual int _nnz() const =0

The pure virtual function_nnz()must be defined by the used LP-solver and return the number of nonzero elements
of the constraint matrix not including the right hand side and the bounds ofthe variables.

• virtual double_obj (int i) const =0

The pure virtual function_obj() must be defined by the used LP-solver and return the objective function coefficient
of variablei.

• virtual double_lBound(int i) const =0

The pure virtual function_lBound()must be defined by the used LP-solver and return the lower bound of variable i.

• virtual double_uBound(int i) const =0

The pure virtual function_uBound()must be defined by the used LP-solver and return the upper bound of variable
i.

• virtual double_rhs(int i) const =0

The pure virtual function_rhs()must be defined by the used LP-solver and return the right hand side ofconstrainti.

• virtual void_row(int i, ABA_ROW &r) const =0

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.18 ABA_LP Class Reference 273

• virtual void _initialize (ABA_OPTSENSE sense, int nRow, int maxRow, int nCol, int maxCol,
ABA_ARRAY< double> &obj, ABA_ARRAY< double> &lBound, ABA_ARRAY< double> &u-
Bound,ABA_ARRAY< ABA_ROW ∗ > &rows)=0

The pure virtual function_initialize()must be defined by the used LP-solver and should initialize the LP-solver with.

• virtual void _loadBasis(ABA_ARRAY< ABA_LPVARSTAT::STATUS > &lpVarStat, ABA_ARRAY<

ABA_SLACKSTAT::STATUS> &slackStat)=0
• virtual OPTSTAT _primalSimplex()=0

The pure virtual function_primalSimplex()must be defined by the used LP-solver and should call the primal simplex
method of the used LP-solver.

• virtual OPTSTAT _dualSimplex()=0

The pure virtual function_dualSimplex()must be defined by the used LP-solver and should call the dual simplex
method of the used LP-solver.

• virtual OPTSTAT _barrier(bool doCrossover)=0

The pure virtual function_barrier()must be defined by the used LP-solver and should call the barrier method of the
used LP-solver.

• virtual OPTSTAT _approx()=0

The pure virtual function_approx()must be defined by the used LP-solver and should call the approximativemethod
of the used LP-solver.

• virtual double_value() const =0

The pure virtual function_value()must be defined by the used LP-solver and should return the optimum value of the
linear program after it has been solved.

• virtual double_xVal (int i)=0

The pure virtual function_xVal() must be defined by the used LP-solver and should return the value of variable i in
the LP-solution.

• virtual double_barXVal(int i)=0
• virtual double_reco(int i)=0

The pure virtual function_reco()must be defined by the used LP-solver and should return the reduced cost of
variable i.

• virtual double_slack(int i)=0

The pure virtual function_slack()must be defined by the used LP-solver and should return the value of theslack
variable i.

• virtual double_yVal (int i)=0

The pure virtual function_yVal() must be defined by the used LP-solver and should return the value of thedual
variable of the constrainti.

• virtual ABA_LPVARSTAT::STATUS _lpVarStat(int i)=0

The pure virtual function_lpVarStat()must be defined by the used LP-solver and should return the status of the
variable i in the LP-solution.

• virtual ABA_SLACKSTAT::STATUS _slackStat(int i)=0

The pure virtual function_slackStat()must be defined by the used LP-solver and should return the status of theslack
variable i in the LP-solution.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

274 Reference Manual

• virtual int _getInfeas(int &infeasRow, int &infeasCol, double∗bInvRow)=0

The pure virtual function_getInfeas()must be defined by the used LP-solver and can be called if the last linear
program has been solved with the dual simplex method and is infeasible.

• virtual void_remRows(ABA_BUFFER< int > &ind)=0

The pure virtual function_remRows()must be defined by the used LP-solver and should remove the rows with
numbers given in the bufferind from the LP-solver.

• virtual void_addRows(ABA_BUFFER< ABA_ROW ∗ > &newRows)=0

The pure virtual function_addRows()must be defined by the used LP-solver and should add the rows given in the
buffernewRowsto the LP.

• virtual void_remCols(ABA_BUFFER< int > &vars)=0

The pure virtual function_remCols()must be defined by the used LP-solver and should remove the columns with
numbers given invarsfrom the LP.

• virtual void_addCols(ABA_BUFFER< ABA_COLUMN ∗ > &newCols)=0

The pure virtual function_addCols()must be defined by the used LP-solver and should add the columnsnewColsto
the LP.

• virtual void_changeRhs(ABA_ARRAY< double> &newRhs)=0

The pure virtual function_changeRhs()must be defined by the used LP-solver and should set the right hand side of
the constraint matrix of the LP tonewRhs.

• virtual void_changeLBound(int i, double newLb)=0

The pure virtual function_changeLBound()must be defined by the used LP-solver and should set the lower bound
of variablei to newLb.

• virtual void_changeUBound(int i, double newUb)=0

The pure virtual function_changeLBound()must be defined by the used LP-solver and should set the upper bound
of variablei to newUb.

• virtual int _pivotSlackVariableIn(ABA_BUFFER< int > &rows)=0

The functionpivotSlackVariableIn()pivots the slack variables stored in the bufferrows into the basis.

• virtual void_rowRealloc(int newSize)=0

The pure virtual function_rowRealloc()must be defined in the used LP-solver and should reallocate its memory
such that up tonewSizerows can be handled.

• virtual void_colRealloc(int newSize)=0

The pure virtual function_colRealloc()must be defined by the used LP-solver and should reallocate its memory such
that up tonewSizecolumns can be handled.

• virtual int _setSimplexIterationLimit(int limit)=0

The functionsetSimplexIterationLimit()changes the iteration limit of the Simplex algorithm.

• virtual int _getSimplexIterationLimit(int &limit)=0

The functiongetSimplexIterationLimit()retrieves the value of the iteration limit of the simplex algorithm.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.18 ABA_LP Class Reference 275

Protected Attributes

• ABA_MASTER ∗ master_
• OPTSTAT optStat_
• SOLSTAT xValStatus_

This member becomesAvailable if the x -values of the optimal solution can be accessed with the functionxVal(),
otherwise it has the valueMissing.

• SOLSTAT barXValStatus_
• SOLSTAT yValStatus_

This member becomesAvailable if the values of the dual variables of the optimal solution can be accessed with the
functionyVal(), otherwise it has the valueMissing/.

• SOLSTAT recoStatus_

This member becomesAvailableif the reduced costs of the optimal solution can be accessed with the functionreco(),
otherwise it has the valueMissing.

• SOLSTAT slackStatus_

This member becomesAvailable if the values of the slack variables of the optimal solution can be accessed with the
functionslack(), otherwise it has the valueMissing.

• SOLSTAT basisStatus_

This member becomesAvailable if the status of the variables and the slack variables of the optimal solution canbe
accessed with the functionslpVarStat()andslackStat(), otherwise it has the valueMissing.

• int nOpt_
• ABA_CPUTIMER lpSolverTime_

Private Member Functions

• void initPostOpt()

Resets the optimization status and the availability statuses of the solution.

• ABA_LP (constABA_LP &rhs)
• constABA_LP & operator=(constABA_LP &rhs)

Friends

• ostream &operator<< (ostream &out, constABA_LP &rhs)

The output operator writes the objective function, followed by the constraints,the bounds on the columns and the
solution values (if available) to an output stream.

6.18.1 Detailed Description

section provides a generic interface class to linear programs, from which we will derive further classes both for the
solution of LP-relaxations (ABA_LPSUB) with a\ algorithm and for interfaces to LP-solvers (ABA_OSIIF).

Definition at line 70 of file lp.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

276 Reference Manual

6.18.2 Member Enumeration Documentation

6.18.2.1 enumABA_LP::METHOD

The solution method for the linear program.

Parameters:
Primal The primal simplex method.

Dual The dual simplex method.

BarrierAndCrossoverThe barrier method followed by a crossover to a basis.

BarrierNoCrossoverThe barrier method without crossover.

Approximate An approximative solver

Enumeration values:
Primal

Dual

BarrierAndCrossover

BarrierNoCrossover

Approximate

Definition at line 107 of file lp.h.

6.18.2.2 enumABA_LP::OPTSTAT

The optimization status of the linear program.

Parameters:
Unoptimized Optimization is still required, this is also the case for reoptimization.

Optimized The optimization has been performed, yet only a call to|()| can give us the status of optimization.

Error An error has happened during optimization.

Optimal The optimal solution has been computed.

Feasible A primal feasible solution for the linear program, but not the optimal solution has been found.

Infeasible The linear program is primal infeasible.

Unbounded The linear program is unbounded.

Enumeration values:
Optimal

Unoptimized

Error

Feasible

Infeasible

Unbounded

Definition at line 87 of file lp.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.18 ABA_LP Class Reference 277

6.18.2.3 enumABA_LP::SOLSTAT

This enumeration describes if parts of the solution likex -values, reduced costs, etc. are available.

Parameters:
Available The part of the solution is available.

Missing The part of the solution is missing.

Enumeration values:
Available

Missing

Definition at line 96 of file lp.h.

6.18.3 Constructor & Destructor Documentation

6.18.3.1 ABA_LP::ABA_LP (ABA_MASTER ∗ master)

The constructor.

Parameters:
master A pointer to the corresponding master of the optimization.

6.18.3.2 virtual ABA_LP::∼ABA_LP () [virtual]

The destructor.

6.18.3.3 ABA_LP::ABA_LP (constABA_LP & rhs) [private]

6.18.4 Member Function Documentation

6.18.4.1 virtual void ABA_LP::_addCols (ABA_BUFFER< ABA_COLUMN ∗ > & newCols)
[protected, pure virtual]

The pure virtual function_addCols()must be defined by the used LP-solver and should add the columns newCols
to the LP.

Implemented inABA_OSIIF.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

278 Reference Manual

6.18.4.2 virtual void ABA_LP::_addRows (ABA_BUFFER< ABA_ROW ∗ > & newRows)
[protected, pure virtual]

The pure virtual function_addRows()must be defined by the used LP-solver and should add the rows given in the
buffernewRowsto the LP.

Implemented inABA_OSIIF.

6.18.4.3 virtualOPTSTAT ABA_LP::_approx () [protected, pure virtual]

The pure virtual function_approx()must be defined by the used LP-solver and should call the approximative
method of the used LP-solver.

Implemented inABA_OSIIF.

6.18.4.4 virtualOPTSTAT ABA_LP::_barrier (bool doCrossover) [protected, pure virtual]

The pure virtual function_barrier() must be defined by the used LP-solver and should call the barrier method of
the used LP-solver.

Implemented inABA_OSIIF.

6.18.4.5 virtual double ABA_LP::_barXVal (int i) [protected, pure virtual]

Implemented inABA_OSIIF.

6.18.4.6 virtual void ABA_LP::_changeLBound (int i, double newLb) [protected, pure
virtual]

The pure virtual function_changeLBound()must be defined by the used LP-solver and should set the lower bound
of variablei to newLb.

Implemented inABA_OSIIF.

6.18.4.7 virtual void ABA_LP::_changeRhs (ABA_ARRAY < double > & newRhs) [protected,
pure virtual]

The pure virtual function_changeRhs()must be defined by the used LP-solver and should set the right hand side
of the constraint matrix of the LP tonewRhs.

Implemented inABA_OSIIF.

6.18.4.8 virtual void ABA_LP::_changeUBound (int i, double newUb) [protected, pure
virtual]

The pure virtual function_changeLBound()must be defined by the used LP-solver and should set the upper bound
of variablei to newUb.

Implemented inABA_OSIIF.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.18 ABA_LP Class Reference 279

6.18.4.9 virtual void ABA_LP::_colRealloc (int newSize) [protected, pure virtual]

The pure virtual function_colRealloc()must be defined by the used LP-solver and should reallocate its memory
such that up tonewSizecolumns can be handled.

Implemented inABA_OSIIF.

6.18.4.10 virtualOPTSTAT ABA_LP::_dualSimplex () [protected, pure virtual]

The pure virtual function_dualSimplex()must be defined by the used LP-solver and should call the dual simplex
method of the used LP-solver.

Implemented inABA_OSIIF.

6.18.4.11 virtual int ABA_LP::_getInfeas (int & infeasRow, int & infeasCol, double ∗ bInvRow)
[protected, pure virtual]

The pure virtual function_getInfeas()must be defined by the used LP-solver and can be called if the last linear
program has been solved with the dual simplex method and is infeasible.

In this case it should compute the infeasible basic variableor constraint and the corresponding rowbInvRowof
the basis inverse. EitherinfeasRowor infeasColis nonnegative. The nonnegative argument is an infeasible row or
column, respectively.

Returns:
0 if it is successful
1 otherwise.

Implemented inABA_OSIIF.

6.18.4.12 virtual int ABA_LP::_getSimplexIterationLimi t (int & limit) [protected, pure
virtual]

The functiongetSimplexIterationLimit()retrieves the value of the iteration limit of the simplex algorithm.

Returns:
0 If the iteration limit could be get,
1 otherwise.

Parameters:
limit Stores the value of the iteration limit if the function returns 0.

Implemented inABA_OSIIF.

6.18.4.13 virtual void ABA_LP::_initialize (ABA_OPTSENSEsense, int nRow, int maxRow, int nCol, int
maxCol, ABA_ARRAY < double> & obj, ABA_ARRAY < double> & lBound, ABA_ARRAY <

double > & uBound, ABA_ARRAY < ABA_ROW ∗ > & rows) [protected, pure
virtual]

The pure virtual function_initialize() must be defined by the used LP-solver and should initialize the LP-solver
with.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

280 Reference Manual

Parameters:
senseThe sense of the optimization.

nRow The number of rows.

maxRow The maximal number of rows.

nCol The number of columns.

maxCol The maximal number of columns.

obj An array with the objective functions coefficients.

lBound An array with the lower bounds of the variables.

uBound An array with the upper bounds of the variables.

rows An array storing the constraint matrix in row format.

Implemented inABA_OSIIF.

6.18.4.14 virtual double ABA_LP::_lBound (int i) const [protected, pure virtual]

The pure virtual function_lBound()must be defined by the used LP-solver and return the lower bound of variable
i.

Implemented inABA_OSIIF.

6.18.4.15 virtual void ABA_LP::_loadBasis (ABA_ARRAY < ABA_LPVARSTAT::STATUS > &
lpVarStat, ABA_ARRAY < ABA_SLACKSTAT::STATUS > & slackStat) [protected,
pure virtual]

This pure virtual function should load a basis into the LP-solver.

Parameters:
lpVarStat An array storing the status of the variables.

slackStat An array storing the status of the slack variables.

Implemented inABA_OSIIF.

6.18.4.16 virtualABA_LPVARSTAT::STATUS ABA_LP::_lpVarStat (int i) [protected, pure
virtual]

The pure virtual function_lpVarStat()must be defined by the used LP-solver and should return the status of the
variablei in the LP-solution.

Implemented inABA_OSIIF.

6.18.4.17 virtual int ABA_LP::_maxCol () const [protected, pure virtual]

The pure virtual function_maxCol()must be defined by the the used LP-solver and return the maximal number of
columns.

Implemented inABA_OSIIF.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.18 ABA_LP Class Reference 281

6.18.4.18 virtual int ABA_LP::_maxRow () const [protected, pure virtual]

The pure virtual function_maxRow()must be defined by the used LP-solver and return the maximal number of
rows.

Implemented inABA_OSIIF.

6.18.4.19 virtual int ABA_LP::_nCol () const [protected, pure virtual]

The pure virtual function_nCol()must be defined by the used LP-solver and return the number of columns.

Implemented inABA_OSIIF.

6.18.4.20 virtual int ABA_LP::_nnz () const [protected, pure virtual]

The pure virtual function_nnz()must be defined by the used LP-solver and return the number of nonzero elements
of the constraint matrix not including the right hand side and the bounds of the variables.

Implemented inABA_OSIIF.

6.18.4.21 virtual int ABA_LP::_nRow () const [protected, pure virtual]

The pure virtual function_nRow()must be defined by the used LP-solver and return the number of rows of the
problem.

Implemented inABA_OSIIF.

6.18.4.22 virtual double ABA_LP::_obj (int i) const [protected, pure virtual]

The pure virtual function_obj()must be defined by the used LP-solver and return the objectivefunction coefficient
of variablei.

Implemented inABA_OSIIF.

6.18.4.23 virtual int ABA_LP::_pivotSlackVariableIn (ABA_BUFFER< int > & rows) [protected,
pure virtual]

The functionpivotSlackVariableIn()pivots the slack variables stored in the bufferrows into the basis.

Returns:
0 All variables could be pivoted in,
1 otherwise.

Parameters:
rows The numbers of the slack variables that should be pivoted in.

Implemented inABA_OSIIF.

6.18.4.24 virtualOPTSTAT ABA_LP::_primalSimplex () [protected, pure virtual]

The pure virtual function_primalSimplex()must be defined by the used LP-solver and should call the primal
simplex method of the used LP-solver.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

282 Reference Manual

Implemented inABA_OSIIF.

6.18.4.25 virtual double ABA_LP::_reco (int i) [protected, pure virtual]

The pure virtual function_reco()must be defined by the used LP-solver and should return the reduced cost of
variablei.

Implemented inABA_OSIIF.

6.18.4.26 virtual void ABA_LP::_remCols (ABA_BUFFER< int > & vars) [protected, pure
virtual]

The pure virtual function_remCols()must be defined by the used LP-solver and should remove the columns with
numbers given invars from the LP.

Implemented inABA_OSIIF.

6.18.4.27 virtual void ABA_LP::_remRows (ABA_BUFFER< int > & ind) [protected, pure
virtual]

The pure virtual function_remRows()must be defined by the used LP-solver and should remove the rows with
numbers given in the bufferind from the LP-solver.

Implemented inABA_OSIIF.

6.18.4.28 virtual double ABA_LP::_rhs (int i) const [protected, pure virtual]

The pure virtual function_rhs()must be defined by the used LP-solver and return the right handside of constraint
i.

Implemented inABA_OSIIF.

6.18.4.29 virtual void ABA_LP::_row (int i, ABA_ROW & r) const [protected, pure virtual]

The pure virtual function_row()must be defined by the used LP-solver and store thei-th row of the problem in the
row r.

Implemented inABA_OSIIF.

6.18.4.30 virtual void ABA_LP::_rowRealloc (int newSize) [protected, pure virtual]

The pure virtual function_rowRealloc()must be defined in the used LP-solver and should reallocate its memory
such that up tonewSizerows can be handled.

Implemented inABA_OSIIF.

6.18.4.31 virtual void ABA_LP::_sense (constABA_OPTSENSE& newSense) [protected, pure
virtual]

Implemented inABA_OSIIF.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.18 ABA_LP Class Reference 283

6.18.4.32 virtualABA_OPTSENSEABA_LP::_sense () const [protected, pure virtual]

The pure virtual function_sense()must be defined by the used LP-solver and return the sense of the optimization.

Implemented inABA_OSIIF.

6.18.4.33 virtual int ABA_LP::_setSimplexIterationLimi t (int limit) [protected, pure virtual]

The functionsetSimplexIterationLimit()changes the iteration limit of the Simplex algorithm.

Returns:
0 If the iteration limit could be set,
1 otherwise.

Parameters:
limit The new value of the iteration limit.

Implemented inABA_OSIIF.

6.18.4.34 virtual double ABA_LP::_slack (int i) [protected, pure virtual]

The pure virtual function_slack()must be defined by the used LP-solver and should return the value of the slack
variablei.

Implemented inABA_OSIIF.

6.18.4.35 virtualABA_SLACKSTAT::STATUS ABA_LP::_slackStat (int i) [protected, pure
virtual]

The pure virtual function_slackStat()must be defined by the used LP-solver and should return the status of the
slack variablei in the LP-solution.

Implemented inABA_OSIIF.

6.18.4.36 virtual double ABA_LP::_uBound (int i) const [protected, pure virtual]

The pure virtual function_uBound()must be defined by the used LP-solver and return the upper bound of variable
i.

Implemented inABA_OSIIF.

6.18.4.37 virtual double ABA_LP::_value () const [protected, pure virtual]

The pure virtual function_value()must be defined by the used LP-solver and should return the optimum value of
the linear program after it has been solved.

Implemented inABA_OSIIF.

6.18.4.38 virtual double ABA_LP::_xVal (int i) [protected, pure virtual]

The pure virtual function_xVal()must be defined by the used LP-solver and should return the value of variablei
in the LP-solution.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

284 Reference Manual

Implemented inABA_OSIIF.

6.18.4.39 virtual double ABA_LP::_yVal (int i) [protected, pure virtual]

The pure virtual function_yVal() must be defined by the used LP-solver and should return the value of the dual
variable of the constrainti.

Implemented inABA_OSIIF.

6.18.4.40 void ABA_LP::addCols (ABA_BUFFER< ABA_COLUMN ∗ > & newCols)

Adds columns to the linear program.

If the new number of columns exceeds the maximal number of columns a reallocation is performed.

Parameters:
newCols The new columns that are added.

6.18.4.41 void ABA_LP::addRows (ABA_BUFFER< ABA_ROW ∗ > & newRows)

Adds rows to the linear program.

If the new number of rows exceeds the maximal number of rows a reallocation is performed.

Parameters:
newRowsThe rows that should be added to the linear program.

6.18.4.42 double ABA_LP::barXVal (int i) [inline, virtual]

Reimplemented inABA_LPSUB.

Definition at line 793 of file lp.h.

6.18.4.43 ABA_LP::SOLSTAT ABA_LP::barXValStatus () const [inline]

Definition at line 830 of file lp.h.

6.18.4.44 ABA_LP::SOLSTAT ABA_LP::basisStatus () const [inline]

Definition at line 850 of file lp.h.

6.18.4.45 virtual void ABA_LP::changeLBound (int i, doublenewLb) [virtual]

Changes the lower bound of a single column.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.18 ABA_LP Class Reference 285

Parameters:
i The column.

newLb The new lower bound of the column.

Reimplemented inABA_LPSUB.

6.18.4.46 void ABA_LP::changeRhs (ABA_ARRAY < double> & newRhs)

Changes the complete right hand side of the linear program.

Parameters:
newRhs The new right hand side of the rows.

6.18.4.47 virtual void ABA_LP::changeUBound (inti, doublenewUb) [virtual]

Changes the upper bound of a single column.

Parameters:
i The column.

newUb The new upper bound of the column.

Reimplemented inABA_LPSUB.

6.18.4.48 void ABA_LP::colRangeCheck (inti) const [protected]

Terminates the program if there is no column with indexi.

Parameters:
i The number of a column.

6.18.4.49 void ABA_LP::colRealloc (intnewSize)

Performs a reallocation of the column space of the linear program.

Parameters:
newSizeThe new maximal number of columns of the linear program.

Reimplemented inABA_LPSUB.

6.18.4.50 void ABA_LP::colsNnz (intnRow, ABA_ARRAY < ABA_ROW ∗ > & rows, ABA_ARRAY < int
> & nnz) [protected]

Computes the number of nonzero elements in each column of a given set of rows.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

286 Reference Manual

Parameters:
nRow The number of rows.

rows The array storing the rows.

nnz An array of length at least the number of columns of the linearprogram which will hold the number of
nonzero elements of each column.

6.18.4.51 virtual int ABA_LP::getInfeas (int & infeasRow, int & infeasCol, double ∗ bInvRow)
[virtual]

Can be called if the last linear program has been solved with the dual simplex method and is infeasible and all
inactive variables price out correctly.

Then, the basis is dual feasible, but primal infeasible, i.e., some variables or slack variables violate their bounds.
In this case the functiongetInfeas()determines an infeasible variable or slack variable.

Returns:
0 On success,
1 otherwise.

Parameters:
infeasRow Holds after the execution the number of an infeasible slack variable, or−1 .

infeasVar Holds after the execution the number of an infeasible column, or−1 .

bInvRow Holds after the execution the row of the basis inverse corresponding to the infeasible column or
slack variable, which is always a basic variable. IfgetInfeas()is successful, then eitherinfeasRowor
infeasVaris −1 and the other argument holds the nonnegative number of the infeasible variable.

Reimplemented inABA_LPSUB.

6.18.4.52 int ABA_LP::getSimplexIterationLimit (int & limit)

Returns:
0 If the iteration limit could be get,
1 otherwise.

Parameters:
limit Stores the iteration limit if the return value is 0.

6.18.4.53 bool ABA_LP::infeasible () const [inline, virtual]

Reimplemented inABA_LPSUB.

Definition at line 860 of file lp.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.18 ABA_LP Class Reference 287

6.18.4.54 void ABA_LP::initialize (ABA_OPTSENSE sense, int nRow, int maxRow, int nCol,
int maxCol, ABA_ARRAY < double > & obj, ABA_ARRAY < double > & lBound,
ABA_ARRAY < double> & uBound, ABA_ARRAY < ABA_ROW ∗ > & rows, ABA_ARRAY <

ABA_LPVARSTAT::STATUS > & lpVarStat, ABA_ARRAY < ABA_SLACKSTAT::STATUS >

& slackStat)

This version of the functioninitialize() performs like its previous version, but also initializes the basis with the
arguments:.

Parameters:
lpVarStat An array storing the status of the columns.

slackStat An array storing the status of the slack variables.

Reimplemented inABA_LPSUB.

6.18.4.55 void ABA_LP::initialize (ABA_OPTSENSEsense, int nRow, int maxRow, int nCol, int maxCol,
ABA_ARRAY < double> & obj, ABA_ARRAY < double> & lBound, ABA_ARRAY < double
> & uBound, ABA_ARRAY < ABA_ROW ∗ > & rows)

Loads the linear program defined by its arguments.

We do not perform the initialization via arguments of a constructor, since for the most frequent application of
linear programs within , the solution of the linear programming relaxations in the subproblems, the problem data
is preprocessed before it is loaded. Only after the preprocessing in the constructor of the derived class, we can call
initialize().

Of course, it would be possible to provide an extra constructor with automatic initialization if required.

Parameters:
senseThe sense of the objective function.

nCol The number of columns (variables).

maxCol The maximal number of columns.

nRow The number of rows.

maxRow The maximal number of rows.

obj An array with the objective function coefficients.

lb An array with the lower bounds of the columns.

ub An array with the upper bounds of the columns.

rows An array storing the rows of the problem.

Reimplemented inABA_LPSUB.

6.18.4.56 void ABA_LP::initPostOpt () [private]

Resets the optimization status and the availability statuses of the solution.

The functioninitPostOpt()must be called after each modification of the linear program.It resets the optimization
status and the availability status of the solution.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

288 Reference Manual

6.18.4.57 double ABA_LP::lBound (inti) const [inline]

Reimplemented inABA_LPSUB.

Definition at line 748 of file lp.h.

6.18.4.58 virtual void ABA_LP::loadBasis (ABA_ARRAY < ABA_LPVARSTAT::STATUS > & lpVarStat,
ABA_ARRAY < ABA_SLACKSTAT::STATUS > & slackStat) [virtual]

Loads a new basis for the linear program.

Parameters:
lpVarStat An array storing the status of the columns.

slackStat An array storing the status of the slack variables.

Reimplemented inABA_LPSUB.

6.18.4.59 ABA_CPUTIMER ∗ ABA_LP::lpSolverTime () [inline]

Definition at line 347 of file lp.h.

6.18.4.60 ABA_LPVARSTAT::STATUS ABA_LP::lpVarStat (int i) [inline, virtual]

Reimplemented inABA_LPSUB.

Definition at line 866 of file lp.h.

6.18.4.61 int ABA_LP::maxCol () const [inline]

Reimplemented inABA_LPSUB.

Definition at line 730 of file lp.h.

6.18.4.62 int ABA_LP::maxRow () const [inline]

Definition at line 720 of file lp.h.

6.18.4.63 int ABA_LP::nCol () const [inline]

Reimplemented inABA_LPSUB.

Definition at line 725 of file lp.h.

6.18.4.64 int ABA_LP::nnz () const [inline]

Reimplemented inABA_LPSUB.

Definition at line 735 of file lp.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.18 ABA_LP Class Reference 289

6.18.4.65 int ABA_LP::nOpt () const [inline]

Definition at line 855 of file lp.h.

6.18.4.66 int ABA_LP::nRow () const [inline]

Definition at line 715 of file lp.h.

6.18.4.67 double ABA_LP::obj (int i) const [inline]

Reimplemented inABA_LPSUB.

Definition at line 740 of file lp.h.

6.18.4.68 constABA_LP& ABA_LP::operator= (const ABA_LP & rhs) [private]

6.18.4.69 virtualOPTSTAT ABA_LP::optimize (METHOD method) [virtual]

Performs the optimization of the linear program.

Returns:
The status of the optimization.

Parameters:
method The method with which the optimization is performed.

Reimplemented inABA_LPSUB.

6.18.4.70 virtual int ABA_LP::pivotSlackVariableIn (ABA_BUFFER< int > & rows) [virtual]

Pivots the slack variables stored in the bufferrows into the basis.

Returns:
0 All variables could be pivoted in,
1 otherwise.

Parameters:
rows The numbers of the slack variables that should be pivoted in.

6.18.4.71 double ABA_LP::reco (inti) [inline, virtual]

Reimplemented inABA_LPSUB.

Definition at line 801 of file lp.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

290 Reference Manual

6.18.4.72 ABA_LP::SOLSTAT ABA_LP::recoStatus () const [inline]

Definition at line 835 of file lp.h.

6.18.4.73 void ABA_LP::remCols (ABA_BUFFER< int > & cols)

Removes columns from the linear program.

Parameters:
cols The numbers of the columns that should be removed.

6.18.4.74 void ABA_LP::remRows (ABA_BUFFER< int > & ind)

Removes rows of the linear program.

Parameters:
ind The numbers of the rows that should be removed.

6.18.4.75 double ABA_LP::rhs (inti) const [inline]

Definition at line 772 of file lp.h.

6.18.4.76 void ABA_LP::row (int i, ABA_ROW & r) const [inline]

Definition at line 764 of file lp.h.

6.18.4.77 void ABA_LP::rowRangeCheck (intr) const [protected]

Terminates the program if there is no row with indexr.

Parameters:
r The number of a row of the linear program.

6.18.4.78 void ABA_LP::rowRealloc (intnewSize)

Performs a reallocation of the row space of the linear program.

Parameters:
newSizeThe new maximal number of rows of the linear program.

Reimplemented inABA_LPSUB.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.18 ABA_LP Class Reference 291

6.18.4.79 void ABA_LP::rows2cols (intnRow, ABA_ARRAY < ABA_ROW ∗ > & rows, ABA_ARRAY <

ABA_SPARVEC ∗ > & cols) [protected]

Computes the columnwise representation of the row matrix.

Parameters:
nRow The number of rows.

rows The array storing the rows.

cols An array holding pointers to sparse vectors which will contain the columnwise representation of the
constraint matrix defined byrows. The length of this array must be at least the number of columns.
The elements of the array must not be 0-pointers. Sparse vectors of sufficient length should be allocated
before the function is called. The size of these sparse vectors can be determined with the function
colsNnz().

6.18.4.80 void ABA_LP::sense (constABA_OPTSENSE& newSense) [inline]

Definition at line 710 of file lp.h.

6.18.4.81 ABA_OPTSENSEABA_LP::sense () const [inline]

Definition at line 705 of file lp.h.

6.18.4.82 int ABA_LP::setSimplexIterationLimit (int limit)

Changes the iteration limit of the Simplex algorithm.

Returns:
0 If the iteration limit could be set,
1 otherwise.

Parameters:
limit The new value of the iteration limit.

6.18.4.83 double ABA_LP::slack (intc) [inline, virtual]

Definition at line 817 of file lp.h.

6.18.4.84 ABA_SLACKSTAT::STATUS ABA_LP::slackStat (int i) [inline, virtual]

Definition at line 874 of file lp.h.

6.18.4.85 ABA_LP::SOLSTAT ABA_LP::slackStatus () const [inline]

Definition at line 845 of file lp.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

292 Reference Manual

6.18.4.86 double ABA_LP::uBound (inti) const [inline]

Reimplemented inABA_LPSUB.

Definition at line 756 of file lp.h.

6.18.4.87 double ABA_LP::value () const [inline, virtual]

Reimplemented inABA_LPSUB.

Definition at line 780 of file lp.h.

6.18.4.88 int ABA_LP::writeBasisMatrix (const char ∗ fileName)

Writes the complete basis of an optimal linear program to a file.

Returns:
0 If a basis is available and could be written,
1 otherwise.

Parameters:
fileName The name of the file the basis is written to.

6.18.4.89 double ABA_LP::xVal (int i) [inline, virtual]

Reimplemented inABA_LPSUB.

Definition at line 785 of file lp.h.

6.18.4.90 ABA_LP::SOLSTAT ABA_LP::xValStatus () const [inline]

Definition at line 825 of file lp.h.

6.18.4.91 double ABA_LP::yVal (intc) [inline, virtual]

Definition at line 809 of file lp.h.

6.18.4.92 ABA_LP::SOLSTAT ABA_LP::yValStatus () const [inline]

Definition at line 840 of file lp.h.

6.18.5 Friends And Related Function Documentation

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.18 ABA_LP Class Reference 293

6.18.5.1 ostream& operator<< (ostream & out, constABA_LP & rhs) [friend]

The output operator writes the objective function, followed by the constraints, the bounds on the columns and the
solution values (if available) to an output stream.

Every ten output columns we perform a line break for better readability. This has also the advantage that LP-solvers
with an input function requiring a limited length of a line (e.g., Cplex 255 characters) have a higher chance to read
a file generated by this output operator.

Returns:
A reference to the output stream.

Parameters:
out The output stream.

rhs The linear program being output.

6.18.6 Member Data Documentation

6.18.6.1 SOLSTAT ABA_LP::barXValStatus_ [protected]

Definition at line 655 of file lp.h.

6.18.6.2 SOLSTAT ABA_LP::basisStatus_ [protected]

This member becomesAvailableif the status of the variables and the slack variables of the optimal solution can be
accessed with the functionslpVarStat()andslackStat(), otherwise it has the valueMissing.

Definition at line 683 of file lp.h.

6.18.6.3 ABA_CPUTIMER ABA_LP::lpSolverTime_ [protected]

Definition at line 688 of file lp.h.

6.18.6.4 ABA_MASTER ∗ ABA_LP::master_ [protected]

A pointer to the corresponding master of the optimization.

Definition at line 644 of file lp.h.

6.18.6.5 intABA_LP::nOpt_ [protected]

The number of optimizations of the linear program.

Definition at line 687 of file lp.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

294 Reference Manual

6.18.6.6 OPTSTAT ABA_LP::optStat_ [protected]

The status of the linear program.

Definition at line 648 of file lp.h.

6.18.6.7 SOLSTAT ABA_LP::recoStatus_ [protected]

This member becomesAvailable if the reduced costs of the optimal solution can be accessed with the function
reco(), otherwise it has the valueMissing.

Definition at line 668 of file lp.h.

6.18.6.8 SOLSTAT ABA_LP::slackStatus_ [protected]

This member becomesAvailableif the values of the slack variables of the optimal solution can be accessed with
the functionslack(), otherwise it has the valueMissing.

Definition at line 675 of file lp.h.

6.18.6.9 SOLSTAT ABA_LP::xValStatus_ [protected]

This member becomesAvailableif the x -values of the optimal solution can be accessed with the function xVal(),
otherwise it has the valueMissing.

Definition at line 654 of file lp.h.

6.18.6.10 SOLSTAT ABA_LP::yValStatus_ [protected]

This member becomesAvailable if the values of the dual variables of the optimal solution can be accessed with
the functionyVal(), otherwise it has the valueMissing/.

Definition at line 662 of file lp.h.

The documentation for this class was generated from the following file:

• Include/abacus/lp.h

6.19 ABA_OSIIF Class Reference

#include <osiif.h>

Inheritance diagram for ABA_OSIIF::

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.19 ABA_OSIIF Class Reference 295

ABA_OSIIF

ABA_LP

ABA_ABACUSROOT

ABA_LPSUBOSI

Public Types

• enumSOLVERTYPE{ Exact, Approx }

Public Member Functions

• ABA_OSIIF (ABA_MASTER ∗master)

This constructor does not initialize the problem data of the linear program. It must be loaded later with the function
initialize().

• ABA_OSIIF (ABA_MASTER ∗master,ABA_OPTSENSEsense, int nRow, int maxRow, int nCol, int max-
Col, ABA_ARRAY< double> &obj, ABA_ARRAY< double> &lb, ABA_ARRAY< double> &ub,
ABA_ARRAY< ABA_ROW ∗ > &rows)

• virtual∼ABA_OSIIF ()

The destructor.

• SOLVERTYPE currentSolverType()
• OsiSolverInterface∗ osiLP()

Private Member Functions

• void freeDouble(const double∗&)
• void freeDouble(double∗&)
• void freeInt(int ∗&)
• void freeChar(char∗&)
• void freeChar(const char∗&)
• void freeStatus(CoinWarmStartBasis::Status∗&)
• virtual void _initialize (ABA_OPTSENSE sense, int nRow, int maxRow, int nCol, int maxCol,

ABA_ARRAY< double> &obj, ABA_ARRAY< double> &lBound, ABA_ARRAY< double> &u-
Bound,ABA_ARRAY< ABA_ROW ∗ > &rows)

Implements the corresponding pure virtual function of the base classLP and loads the linear program defined by the
following arguments to the solver.

• virtual void _loadBasis(ABA_ARRAY< ABA_LPVARSTAT::STATUS > &lpVarStat, ABA_ARRAY<

ABA_SLACKSTAT::STATUS> &slackStat)
• virtual ABA_OPTSENSE _sense() const
• virtual void_sense(constABA_OPTSENSE&newSense)

This version of the function_sense()changes the sense of the optimization.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

296 Reference Manual

• virtual int _nRow() const
• virtual int _maxRow() const
• virtual int _nCol() const
• virtual int _maxCol() const
• virtual double_obj (int i) const
• virtual double_lBound(int i) const
• virtual double_uBound(int i) const
• virtual double_rhs(int i) const
• virtual void_row(int i, ABA_ROW &r) const
• virtual int _nnz() const

Returns the number of nonzero elements in the constraint matrix (not including the right hand side).

• virtual OPTSTAT _primalSimplex()
• virtual OPTSTAT _dualSimplex()
• virtual OPTSTAT _barrier(bool doCrossover)
• virtual OPTSTAT _approx()
• virtual double_value() const
• virtual double_xVal (int i)
• virtual double_barXVal(int i)
• virtual double_reco(int i)
• virtual double_slack(int i)
• virtual double_yVal (int i)
• virtual ABA_LPVARSTAT::STATUS _lpVarStat(int i)
• virtual ABA_SLACKSTAT::STATUS _slackStat(int i)
• virtual int _getInfeas(int &infeasRow, int &infeasCol, double∗bInvRow)

Can be called if the last linear program has been solved with the dual simplexmethod and is infeasible. This function
is currently not supported by the interface.

• virtual void_remRows(ABA_BUFFER< int > &ind)
• virtual void_addRows(ABA_BUFFER< ABA_ROW ∗ > &newRows)
• virtual void_remCols(ABA_BUFFER< int > &vars)
• virtual void_addCols(ABA_BUFFER< ABA_COLUMN ∗ > &newVars)
• virtual void_changeRhs(ABA_ARRAY< double> &newRhs)
• virtual void_changeLBound(int i, double newLb)
• virtual void_changeUBound(int i, double newUb)
• virtual int _pivotSlackVariableIn(ABA_BUFFER< int > &rows)

Pivots the slack variables stored in the bufferrows into the basis. This function defines the pure virtual function of
the base classLP. This function is currently not supported by the interface.

• void getSol()

Extracts the solution, i.e., the value, the status, the values of the variables,slack variables, and dual variables, the
reduced costs, and the statuses of the variables and slack variables formthe internal solver data structure.

• charcsense2osi(ABA_CSENSE∗sense) const

Converts the ABACUS representation of the row sense to the Osi representation.

• ABA_CSENSE::SENSE osi2csense(char sense) const

Converts the OSI representation of the row sense to the ABACUS representation.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.19 ABA_OSIIF Class Reference 297

• CoinWarmStartBasis::StatuslpVarStat2osi(ABA_LPVARSTAT::STATUSstat) const

Converts the ABACUS variable status to OSI format.

• ABA_LPVARSTAT::STATUS osi2lpVarStat(CoinWarmStartBasis::Status stat) const

Converts the OSI variable status to ABACUS format.

• CoinWarmStartBasis::StatusslackStat2osi(ABA_SLACKSTAT::STATUSstat) const

Converts the ABACUS slack status to OSI format.

• ABA_SLACKSTAT::STATUS osi2slackStat(CoinWarmStartBasis::Status stat) const

Converts the OSI slack status to ABACUS format.

• OsiSolverInterface∗ getDefaultInterface()

Allocates an Open Solver Interface of type defaultOsiSolver.

• OsiSolverInterface∗ switchInterfaces(SOLVERTYPEnewMethod)

Switches between exact and approximate solvers.

• void loadDummyRow(OsiSolverInterface∗s2, const double∗lbounds, const double∗ubounds, const double
∗objectives)

Initializes the problem with a dummy row To be used with CPLEX if there are no rows.

• void _rowRealloc(int newSize)
• void _colRealloc(int newSize)
• virtual int _setSimplexIterationLimit(int limit)
• virtual int _getSimplexIterationLimit(int &limit)
• ABA_OSIIF (constABA_OSIIF &rhs)
• constABA_OSIIF & operator=(constABA_OSIIF &rhs)
• void convertSenseToBound(double inf, const char sense, const double right, const double range, double

&lower, double &upper) const

Private Attributes

• OsiSolverInterface∗ osiLP_
• ABA_LPMASTEROSI∗ lpMasterOsi_
• doublevalue_
• const double∗ xVal_

An array storing the values of the variables after the linear program has been optimized.

• const double∗ barXVal_
• const double∗ reco_

An array storing the values of the reduced costs after the linear program has been optimized.

• const double∗ yVal_

An array storing the values of the dual variables after the linear program has been optimized.

• const char∗ cStat_

An array storing the statuses of the variables after the linear program has been optimized.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

298 Reference Manual

• int numCols_

The number of columns currently used in the LP.

• int numRows_

The number of rows currently used in the LP.

• const char∗ rStat_

An array storing the statuses of the slack variables after the linear programhas been optimized.

• const double∗ rhs_

An array storing the right hand sides of the linear program.

• const double∗ rowactivity_

An array storing the row activity of the linear program.

• const char∗ rowsense_

An array storing the row senses of the linear program.

• const double∗ colupper_

An array storing the column upper bounds of the linear program.

• const double∗ collower_

An array storing the column lower bounds of the linear program.

• const double∗ objcoeff_

An array storing the objective function coefficients of the linear program.

• CoinWarmStartBasis∗ ws_

A warm start object storing information about a basis of the linear program.

• SOLVERTYPE currentSolverType_

The type of the current solver interface.

6.19.1 Member Enumeration Documentation

6.19.1.1 enumABA_OSIIF::SOLVERTYPE

The enumeration of possible solver types

Enumeration values:
Exact

Approx

Definition at line 85 of file osiif.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.19 ABA_OSIIF Class Reference 299

6.19.2 Constructor & Destructor Documentation

6.19.2.1 ABA_OSIIF::ABA_OSIIF (ABA_MASTER ∗ master)

This constructor does not initialize the problem data of thelinear program. It must be loaded later with the function
initialize().

Parameters:
master A pointer to the corresponding master of the optimization.

6.19.2.2 ABA_OSIIF::ABA_OSIIF (ABA_MASTER ∗ master, ABA_OPTSENSEsense, int nRow, int
maxRow, int nCol, int maxCol, ABA_ARRAY < double> & obj, ABA_ARRAY < double> & lb,
ABA_ARRAY < double> & ub, ABA_ARRAY < ABA_ROW ∗ > & rows)

A constructor with initialization.

Parameters:
master A pointer to the corresponding master of the optimization.

senseThe sense of the objective function.

nCol The number of columns (variables).

maxCol The maximal number of columns.

nRow The number of rows.

maxRow The maximal number of rows.

obj An array with the objective function coefficients.

lb An array with the lower bounds of the columns.

ub An array with the upper bounds of the columns.

rows An array storing the rows of the problem.

6.19.2.3 virtual ABA_OSIIF::∼ABA_OSIIF () [virtual]

The destructor.

6.19.2.4 ABA_OSIIF::ABA_OSIIF (const ABA_OSIIF & rhs) [private]

6.19.3 Member Function Documentation

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

300 Reference Manual

6.19.3.1 virtual void ABA_OSIIF::_addCols (ABA_BUFFER< ABA_COLUMN ∗ > & newVars)
[private, virtual]

Adds the columnsnewColsto the linear program.

It implements the pure virtual function of the base classLP.

ImplementsABA_LP.

6.19.3.2 virtual void ABA_OSIIF::_addRows (ABA_BUFFER< ABA_ROW ∗ > & newRows)
[private, virtual]

Adds therows to the linear program.

It implements the pure virtual function of the base classLP.

ImplementsABA_LP.

6.19.3.3 virtualOPTSTAT ABA_OSIIF::_approx () [private, virtual]

Calls an approximate method.

It implements the pure virtual function of the base classLP.

ImplementsABA_LP.

6.19.3.4 virtualOPTSTAT ABA_OSIIF::_barrier (bool doCrossover) [private, virtual]

Calls the barrier method.

It implements the pure virtual function of the base classLP.

ImplementsABA_LP.

6.19.3.5 virtual double ABA_OSIIF::_barXVal (int i) [private, virtual]

Returns the value of the columni.

It implements the pure virtual function of the base classLP.

ImplementsABA_LP.

6.19.3.6 virtual void ABA_OSIIF::_changeLBound (int i, doublenewLb) [private, virtual]

Sets the lower bound of columni to newLb.

It implements the pure virtual function of the base classLP.

ImplementsABA_LP.

6.19.3.7 virtual void ABA_OSIIF::_changeRhs (ABA_ARRAY < double > & newRhs) [private,
virtual]

Sets the right hand side of the linear program tonewRhs.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.19 ABA_OSIIF Class Reference 301

This array must have at least length of the number of rows. This function implements the pure virtual function of
the base classLP.

ImplementsABA_LP.

6.19.3.8 virtual void ABA_OSIIF::_changeUBound (int i, doublenewUb) [private, virtual]

Sets the upper bound of columni to newLb.

It implements the pure virtual function of the base classLP.

ImplementsABA_LP.

6.19.3.9 void ABA_OSIIF::_colRealloc (intnewSize) [private, virtual]

Reallocates the internal memory such thatnewSizecolumns can be stored. This function is obsolete, as memory
management is completely handled by Osi.

It implements the corresponding pure virtual function of the base classLP.

ImplementsABA_LP.

6.19.3.10 virtualOPTSTAT ABA_OSIIF::_dualSimplex () [private, virtual]

Calls the dual simplex method.

It implements the pure virtual function of the base classLP.

ImplementsABA_LP.

6.19.3.11 virtual int ABA_OSIIF::_getInfeas (int & infeasRow, int & infeasCol, double∗ bInvRow)
[private, virtual]

Can be called if the last linear program has been solved with the dual simplex method and is infeasible. This
function is currently not supported by the interface.

In this case it computes the infeasible basic variable or constraint and the corresponding rownInvRowof the basis
inverse. EitherinfeasRowor infeasColis nonnegative. Then this number refers to an infeasible variable or slack
variable, respectively. The function returns 0 if it is successful, 1 otherwise.

Currently this featureis not supported by the Open Solver Interface, therefore a call to this function always returns
an error status.

It implements the pure virtual function of the base classLP.

ImplementsABA_LP.

6.19.3.12 virtual int ABA_OSIIF::_getSimplexIterationL imit (int & limit) [private, virtual]

Defines a pure virtual function of the base classLP.

Returns:
0 If the iteration limit could be retrieved,
1 otherwise.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

302 Reference Manual

Parameters:
limit Stores the iteration limit if the return value is 0.

ImplementsABA_LP.

6.19.3.13 virtual void ABA_OSIIF::_initialize (ABA_OPTSENSEsense, int nRow, int maxRow, int
nCol, int maxCol, ABA_ARRAY < double > & obj, ABA_ARRAY < double > & lBound,
ABA_ARRAY < double> & uBound, ABA_ARRAY < ABA_ROW ∗ > & rows) [private,
virtual]

Implements the corresponding pure virtual function of the base classLP and loads the linear program defined by
the following arguments to the solver.

Parameters:
senseThe sense of the objective function.

nCol The number of columns (variables).

maxCol The maximal number of columns.

nRow The number of rows.

maxRow The maximal number of rows.

obj An array with the objective function coefficients.

lb An array with the lower bounds of the columns.

ub An array with the upper bounds of the columns.

rows An array storing the rows of the problem.

ImplementsABA_LP.

6.19.3.14 virtual double ABA_OSIIF::_lBound (int i) const [private, virtual]

Returns the lower bound of columni.

It implements the pure virtual function of the base classLP.

ImplementsABA_LP.

6.19.3.15 virtual void ABA_OSIIF::_loadBasis (ABA_ARRAY < ABA_LPVARSTAT::STATUS >

& lpVarStat, ABA_ARRAY < ABA_SLACKSTAT::STATUS > & slackStat) [private,
virtual]

Loads a basis to the solver

Parameters:
lpVarStat An array storing the status of the columns.

lpVarStat An array storing the status of the slack variables.

ImplementsABA_LP.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.19 ABA_OSIIF Class Reference 303

6.19.3.16 virtualABA_LPVARSTAT::STATUS ABA_OSIIF::_lpVarStat (int i) [private, virtual]

Returns the status of the columni.

It implements the pure virtual function of the base classLP.

ImplementsABA_LP.

6.19.3.17 virtual int ABA_OSIIF::_maxCol () const [private, virtual]

Returns the maximal number of columns of the linear program.

It implements the pure virtual function of the base classLP.

ImplementsABA_LP.

6.19.3.18 virtual int ABA_OSIIF::_maxRow () const [private, virtual]

Returns the maximal number of rows of the linear program.

It implements the pure virtual function of the base classLP.

ImplementsABA_LP.

6.19.3.19 virtual int ABA_OSIIF::_nCol () const [private, virtual]

Returns the number of columns of the linear program.

It implements the pure virtual function of the base classLP.

ImplementsABA_LP.

6.19.3.20 virtual int ABA_OSIIF::_nnz () const [private, virtual]

Returns the number of nonzero elements in the constraint matrix (not including the right hand side).

It implements the pure virtual function of the base classLP.

ImplementsABA_LP.

6.19.3.21 virtual int ABA_OSIIF::_nRow () const [private, virtual]

Returns the number of rows of the linear program.

It implements the pure virtual function of the base classLP.

ImplementsABA_LP.

6.19.3.22 virtual double ABA_OSIIF::_obj (int i) const [private, virtual]

Returns the objective function coefficient of columni.

It implements the pure virtual function of the base classLP.

ImplementsABA_LP.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

304 Reference Manual

6.19.3.23 virtual int ABA_OSIIF::_pivotSlackVariableIn (ABA_BUFFER< int > & rows) [private,
virtual]

Pivots the slack variables stored in the bufferrows into the basis. This function defines the pure virtual function of
the base classLP. This function is currently not supported by the interface.

Returns:
0 All variables could be pivoted in,
1 otherwise.

Parameters:
rows The numbers of the slack variables that should be pivoted in.

ImplementsABA_LP.

6.19.3.24 virtualOPTSTAT ABA_OSIIF::_primalSimplex () [private, virtual]

Calls the primal simplex method.

It implements the pure virtual function of the base classLP.

ImplementsABA_LP.

6.19.3.25 virtual double ABA_OSIIF::_reco (int i) [private, virtual]

Returns the reduced cost of the columni.

It implements the pure virtual function of the base classLP.

ImplementsABA_LP.

6.19.3.26 virtual void ABA_OSIIF::_remCols (ABA_BUFFER< int > & vars) [private, virtual]

Removes the columns listed invars.

It implements the pure virtual function of the base classLP.

ImplementsABA_LP.

6.19.3.27 virtual void ABA_OSIIF::_remRows (ABA_BUFFER< int > & ind) [private, virtual]

Removes the rows listed inind.

It implements the pure virtual function of the base classLP.

ImplementsABA_LP.

6.19.3.28 virtual double ABA_OSIIF::_rhs (int i) const [private, virtual]

Returns the right hand side of rowi.

It implements the pure virtual function of the base classLP.

ImplementsABA_LP.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.19 ABA_OSIIF Class Reference 305

6.19.3.29 virtual void ABA_OSIIF::_row (int i, ABA_ROW & r) const [private, virtual]

Stores a copy of rowi in r.

It implements the pure virtual function of the base classLP.

ImplementsABA_LP.

6.19.3.30 void ABA_OSIIF::_rowRealloc (intnewSize) [private, virtual]

Reallocates the internal memory such that newSize rows can be stored. This function is obsolete, as memory
management is completely handled by Osi.

It implements the corresponding pure virtual function of the base classLP. If a reallocation is performed in the
base classLP, we reinitialize the internal data structure. Actually this reinitialization is redundant since it would
be performed automatically ifaddRows()or addCols()fail. However, to be consistent, and if a reallocation is
performed to decrease the size of the arrays we callreinitialize().

ImplementsABA_LP.

6.19.3.31 virtual void ABA_OSIIF::_sense (constABA_OPTSENSE& newSense) [private,
virtual]

This version of the function_sense()changes the sense of the optimization.

It implements the pure virtual function of the base classLP.

ImplementsABA_LP.

6.19.3.32 virtualABA_OPTSENSEABA_OSIIF::_sense () const [private, virtual]

Returns the sense of the optimization.

It implements the pure virtual function of the base classLP.

ImplementsABA_LP.

6.19.3.33 virtual int ABA_OSIIF::_setSimplexIterationL imit (int limit) [private, virtual]

Changes the iteration limit of the Simplex algorithm.

This function defines a pure virtual function of the base class LP.

Returns:
0 If the iteration limit could be set,
1 otherwise.

Parameters:
limit The new value of the iteration limit.

ImplementsABA_LP.

6.19.3.34 virtual double ABA_OSIIF::_slack (int i) [private, virtual]

Returns the value of the slack column of the rowi.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

306 Reference Manual

It implements the pure virtual function of the base classLP.

ImplementsABA_LP.

6.19.3.35 virtualABA_SLACKSTAT::STATUS ABA_OSIIF::_slackStat (int i) [private, virtual]

Returns the status of the slack columni.

It implements the pure virtual function of the base classLP.

ImplementsABA_LP.

6.19.3.36 virtual double ABA_OSIIF::_uBound (int i) const [private, virtual]

Returns the upper bound of columni.

It implements the pure virtual function of the base classLP.

ImplementsABA_LP.

6.19.3.37 virtual double ABA_OSIIF::_value () const [private, virtual]

Returns the optimum value of the linear program.

It implements the pure virtual function of the base classLP.

ImplementsABA_LP.

6.19.3.38 virtual double ABA_OSIIF::_xVal (int i) [private, virtual]

Returns the value of the columni.

It implements the pure virtual function of the base classLP.

ImplementsABA_LP.

6.19.3.39 virtual double ABA_OSIIF::_yVal (int i) [private, virtual]

Returns the value of the dual column of the rowi.

It implements the pure virtual function of the base classLP.

ImplementsABA_LP.

6.19.3.40 void ABA_OSIIF::convertSenseToBound (doubleinf , const charsense, const doubleright, const
double range, double & lower, double & upper) const [inline, private]

Definition at line 530 of file osiif.h.

6.19.3.41 char ABA_OSIIF::csense2osi (ABA_CSENSE∗ sense) const [private]

Converts the ABACUS representation of the row sense to the Osi representation.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.19 ABA_OSIIF Class Reference 307

6.19.3.42 SOLVERTYPE ABA_OSIIF::currentSolverType () [inline]

Definition at line 87 of file osiif.h.

6.19.3.43 void ABA_OSIIF::freeChar (const char∗&) [private]

6.19.3.44 void ABA_OSIIF::freeChar (char∗&) [private]

6.19.3.45 void ABA_OSIIF::freeDouble (double∗&) [private]

6.19.3.46 void ABA_OSIIF::freeDouble (const double∗&) [private]

6.19.3.47 void ABA_OSIIF::freeInt (int ∗&) [private]

6.19.3.48 void ABA_OSIIF::freeStatus (CoinWarmStartBasis::Status∗&) [private]

6.19.3.49 OsiSolverInterface∗ ABA_OSIIF::getDefaultInterface () [private]

Allocates an Open Solver Interface of type defaultOsiSolver.

6.19.3.50 void ABA_OSIIF::getSol () [private]

Extracts the solution, i.e., the value, the status, the values of the variables, slack variables, and dual variables, the
reduced costs, and the statuses of the variables and slack variables form the internal solver data structure.

6.19.3.51 void ABA_OSIIF::loadDummyRow (OsiSolverInterface∗ s2, const double∗ lbounds, const
double∗ ubounds, const double∗ objectives) [private]

Initializes the problem with a dummy row To be used with CPLEXif there are no rows.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

308 Reference Manual

6.19.3.52 CoinWarmStartBasis::Status ABA_OSIIF::lpVarStat2osi (ABA_LPVARSTAT::STATUS stat)
const [private]

Converts the ABACUS variable status to OSI format.

6.19.3.53 constABA_OSIIF & ABA_OSIIF::operator= (const ABA_OSIIF & rhs) [private]

6.19.3.54 ABA_CSENSE::SENSEABA_OSIIF::osi2csense (charsense) const [private]

Converts the OSI representation of the row sense to the ABACUS representation.

6.19.3.55 ABA_LPVARSTAT::STATUS ABA_OSIIF::osi2lpVarStat (CoinWarmStartBasis::Status stat)
const [private]

Converts the OSI variable status to ABACUS format.

6.19.3.56 ABA_SLACKSTAT::STATUS ABA_OSIIF::osi2slackStat (CoinWarmStartBasis::Statusstat)
const [private]

Converts the OSI slack status to ABACUS format.

6.19.3.57 OsiSolverInterface∗ ABA_OSIIF::osiLP () [inline]

Definition at line 559 of file osiif.h.

6.19.3.58 CoinWarmStartBasis::Status ABA_OSIIF::slackStat2osi (ABA_SLACKSTAT::STATUS stat)
const [private]

Converts the ABACUS slack status to OSI format.

6.19.3.59 OsiSolverInterface∗ ABA_OSIIF::switchInterfaces (SOLVERTYPE newMethod) [private]

Switches between exact and approximate solvers.

6.19.4 Member Data Documentation

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.19 ABA_OSIIF Class Reference 309

6.19.4.1 const double∗ ABA_OSIIF::barXVal_ [private]

Definition at line 464 of file osiif.h.

6.19.4.2 const double∗ ABA_OSIIF::collower_ [private]

An array storing the column lower bounds of the linear program.

Definition at line 512 of file osiif.h.

6.19.4.3 const double∗ ABA_OSIIF::colupper_ [private]

An array storing the column upper bounds of the linear program.

Definition at line 508 of file osiif.h.

6.19.4.4 const char∗ ABA_OSIIF::cStat_ [private]

An array storing the statuses of the variables after the linear program has been optimized.

Definition at line 479 of file osiif.h.

6.19.4.5 SOLVERTYPE ABA_OSIIF::currentSolverType_ [private]

The type of the current solver interface.

Definition at line 524 of file osiif.h.

6.19.4.6 ABA_LPMASTEROSI ∗ ABA_OSIIF::lpMasterOsi_ [private]

Definition at line 454 of file osiif.h.

6.19.4.7 intABA_OSIIF::numCols_ [private]

The number of columns currently used in the LP.

Definition at line 483 of file osiif.h.

6.19.4.8 intABA_OSIIF::numRows_ [private]

The number of rows currently used in the LP.

Definition at line 487 of file osiif.h.

6.19.4.9 const double∗ ABA_OSIIF::objcoeff_ [private]

An array storing the objective function coefficients of the linear program.

Definition at line 516 of file osiif.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

310 Reference Manual

6.19.4.10 OsiSolverInterface∗ ABA_OSIIF::osiLP_ [private]

Definition at line 100 of file osiif.h.

6.19.4.11 const double∗ ABA_OSIIF::reco_ [private]

An array storing the values of the reduced costs after the linear program has been optimized.

Definition at line 469 of file osiif.h.

6.19.4.12 const double∗ ABA_OSIIF::rhs_ [private]

An array storing the right hand sides of the linear program.

Definition at line 496 of file osiif.h.

6.19.4.13 const double∗ ABA_OSIIF::rowactivity_ [private]

An array storing the row activity of the linear program.

Definition at line 500 of file osiif.h.

6.19.4.14 const char∗ ABA_OSIIF::rowsense_ [private]

An array storing the row senses of the linear program.

Definition at line 504 of file osiif.h.

6.19.4.15 const char∗ ABA_OSIIF::rStat_ [private]

An array storing the statuses of the slack variables after the linear program has been optimized.

Definition at line 492 of file osiif.h.

6.19.4.16 doubleABA_OSIIF::value_ [private]

The value of the optimal solution.

Definition at line 458 of file osiif.h.

6.19.4.17 CoinWarmStartBasis∗ ABA_OSIIF::ws_ [private]

A warm start object storing information about a basis of the linear program.

Definition at line 520 of file osiif.h.

6.19.4.18 const double∗ ABA_OSIIF::xVal_ [private]

An array storing the values of the variables after the linearprogram has been optimized.

Definition at line 463 of file osiif.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.20 ABA_LPSUB Class Reference 311

6.19.4.19 const double∗ ABA_OSIIF::yVal_ [private]

An array storing the values of the dual variables after the linear program has been optimized.

Definition at line 474 of file osiif.h.

The documentation for this class was generated from the following file:

• Include/abacus/osiif.h

6.20 ABA_LPSUB Class Reference

class is derived from the classLP to implement the linear programming relaxations of a subproblem. We require
this class as the ABA_CONSTRAINT/ABA_VARIABLE format of the constraints/variables has to be transformed
to the ABA_ROW/ABA_COLUMN format required by the classLP.

#include <lpsub.h>

Inheritance diagram for ABA_LPSUB::

ABA_LPSUB

ABA_LP

ABA_ABACUSROOT

ABA_LPSUBOSI

Public Member Functions

• ABA_LPSUB (ABA_MASTER ∗master, constABA_SUB ∗sub)
• virtual∼ABA_LPSUB ()

The destructor deletes the components ofinfeasCons_since they might have been allocated in the constructor and
ABA_SUB::initializeLp()deletes after having tried to add variables restoring feasibility immediately ABA_LPSUB.
Afterwards the constructor of ABA_LPSUB is called again.

• constABA_SUB ∗ sub() const
• int trueNCol() const
• int trueNnz() const
• doublelBound(int i) const

We have to redefine the functionlBound(i)since variables may have been eliminated.

• doubleuBound(int i) const

We have to redefine the functionuBound(i)since variables may have been eliminated.

• virtual doublevalue() const

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

312 Reference Manual

Since variables might be eliminated we have to add to the solution value of the LP-solver the objective function part
of the eliminated variables, to get the right value ofvalue().

• virtual doublexVal (int i)

We have to redefine the functionxVal(i) since variables may have been eliminated.

• virtual doublebarXVal (int i)

We have to redefine the functionbarXVal(i) since variables may have been eliminated.

• virtual doublereco(int i)
• virtual ABA_LPVARSTAT::STATUS lpVarStat(int i)
• virtual int getInfeas(int &infeasCon, int &infeasVar, double∗bInvRow)

Is called if the last linear program has been solved with the dual simplex method and is infeasible.

• virtual boolinfeasible() const
• ABA_BUFFER< ABA_INFEASCON∗ > ∗ infeasCon()
• virtual void loadBasis(ABA_ARRAY< ABA_LPVARSTAT::STATUS > &lpVarStat, ABA_ARRAY<

ABA_SLACKSTAT::STATUS> &slackStat)

Protected Member Functions

• virtual void initialize ()

The functioninitialize() has to be called in the constructor of the class derived from this class and froma class
implementing an LP-solver.

Private Member Functions

• virtual OPTSTAT optimize(METHOD method)
• virtual void removeCons(ABA_BUFFER< int > &ind)
• virtual void removeVars(ABA_BUFFER< int > &vars)
• virtual voidaddCons(ABA_BUFFER< ABA_CONSTRAINT∗ > &newCons)
• virtual void addVars (ABA_BUFFER< ABA_VARIABLE ∗ > &vars, ABA_BUFFER<

ABA_FSVARSTAT ∗ > &fsVarStat, ABA_BUFFER< double > &lb, ABA_BUFFER< double >

&ub)
• virtual voidchangeLBound(int i, double newLb)
• virtual voidchangeUBound(int i, double newUb)
• virtual voidvarRealloc(int newSize)
• virtual voidconRealloc(int newSize)
• void constraint2row (ABA_BUFFER< ABA_CONSTRAINT ∗ > &newCons, ABA_BUFFER<

ABA_ROW ∗ > &newRows)
• booleliminable(int i) const
• booleliminated(int i) const

Returnstrue if the variablei is actually eliminated from theLP.

• virtual doubleelimVal (int i) const
• virtual doubleelimVal (ABA_FSVARSTAT∗stat, double lb, double ub) const
• void initialize (ABA_OPTSENSEsense, int nRow, int maxRow, int nCol, int maxCol,ABA_ARRAY< dou-

ble > &obj, ABA_ARRAY< double> &lBound, ABA_ARRAY< double> &uBound,ABA_ARRAY<

ABA_ROW ∗ > &rows)

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.20 ABA_LPSUB Class Reference 313

• void initialize (ABA_OPTSENSEsense, int nRow, int maxRow, int nCol, int maxCol,ABA_ARRAY< dou-
ble > &obj, ABA_ARRAY< double> &lBound, ABA_ARRAY< double> &uBound,ABA_ARRAY<

ABA_ROW ∗ > &rows, ABA_ARRAY< ABA_LPVARSTAT::STATUS > &lpVarStat, ABA_ARRAY<

ABA_SLACKSTAT::STATUS> &slackStat)

This version of the functioninitialize() performs like its previous version, but also initializes the basis with the
arguments:.

• int nCol () const
• int maxCol() const
• int nnz() const
• doubleobj (int i) const
• void rowRealloc(int newSize)
• void colRealloc(int newSize)
• ABA_LPSUB (constABA_LPSUB &rhs)
• constABA_LPSUB & operator=(constABA_LPSUB &rhs)

Private Attributes

• constABA_SUB ∗ sub_
• ABA_ARRAY< int > orig2lp_

After the elimination of variables the internal variables are again numbered consecutively starting with 0.orig2lp_-
[i] is the internal number of the variablei. This is-1 if the variable is eliminated.

• ABA_ARRAY< int > lp2orig_
• ABA_BUFFER< ABA_INFEASCON∗ > infeasCons_
• doublevalueAdd_

The constant which has been added to the objective function value due to the elimination of variables.

• int nOrigVar_

Friends

• classABA_SUB
• classABA_SETBRANCHRULE
• classABA_BOUNDBRANCHRULE
• classABA_VALBRANCHRULE
• classABA_CONBRANCHRULE
• classCOPBRANCHRULE

6.20.1 Detailed Description

class is derived from the classLP to implement the linear programming relaxations of a subproblem. We require
this class as the ABA_CONSTRAINT/ABA_VARIABLE format of the constraints/variables has to be transformed
to the ABA_ROW/ABA_COLUMN format required by the classLP.

Definition at line 57 of file lpsub.h.

6.20.2 Constructor & Destructor Documentation

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

314 Reference Manual

6.20.2.1 ABA_LPSUB::ABA_LPSUB (ABA_MASTER ∗ master, constABA_SUB ∗ sub)

The constructor.

Parameters:
master A pointer to the corresponding master of the optimization.

sub The subproblem of which the LP-relaxation is solved.

6.20.2.2 virtual ABA_LPSUB::∼ABA_LPSUB () [virtual]

The destructor deletes the components ofinfeasCons_since they might have been allocated in the constructor
andABA_SUB::initializeLp() deletes after having tried to add variables restoring feasibility immediately ABA_-
LPSUB. Afterwards the constructor of ABA_LPSUB is called again.

6.20.2.3 ABA_LPSUB::ABA_LPSUB (constABA_LPSUB & rhs) [private]

6.20.3 Member Function Documentation

6.20.3.1 virtual void ABA_LPSUB::addCons (ABA_BUFFER< ABA_CONSTRAINT ∗ > & newCons)
[private, virtual]

Adds the constraintsnewConsto the linear program.

6.20.3.2 virtual void ABA_LPSUB::addVars (ABA_BUFFER< ABA_VARIABLE ∗ > & vars,
ABA_BUFFER< ABA_FSVARSTAT ∗ > & fsVarStat, ABA_BUFFER< double > & lb,
ABA_BUFFER< double> & ub) [private, virtual]

Parameters:
vars The new variables which are added to the linear program.

fsVarstat The status of fixing/setting of the new variables.

lb The lower bounds of the new variables.

ub The upper bounds of the new variables.

6.20.3.3 virtual double ABA_LPSUB::barXVal (int i) [virtual]

We have to redefine the functionbarXVal(i)since variables may have been eliminated.

Returns:
Thex -value of variablei after the solution of the linear program before crossing over to a basic solution.

Reimplemented fromABA_LP.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.20 ABA_LPSUB Class Reference 315

6.20.3.4 virtual void ABA_LPSUB::changeLBound (int i, doublenewLb) [private, virtual]

Sets the lower bound of variablei to newLb.

It is not allowed to change the lower bound of an eliminated variable. This will cause a run-time error.

Reimplemented fromABA_LP.

6.20.3.5 virtual void ABA_LPSUB::changeUBound (inti, doublenewUb) [private, virtual]

Sets the upper bound of variablei to newUb.

It is not allowed to change the upper bound of an eliminated variable. This will cause a run-time error.

Reimplemented fromABA_LP.

6.20.3.6 void ABA_LPSUB::colRealloc (intnewSize) [private]

Performs a reallocation of the column space of the linear program.

Parameters:
newSizeThe new maximal number of columns of the linear program.

Reimplemented fromABA_LP.

6.20.3.7 virtual void ABA_LPSUB::conRealloc (intnewSize) [private, virtual]

Sets the maximal number of constraints tonewSize.

6.20.3.8 void ABA_LPSUB::constraint2row (ABA_BUFFER< ABA_CONSTRAINT ∗ > & newCons,
ABA_BUFFER< ABA_ROW ∗ > & newRows) [private]

Generates the row format of the constraintconsand stores it inrows.

6.20.3.9 bool ABA_LPSUB::eliminable (inti) const [private]

Returnstrue if the function can be eliminated.

This function may be only applied to variables which are fixedor set! It is sufficient for turning off any variable
elimination to return alwaysfalseby this function.

6.20.3.10 bool ABA_LPSUB::eliminated (inti) const [inline, private]

Returnstrue if the variablei is actually eliminated from theLP.

This function can give different results than the functioneliminate(i)since the condition to eliminate a variable
might have becometrueafter theLP has been set up.

Definition at line 362 of file lpsub.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

316 Reference Manual

6.20.3.11 virtual double ABA_LPSUB::elimVal (ABA_FSVARSTAT ∗ stat, double lb, doubleub) const
[private, virtual]

Returns the value a variable is fixed or set to.

Parameters:
fsVarStat A pointer to the status of the variable.

lb The lower bound of the variable.

ub The upper bound of the variable.

6.20.3.12 virtual double ABA_LPSUB::elimVal (int i) const [private, virtual]

Returns the value the variablei to which it is fixed or set to.

The value of an eliminated variable is defined by the bound to which it is fixed or set. There is no reason to
distinguish betweensub_andmaster_in theswitchstatement, since both values should be equal.

6.20.3.13 virtual int ABA_LPSUB::getInfeas (int & infeasCon, int & infeasVar, double∗ bInvRow)
[virtual]

Is called if the last linear program has been solved with the dual simplex method and is infeasible.

In this case it computes the infeasible basic variable or constraint and the corresponding row of the basis inverse.

Returns:
0 If no error occurs,
1 otherwise.

Parameters:
infeasCon If nonnegative, this is the number of the infeasible slack variable.

infeasVar If nonnegative, this is the number of the infeasible structural variable. Note, eitherinfeasConor
infeasVaris nonnegative.

bInvRow An array containing the corresponding row of the basis inverse.

Reimplemented fromABA_LP.

6.20.3.14 ABA_BUFFER< ABA_INFEASCON ∗ > ∗ ABA_LPSUB::infeasCon () [inline]

return A pointer to the buffer holding the infeasible constraints.

Definition at line 383 of file lpsub.h.

6.20.3.15 virtual bool ABA_LPSUB::infeasible () const [virtual]

Returns:
true If theLP turned out to be infeasible either if the base classLP detected an infeasibility during the solution
of the linear program or infeasible constraints have been memorized during the construction of the LP or
during the addition of constraints, }
false otherwise.

Reimplemented fromABA_LP.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.20 ABA_LPSUB Class Reference 317

6.20.3.16 void ABA_LPSUB::initialize (ABA_OPTSENSEsense, int nRow, int maxRow, int nCol,
int maxCol, ABA_ARRAY < double > & obj, ABA_ARRAY < double > & lBound,
ABA_ARRAY < double> & uBound, ABA_ARRAY < ABA_ROW ∗ > & rows, ABA_ARRAY <

ABA_LPVARSTAT::STATUS > & lpVarStat, ABA_ARRAY < ABA_SLACKSTAT::STATUS >

& slackStat) [private]

This version of the functioninitialize() performs like its previous version, but also initializes the basis with the
arguments:.

Parameters:
lpVarStat An array storing the status of the columns.

slackStat An array storing the status of the slack variables.

Reimplemented fromABA_LP.

6.20.3.17 void ABA_LPSUB::initialize (ABA_OPTSENSEsense, int nRow, int maxRow, int nCol, int
maxCol, ABA_ARRAY < double> & obj, ABA_ARRAY < double> & lBound, ABA_ARRAY <

double> & uBound, ABA_ARRAY < ABA_ROW ∗ > & rows) [private]

Loads the linear program defined by its arguments.

We do not perform the initialization via arguments of a constructor, since for the most frequent application of
linear programs within , the solution of the linear programming relaxations in the subproblems, the problem data
is preprocessed before it is loaded. Only after the preprocessing in the constructor of the derived class, we can call
initialize().

Of course, it would be possible to provide an extra constructor with automatic initialization if required.

Parameters:
senseThe sense of the objective function.

nCol The number of columns (variables).

maxCol The maximal number of columns.

nRow The number of rows.

maxRow The maximal number of rows.

obj An array with the objective function coefficients.

lb An array with the lower bounds of the columns.

ub An array with the upper bounds of the columns.

rows An array storing the rows of the problem.

Reimplemented fromABA_LP.

6.20.3.18 virtual void ABA_LPSUB::initialize () [protected, virtual]

The functioninitialize() has to be called in the constructor of the class derived from this class and from a class
implementing an LP-solver.

This function will pass the linear program of the associatedsubproblem to the solver.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

318 Reference Manual

6.20.3.19 double ABA_LPSUB::lBound (inti) const

We have to redefine the functionlBound(i)since variables may have been eliminated.

Returns:
The lower bound of variablei. If a variable is eliminated, we return the value the eliminated variable is fixed
or set to.

Parameters:
i The number of a variable.

Reimplemented fromABA_LP.

6.20.3.20 virtual void ABA_LPSUB::loadBasis (ABA_ARRAY < ABA_LPVARSTAT::STATUS > &
lpVarStat, ABA_ARRAY < ABA_SLACKSTAT::STATUS > & slackStat) [virtual]

Loads a new basis for the linear program.

The function redefines a virtual function of the base classLP. Eliminated variables have to be considered when the
basis is loaded.

Parameters:
lpVarStat An array storing the status of the columns.

slackStat An array storing the status of the slack variables.

Reimplemented fromABA_LP.

6.20.3.21 virtualABA_LPVARSTAT::STATUS ABA_LPSUB::lpVarStat (int i) [virtual]

Returns:
The status of the variable in the linear program. If the variable i is eliminated, then
ABA_LPVARSTAT::Eliminatedis returned.

Reimplemented fromABA_LP.

6.20.3.22 int ABA_LPSUB::maxCol () const [private]

Reimplemented fromABA_LP.

6.20.3.23 int ABA_LPSUB::nCol () const [private]

Reimplemented fromABA_LP.

6.20.3.24 int ABA_LPSUB::nnz () const [private]

Reimplemented fromABA_LP.

6.20.3.25 double ABA_LPSUB::obj (inti) const [private]

Reimplemented fromABA_LP.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.20 ABA_LPSUB Class Reference 319

6.20.3.26 constABA_LPSUB& ABA_LPSUB::operator= (const ABA_LPSUB & rhs) [private]

6.20.3.27 virtualOPTSTAT ABA_LPSUB::optimize (METHOD method) [private, virtual]

Performs the optimization of the linear program with methodmethod.

This function redefines a virtual function of the base classLP.

We have to reimplementoptimize()since there might be infeasible constraints. If a linear program turns out
to be infeasible but has not been solved with the dual simplexmethod we solve it again to find a dual feasible
basis which can be used to determine inactive variables restoring feasibility. Before the optimization can be
performed the infeasible constraints must be removed with the function_initMakeFeas(), then theLP should
be deleted and reconstructed. This is done by the functionsolveLp()in the cutting plane algorithm of the class
ABA_SUB.

Reimplemented fromABA_LP.

6.20.3.28 virtual double ABA_LPSUB::reco (inti) [virtual]

We define the reduced costs of eliminated variables as 0.

Returns:
The reduced cost of variablei.

Reimplemented fromABA_LP.

6.20.3.29 virtual void ABA_LPSUB::removeCons (ABA_BUFFER< int > & ind) [private,
virtual]

Removes all constraints listed in the bufferind from the linear program.

6.20.3.30 virtual void ABA_LPSUB::removeVars (ABA_BUFFER< int > & vars) [private,
virtual]

Removes the variables with names given invars from the linear program.

6.20.3.31 void ABA_LPSUB::rowRealloc (intnewSize) [private]

Performs a reallocation of the row space of the linear program.

Parameters:
newSizeThe new maximal number of rows of the linear program.

Reimplemented fromABA_LP.

6.20.3.32 constABA_SUB ∗ ABA_LPSUB::sub () const [inline]

Definition at line 357 of file lpsub.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

320 Reference Manual

6.20.3.33 int ABA_LPSUB::trueNCol () const [inline]

Returns:
The number of columns which are passed to the LP-solver, i.e., the number of active variables of the subprob-
lem minus the number of eliminated variables.

Definition at line 368 of file lpsub.h.

6.20.3.34 int ABA_LPSUB::trueNnz () const [inline]

Returns:
The number of nonzeros which are currently present in the constraint matrix of the LP-solver.

Definition at line 373 of file lpsub.h.

6.20.3.35 double ABA_LPSUB::uBound (inti) const

We have to redefine the functionuBound(i)since variables may have been eliminated.

Returns:
The upper bound of variablei. If a variable is eliminated, we return the value the eliminated variable is fixed
or set to.

Parameters:
i The number of a variable.∗

Reimplemented fromABA_LP.

6.20.3.36 double ABA_LPSUB::value () const[inline, virtual]

Since variables might be eliminated we have to add to the solution value of the LP-solver the objective function
part of the eliminated variables, to get the right value ofvalue().

Returns:
The objective function value of the linear program.

Reimplemented fromABA_LP.

Definition at line 378 of file lpsub.h.

6.20.3.37 virtual void ABA_LPSUB::varRealloc (int newSize) [private, virtual]

Sets the maximal number of variables tonewSize.

6.20.3.38 virtual double ABA_LPSUB::xVal (int i) [virtual]

We have to redefine the functionxVal(i) since variables may have been eliminated.

Returns:
Thex -value of variablei after the solution of the linear program.

Reimplemented fromABA_LP.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.20 ABA_LPSUB Class Reference 321

6.20.4 Friends And Related Function Documentation

6.20.4.1 friend classABA_BOUNDBRANCHRULE [friend]

Definition at line 60 of file lpsub.h.

6.20.4.2 friend classABA_CONBRANCHRULE [friend]

Definition at line 62 of file lpsub.h.

6.20.4.3 friend classABA_SETBRANCHRULE [friend]

Definition at line 59 of file lpsub.h.

6.20.4.4 friend classABA_SUB [friend]

Definition at line 58 of file lpsub.h.

6.20.4.5 friend classABA_VALBRANCHRULE [friend]

Definition at line 61 of file lpsub.h.

6.20.4.6 friend class COPBRANCHRULE [friend]

Definition at line 63 of file lpsub.h.

6.20.5 Member Data Documentation

6.20.5.1 ABA_BUFFER<ABA_INFEASCON∗> ABA_LPSUB::infeasCons_ [private]

Buffer storing the infeasible constraints found be the constructor.

Definition at line 342 of file lpsub.h.

6.20.5.2 ABA_ARRAY <int> ABA_LPSUB::lp2orig_ [private]

Orignial number of a (non-eliminated) variable.

Definition at line 338 of file lpsub.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

322 Reference Manual

6.20.5.3 intABA_LPSUB::nOrigVar_ [private]

The number of original variables of the linear program.

Definition at line 351 of file lpsub.h.

6.20.5.4 ABA_ARRAY <int> ABA_LPSUB::orig2lp_ [private]

After the elimination of variables the internal variables are again numbered consecutively starting with 0.orig2lp_-
[i] is the internal number of the variablei. This is-1 if the variable is eliminated.

Definition at line 334 of file lpsub.h.

6.20.5.5 constABA_SUB∗ ABA_LPSUB::sub_ [private]

A pointer to the corresponding subproblem.

Definition at line 327 of file lpsub.h.

6.20.5.6 doubleABA_LPSUB::valueAdd_ [private]

The constant which has been added to the objective function value due to the elimination of variables.

Definition at line 347 of file lpsub.h.

The documentation for this class was generated from the following file:

• Include/abacus/lpsub.h

6.21 ABA_LPSUBOSI Class Reference

#include <lpsubosi.h>

Inheritance diagram for ABA_LPSUBOSI::

ABA_LPSUBOSI

ABA_LPSUB ABA_OSIIF

ABA_LP ABA_LP

ABA_ABACUSROOT ABA_ABACUSROOT

Public Member Functions

• ABA_LPSUBOSI(ABA_MASTER ∗master,ABA_SUB ∗sub)

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.21 ABA_LPSUBOSI Class Reference 323

The constructor calls the functioninitialize() of the base classABA_LPSUB, which sets up the linear program and
passes the data to the LP-solver.

• virtual∼ABA_LPSUBOSI()

The destructor.

Private Member Functions

• ABA_LPSUBOSI(constABA_LPSUBOSI&rhs)
• constABA_LPSUBOSI& operator=(constABA_LPSUBOSI&rhs)

6.21.1 Constructor & Destructor Documentation

6.21.1.1 ABA_LPSUBOSI::ABA_LPSUBOSI (ABA_MASTER ∗ master, ABA_SUB ∗ sub)

The constructor calls the functioninitialize() of the base classABA_LPSUB, which sets up the linear programand
passes the data to the LP-solver.

Parameters:
master A pointer to the corresponding master of the optimization.

sub The subproblem of which the LP-relaxation is solved.

6.21.1.2 virtual ABA_LPSUBOSI::∼ABA_LPSUBOSI () [virtual]

The destructor.

6.21.1.3 ABA_LPSUBOSI::ABA_LPSUBOSI (constABA_LPSUBOSI & rhs) [private]

6.21.2 Member Function Documentation

6.21.2.1 constABA_LPSUBOSI& ABA_LPSUBOSI::operator= (const ABA_LPSUBOSI & rhs)
[private]

The documentation for this class was generated from the following file:

• Include/abacus/lpsubosi.h

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

324 Reference Manual

6.22 ABA_LPMASTER Class Reference

The class ABA_LPMASTER is an abstract base class. A LP solverspecific master class has to be derived from
this class.

#include <lpmaster.h>

Inheritance diagram for ABA_LPMASTER::

ABA_LPMASTER

ABA_ABACUSROOT

ABA_LPMASTEROSI

Public Member Functions

• ABA_LPMASTER (ABA_MASTER ∗master)
• virtual∼ABA_LPMASTER ()
• virtual void initializeLpParameters()=0
• virtual voidsetDefaultLpParameters()=0
• virtual voidprintLpParameters()=0
• virtual voidoutputLpStatistics()=0

Protected Attributes

• ABA_MASTER ∗ master_

6.22.1 Detailed Description

The class ABA_LPMASTER is an abstract base class. A LP solverspecific master class has to be derived from
this class.

Definition at line 40 of file lpmaster.h.

6.22.2 Constructor & Destructor Documentation

6.22.2.1 ABA_LPMASTER::ABA_LPMASTER (ABA_MASTER ∗ master) [inline]

Definition at line 42 of file lpmaster.h.

6.22.2.2 virtual ABA_LPMASTER::∼ABA_LPMASTER () [inline, virtual]

Definition at line 43 of file lpmaster.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.23 ABA_LPMASTEROSI Class Reference 325

6.22.3 Member Function Documentation

6.22.3.1 virtual void ABA_LPMASTER::initializeLpParamet ers () [pure virtual]

Implemented inABA_LPMASTEROSI.

6.22.3.2 virtual void ABA_LPMASTER::outputLpStatistics () [pure virtual]

Implemented inABA_LPMASTEROSI.

6.22.3.3 virtual void ABA_LPMASTER::printLpParameters () [pure virtual]

Implemented inABA_LPMASTEROSI.

6.22.3.4 virtual void ABA_LPMASTER::setDefaultLpParameters () [pure virtual]

Implemented inABA_LPMASTEROSI.

6.22.4 Member Data Documentation

6.22.4.1 ABA_MASTER ∗ ABA_LPMASTER::master_ [protected]

Definition at line 50 of file lpmaster.h.

The documentation for this class was generated from the following file:

• Include/abacus/lpmaster.h

6.23 ABA_LPMASTEROSI Class Reference

#include <lpmasterosi.h>

Inheritance diagram for ABA_LPMASTEROSI::

ABA_LPMASTEROSI

ABA_LPMASTER

ABA_ABACUSROOT

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

326 Reference Manual

Public Member Functions

• ABA_LPMASTEROSI(ABA_MASTER ∗master)
• virtual∼ABA_LPMASTEROSI()

The destructor.

• virtual void initializeLpParameters()
• virtual voidsetDefaultLpParameters()
• virtual voidprintLpParameters()
• virtual voidoutputLpStatistics()

Friends

• classABA_OSIIF

6.23.1 Constructor & Destructor Documentation

6.23.1.1 ABA_LPMASTEROSI::ABA_LPMASTEROSI (ABA_MASTER ∗ master)

The constructor.

Parameters:
master The master of the optimization.

6.23.1.2 virtual ABA_LPMASTEROSI::∼ABA_LPMASTEROSI () [virtual]

The destructor.

6.23.2 Member Function Documentation

6.23.2.1 virtual void ABA_LPMASTEROSI::initializeLpPara meters () [virtual]

Initializes the LP solver specific Parameters.

ImplementsABA_LPMASTER.

6.23.2.2 virtual void ABA_LPMASTEROSI::outputLpStatisti cs () [virtual]

Prints LP solver specific Statistics.

ImplementsABA_LPMASTER.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.24 ABA_BRANCHRULE Class Reference 327

6.23.2.3 virtual void ABA_LPMASTEROSI::printLpParameter s () [virtual]

Prints the settings of the LP solver specific Parameters.

ImplementsABA_LPMASTER.

6.23.2.4 virtual void ABA_LPMASTEROSI::setDefaultLpParameters () [virtual]

Sets default values of the LP solver specific Parameters.

ImplementsABA_LPMASTER.

6.23.3 Friends And Related Function Documentation

6.23.3.1 friend classABA_OSIIF [friend]

Definition at line 40 of file lpmasterosi.h.

The documentation for this class was generated from the following file:

• Include/abacus/lpmasterosi.h

6.24 ABA_BRANCHRULE Class Reference

class is an abstract base class for all branching rules within this framework.

#include <branchrule.h>

Inheritance diagram for ABA_BRANCHRULE::

ABA_BRANCHRULE

ABA_ABACUSROOT

ABA_BOUNDBRANCHRULE ABA_CONBRANCHRULE ABA_SETBRANCHRULE ABA_VALBRANCHRULE

Public Member Functions

• ABA_BRANCHRULE (ABA_MASTER ∗master)
• virtual∼ABA_BRANCHRULE ()
• virtual int extract(ABA_SUB ∗sub)=0
• virtual voidextract(ABA_LPSUB∗lp)

Should modify the linear programming relaxation|lp| in order to determine the quality of the branching rule in a
linear programming based branching rule selection.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

328 Reference Manual

• virtual voidunExtract(ABA_LPSUB∗lp)

• virtual boolbranchOnSetVar()

Should indicate if the branching is performed by setting a binary variable.

• virtual void initialize (ABA_SUB ∗sub)

The function initialize is a virtual dummy function doing nothing. It is called from theconstructor of the subproblem
and can be used to perform initializations of the branching rule that can be only done after the generation of the
subproblem.

Protected Attributes

• ABA_MASTER ∗ master_

6.24.1 Detailed Description

class is an abstract base class for all branching rules within this framework.

Parameters:
ABA_MASTER ∗master_ A pointer to the corresponding master of the optimization.

Definition at line 63 of file branchrule.h.

6.24.2 Constructor & Destructor Documentation

6.24.2.1 ABA_BRANCHRULE::ABA_BRANCHRULE (ABA_MASTER ∗ master)

The constructor.

Parameters:
master A pointer to the corresponding master of the optimization.

6.24.2.2 virtual ABA_BRANCHRULE:: ∼ABA_BRANCHRULE () [virtual]

The destructor.

6.24.3 Member Function Documentation

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.24 ABA_BRANCHRULE Class Reference 329

6.24.3.1 virtual bool ABA_BRANCHRULE::branchOnSetVar () [virtual]

Should indicate if the branching is performed by setting a binary variable.

This is only required as in the current version of the GNU-compiler run time type information is not satisfactorily
implemented.

This function is currently required to determine global validity of Gomory cuts for generals.

Returns:
The default implementation returns always false. This function must be redefined in the class
ABA_SETBRANCHRULE, where it has to returntrue.

Reimplemented inABA_SETBRANCHRULE.

6.24.3.2 virtual void ABA_BRANCHRULE::extract (ABA_LPSUB ∗ lp) [virtual]

Should modify the linear programming relaxation|lp| in order to determine the quality of the branching rule in a
linear programming based branching rule selection.

The default implementation does nothing except writing a warning to the error stream. If a derived concrete
branching rule should be used in LP-based branching rule selection then this function has to be redefined.

Parameters:
lp A pointer to a the linear programming relaxtion of a a subproblem.

Reimplemented inABA_BOUNDBRANCHRULE, ABA_CONBRANCHRULE, ABA_SETBRANCHRULE,
andABA_VALBRANCHRULE.

6.24.3.3 virtual int ABA_BRANCHRULE::extract (ABA_SUB ∗ sub) [pure virtual]

Modifies a subproblem by setting the branching variable.

Returns:
0 If the subproblem can be modified according to the branchingrule.
1 If a contradiction occurs.

Parameters:
sub The subproblem being modified.

Implemented inABA_BOUNDBRANCHRULE, ABA_CONBRANCHRULE, ABA_SETBRANCHRULE, and
ABA_VALBRANCHRULE.

6.24.3.4 virtual void ABA_BRANCHRULE::initialize (ABA_SUB ∗ sub) [virtual]

The function initialize is a virtual dummy function doing nothing. It is called from the constructor of the subprob-
lem and can be used to perform initializations of the branching rule that can be only done after the generation of
the subproblem.

Parameters:
sub A pointer to the subproblem that should be used for the initialization.}

Reimplemented inABA_CONBRANCHRULE.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

330 Reference Manual

6.24.3.5 virtual void ABA_BRANCHRULE::unExtract (ABA_LPSUB ∗ lp) [virtual]

Should undo the modifictions of the linear programming relaxtion |lp|.

This function has to be redefined in a derived class, if alsoextract(ABA_LPSUB∗) is redefined there.

Parameters:
lp A pointer to a the linear programming relaxtion of a a subproblem.

Reimplemented inABA_BOUNDBRANCHRULE, ABA_CONBRANCHRULE, ABA_SETBRANCHRULE,
andABA_VALBRANCHRULE.

6.24.4 Member Data Documentation

6.24.4.1 ABA_MASTER ∗ ABA_BRANCHRULE::master_ [protected]

Definition at line 157 of file branchrule.h.

The documentation for this class was generated from the following file:

• Include/abacus/branchrule.h

6.25 ABA_SETBRANCHRULE Class Reference

The data members of the class ABA_SETBRANCHRULE.

#include <setbranchrule.h>

Inheritance diagram for ABA_SETBRANCHRULE::

ABA_SETBRANCHRULE

ABA_BRANCHRULE

ABA_ABACUSROOT

Public Member Functions

• ABA_SETBRANCHRULE(ABA_MASTER ∗master, int variable,ABA_FSVARSTAT::STATUSstatus)
• virtual∼ABA_SETBRANCHRULE()

The destructor.

• virtual int extract(ABA_SUB ∗sub)

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.25 ABA_SETBRANCHRULE Class Reference 331

• virtual voidextract(ABA_LPSUB∗lp)

The functionextract()is overloaded to modify directly the linear programming relaxation.

• virtual voidunExtract(ABA_LPSUB∗lp)

The functionunExtract().

• virtual boolbranchOnSetVar()

Redefines the virtual function of the base classABA_BRANCHRULEas this branching rule is setting a binary
variable.

• bool setToUpperBound() const
• int variable() const

Private Attributes

• int variable_
• ABA_FSVARSTAT::STATUS status_
• doubleoldLpBound_

Friends

• ostream &operator<< (ostream &out, constABA_SETBRANCHRULE&rhs)

The output operator writes the number of the branching variable and its status on an output stream.

6.25.1 Detailed Description

The data members of the class ABA_SETBRANCHRULE.

Parameters:
int variable_ The branching variable.

ABA_FSVARSTAT::STATUSstatus_ The status of the branching variable (SetToLowerBoundor SetTo-
UpperBound).

double oldLpbound_ The bound of the branching variable in the linear program, before it is temporarily
modified for testing the quality of this branching rule.

Definition at line 43 of file setbranchrule.h.

6.25.2 Constructor & Destructor Documentation

6.25.2.1 ABA_SETBRANCHRULE::ABA_SETBRANCHRULE (ABA_MASTER ∗ master, int variable,
ABA_FSVARSTAT::STATUS status)

The constructor.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

332 Reference Manual

Parameters:
master A pointer to the corresponding master of the optimization.

variable The branching variable.

status The status the variable is set to (SetToLowerBound orSetToUpperBound).

6.25.2.2 virtual ABA_SETBRANCHRULE::∼ABA_SETBRANCHRULE () [virtual]

The destructor.

6.25.3 Member Function Documentation

6.25.3.1 virtual bool ABA_SETBRANCHRULE::branchOnSetVar () [virtual]

Redefines the virtual function of the base classABA_BRANCHRULE as this branching rule is setting a binary
variable.

Returns:
Always true.

Reimplemented fromABA_BRANCHRULE.

6.25.3.2 virtual void ABA_SETBRANCHRULE::extract (ABA_LPSUB ∗ lp) [virtual]

The functionextract()is overloaded to modify directly the linear programming relaxation.

This required to evaluate the quality of a branching rule with linear programming methods. The changes have to
be undone with the functionunextract()before the next linear program is solved.

Parameters:
lp A pointer to the linear programming relaxation of a subproblem.

Reimplemented fromABA_BRANCHRULE.

6.25.3.3 virtual int ABA_SETBRANCHRULE::extract (ABA_SUB ∗ sub) [virtual]

Modifies a subproblem by setting the branching variable.

Returns:
0 If the subproblem can be modified according to the branchingrule.
1 If a contradiction occurs.

Parameters:
sub The subproblem being modified.

ImplementsABA_BRANCHRULE.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.25 ABA_SETBRANCHRULE Class Reference 333

6.25.3.4 bool ABA_SETBRANCHRULE::setToUpperBound () const

Returns:
true If the branching variable is set to the upper bound,
false otherwise.

6.25.3.5 virtual void ABA_SETBRANCHRULE::unExtract (ABA_LPSUB ∗ lp) [virtual]

The functionunExtract().

Reimplemented fromABA_BRANCHRULE.

6.25.3.6 int ABA_SETBRANCHRULE::variable () const [inline]

Returns:
The number of the branching variable.

Definition at line 151 of file setbranchrule.h.

6.25.4 Friends And Related Function Documentation

6.25.4.1 ostream& operator<< (ostream & out, constABA_SETBRANCHRULE & rhs) [friend]

The output operator writes the number of the branching variable and its status on an output stream.

Returns:
A reference to the output stream.

Parameters:
out The output stream.

rhs The branching rule being output.

6.25.5 Member Data Documentation

6.25.5.1 doubleABA_SETBRANCHRULE::oldLpBound_ [private]

Definition at line 146 of file setbranchrule.h.

6.25.5.2 ABA_FSVARSTAT::STATUS ABA_SETBRANCHRULE::status_ [private]

Definition at line 145 of file setbranchrule.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

334 Reference Manual

6.25.5.3 intABA_SETBRANCHRULE::variable_ [private]

Definition at line 144 of file setbranchrule.h.

The documentation for this class was generated from the following file:

• Include/abacus/setbranchrule.h

6.26 ABA_BOUNDBRANCHRULE Class Reference

class implements a branching rule for modifying the lower and the upper bound of a variable.

#include <boundbranchrule.h>

Inheritance diagram for ABA_BOUNDBRANCHRULE::

ABA_BOUNDBRANCHRULE

ABA_BRANCHRULE

ABA_ABACUSROOT

Public Member Functions

• ABA_BOUNDBRANCHRULE (ABA_MASTER ∗master, int variable, double lBound, double uBound)
• virtual∼ABA_BOUNDBRANCHRULE ()
• virtual int extract(ABA_SUB ∗sub)

Modifies a subproblem by changing the lower and the upper bound of the branching variable.

• virtual voidextract(ABA_LPSUB∗lp)

Is overloaded to modify directly the linear programming relaxation.

• virtual voidunExtract(ABA_LPSUB∗lp)
• int variable() const
• doublelBound() const
• doubleuBound() const

Private Attributes

• int variable_
• doublelBound_
• doubleuBound_
• doubleoldLpLBound_
• doubleoldLpUBound_

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.26 ABA_BOUNDBRANCHRULE Class Reference 335

Friends

• ostream &operator<< (ostream &out, constABA_BOUNDBRANCHRULE &rhs)

The output operator writes the branching variable together with its lower andupper bound to an output stream.

6.26.1 Detailed Description

class implements a branching rule for modifying the lower and the upper bound of a variable.

Parameters:
int variable_ The branching variable.

double lBound_ The lower bound of the branching variable.

double uBound_ The upper bound of the branching variable.

Definition at line 40 of file boundbranchrule.h.

6.26.2 Constructor & Destructor Documentation

6.26.2.1 ABA_BOUNDBRANCHRULE::ABA_BOUNDBRANCHRULE (ABA_MASTER ∗ master, int
variable, double lBound, doubleuBound)

The constructor.

Parameters:
master A pointer to the corresponding master of the optimization.

variable The branching variable.

lBound The lower bound of the branching variable.

uBound The upper bound of the branching variable.

6.26.2.2 virtual ABA_BOUNDBRANCHRULE:: ∼ABA_BOUNDBRANCHRULE () [virtual]

The destructor.

6.26.3 Member Function Documentation

6.26.3.1 virtual void ABA_BOUNDBRANCHRULE::extract (ABA_LPSUB ∗ lp) [virtual]

Is overloaded to modify directly the linear programming relaxation.

This required to evaluate the quality of a branching rule.

Reimplemented fromABA_BRANCHRULE.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

336 Reference Manual

6.26.3.2 virtual int ABA_BOUNDBRANCHRULE::extract (ABA_SUB ∗ sub) [virtual]

Modifies a subproblem by changing the lower and the upper bound of the branching variable.

Returns:
0 If the subproblem is successfully modified.
1 If the modification causes a contradiction.

Parameters:
sub The subproblem being modified.

ImplementsABA_BRANCHRULE.

6.26.3.3 double ABA_BOUNDBRANCHRULE::lBound () const [inline]

Returns:
The lower bound of the branching variable.

Definition at line 139 of file boundbranchrule.h.

6.26.3.4 double ABA_BOUNDBRANCHRULE::uBound () const [inline]

Returns:
The upper bound of the branching variable.

Definition at line 144 of file boundbranchrule.h.

6.26.3.5 virtual void ABA_BOUNDBRANCHRULE::unExtract (ABA_LPSUB ∗ lp) [virtual]

Should undo the modifictions of the linear programming relaxtion |lp|.

This function has to be redefined in a derived class, if alsoextract(ABA_LPSUB∗) is redefined there.

Parameters:
lp A pointer to a the linear programming relaxtion of a a subproblem.

Reimplemented fromABA_BRANCHRULE.

6.26.3.6 int ABA_BOUNDBRANCHRULE::variable () const [inline]

Returns:
The number of the branching variable.

Definition at line 134 of file boundbranchrule.h.

6.26.4 Friends And Related Function Documentation

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.27 ABA_VALBRANCHRULE Class Reference 337

6.26.4.1 ostream& operator<< (ostream & out, constABA_BOUNDBRANCHRULE & rhs) [friend]

The output operator writes the branching variable togetherwith its lower and upper bound to an output stream.

Returns:
A reference to the output stream.

Parameters:
out The output stream.

rhs The branch rule being output.

6.26.5 Member Data Documentation

6.26.5.1 doubleABA_BOUNDBRANCHRULE::lBound_ [private]

Definition at line 127 of file boundbranchrule.h.

6.26.5.2 doubleABA_BOUNDBRANCHRULE::oldLpLBound_ [private]

Definition at line 129 of file boundbranchrule.h.

6.26.5.3 doubleABA_BOUNDBRANCHRULE::oldLpUBound_ [private]

Definition at line 130 of file boundbranchrule.h.

6.26.5.4 doubleABA_BOUNDBRANCHRULE::uBound_ [private]

Definition at line 128 of file boundbranchrule.h.

6.26.5.5 intABA_BOUNDBRANCHRULE::variable_ [private]

Definition at line 126 of file boundbranchrule.h.

The documentation for this class was generated from the following file:

• Include/abacus/boundbranchrule.h

6.27 ABA_VALBRANCHRULE Class Reference

class implements a branching rule for setting a variable to acertain value.

#include <valbranchrule.h>

Inheritance diagram for ABA_VALBRANCHRULE::

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

338 Reference Manual

ABA_VALBRANCHRULE

ABA_BRANCHRULE

ABA_ABACUSROOT

Public Member Functions

• ABA_VALBRANCHRULE (ABA_MASTER ∗master, int variable, double value)
• virtual∼ABA_VALBRANCHRULE ()

The destructor.

• virtual int extract(ABA_SUB ∗sub)
• virtual voidextract(ABA_LPSUB∗lp)

The functionextract()is overloaded to modify directly the linear programming relaxation. This required to evaluate
the quality of a branching rule.

• virtual voidunExtract(ABA_LPSUB∗lp)

The functionunExtract().

• int variable() const
• doublevalue() const

Private Attributes

• int variable_
• doublevalue_
• doubleoldLpLBound_
• doubleoldLpUBound_

Friends

• ostream &operator<< (ostream &out, constABA_VALBRANCHRULE &rhs)

The output operator writes the branching variable together with its value to anoutput stream.

6.27.1 Detailed Description

class implements a branching rule for setting a variable to acertain value.

Parameters:
int variable_ The branching variable.

double value_ The value the branching variable is set to.

Definition at line 42 of file valbranchrule.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.27 ABA_VALBRANCHRULE Class Reference 339

6.27.2 Constructor & Destructor Documentation

6.27.2.1 ABA_VALBRANCHRULE::ABA_VALBRANCHRULE (ABA_MASTER ∗ master, int variable,
doublevalue)

The constructor.

Parameters:
master The corresponding master of the optimization.

variable The branching variable.

value The value the branching variable is set to.

6.27.2.2 virtual ABA_VALBRANCHRULE:: ∼ABA_VALBRANCHRULE () [virtual]

The destructor.

6.27.3 Member Function Documentation

6.27.3.1 virtual void ABA_VALBRANCHRULE::extract (ABA_LPSUB ∗ lp) [virtual]

The functionextract()is overloaded to modify directly the linear programming relaxation. This required to evaluate
the quality of a branching rule.

Reimplemented fromABA_BRANCHRULE.

6.27.3.2 virtual int ABA_VALBRANCHRULE::extract (ABA_SUB ∗ sub) [virtual]

Modifies a subproblem by setting the branching variable.

Returns:
0 If the subproblem can be modified according to the branchingrule.
1 If a contradiction occurs.

Parameters:
sub The subproblem being modified.

ImplementsABA_BRANCHRULE.

6.27.3.3 virtual void ABA_VALBRANCHRULE::unExtract (ABA_LPSUB ∗ lp) [virtual]

The functionunExtract().

Reimplemented fromABA_BRANCHRULE.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

340 Reference Manual

6.27.3.4 double ABA_VALBRANCHRULE::value () const [inline]

Returns:
The value of the branching variable.

Definition at line 136 of file valbranchrule.h.

6.27.3.5 int ABA_VALBRANCHRULE::variable () const [inline]

Returns:
The number of the branching variable.

Definition at line 131 of file valbranchrule.h.

6.27.4 Friends And Related Function Documentation

6.27.4.1 ostream& operator<< (ostream & out, constABA_VALBRANCHRULE & rhs) [friend]

The output operator writes the branching variable togetherwith its value to an output stream.

Returns:
A reference to the output stream.

Parameters:
out The output stream.

rhs The branching rule being output.

6.27.5 Member Data Documentation

6.27.5.1 doubleABA_VALBRANCHRULE::oldLpLBound_ [private]

Definition at line 126 of file valbranchrule.h.

6.27.5.2 doubleABA_VALBRANCHRULE::oldLpUBound_ [private]

Definition at line 127 of file valbranchrule.h.

6.27.5.3 doubleABA_VALBRANCHRULE::value_ [private]

Definition at line 125 of file valbranchrule.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.28 ABA_CONBRANCHRULE Class Reference 341

6.27.5.4 intABA_VALBRANCHRULE::variable_ [private]

Definition at line 124 of file valbranchrule.h.

The documentation for this class was generated from the following file:

• Include/abacus/valbranchrule.h

6.28 ABA_CONBRANCHRULE Class Reference

class implements the branching by adding a constraint to theset of active constraints.

#include <conbranchrule.h>

Inheritance diagram for ABA_CONBRANCHRULE::

ABA_CONBRANCHRULE

ABA_BRANCHRULE

ABA_ABACUSROOT

Public Member Functions

• ABA_CONBRANCHRULE (ABA_MASTER ∗master, ABA_POOLSLOT< ABA_CONSTRAINT,
ABA_VARIABLE > ∗poolSlot)

• virtual∼ABA_CONBRANCHRULE()
• virtual int extract(ABA_SUB ∗sub)
• virtual voidextract(ABA_LPSUB∗lp)

The functionextract()is overloaded to modify directly the linear programming relaxation.

• virtual voidunExtract(ABA_LPSUB∗lp)
• virtual void initialize (ABA_SUB ∗sub)

Redefines the virtual function of the base classABA_BRANCHRULEin order to initialize the subproblem associated
with the branching constraint.

• ABA_CONSTRAINT∗ constraint()

Private Member Functions

• constABA_CONBRANCHRULE& operator=(constABA_CONBRANCHRULE&rhs)

Private Attributes

• ABA_POOLSLOTREF< ABA_CONSTRAINT, ABA_VARIABLE > poolSlotRef_

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

342 Reference Manual

Friends

• ostream &operator<< (ostream &out, constABA_CONBRANCHRULE&rhs)

6.28.1 Detailed Description

class implements the branching by adding a constraint to theset of active constraints.

Parameters:
ABA_POOLSLOTREF poolSlotRef_ A reference to the pool slot of the branching constraints.

Definition at line 46 of file conbranchrule.h.

6.28.2 Constructor & Destructor Documentation

6.28.2.1 ABA_CONBRANCHRULE::ABA_CONBRANCHRULE (ABA_MASTER ∗ master,
ABA_POOLSLOT < ABA_CONSTRAINT , ABA_VARIABLE > ∗ poolSlot)

The constructor.

Note:
The subproblem associated with the branching constraint will be modified in the constructor of the subproblem
generated with this branching rule such that later the checkfor local validity of the branching constraint is
performed correcly.

Parameters:
master A pointer to the corresponding master of the optimization.

poolSlot A pointer to the pool slot of the branching constraint.

6.28.2.2 virtual ABA_CONBRANCHRULE:: ∼ABA_CONBRANCHRULE () [virtual]

The destructor.

6.28.3 Member Function Documentation

6.28.3.1 ABA_CONSTRAINT ∗ ABA_CONBRANCHRULE::constraint ()

Returns:
A pointer to the branching constraint or a 0-pointer, if thisconstraint is not available.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.28 ABA_CONBRANCHRULE Class Reference 343

6.28.3.2 virtual void ABA_CONBRANCHRULE::extract (ABA_LPSUB ∗ lp) [virtual]

The functionextract()is overloaded to modify directly the linear programming relaxation.

This required to evaluate the quality of a branching rule.

Reimplemented fromABA_BRANCHRULE.

6.28.3.3 virtual int ABA_CONBRANCHRULE::extract (ABA_SUB ∗ sub) [virtual]

Adds the branching constraint to the subproblem.

Instead of adding it directly to the set of active constraints it is added to the cut buffer.

Returns:
Always 0, since there cannot be a contractiction.

Parameters:
sub The subproblem being modified.

ImplementsABA_BRANCHRULE.

6.28.3.4 virtual void ABA_CONBRANCHRULE::initialize (ABA_SUB ∗ sub) [virtual]

Redefines the virtual function of the base classABA_BRANCHRULE in order to initialize the subproblem asso-
ciated with the branching constraint.

Parameters:
sub A pointer to the subproblem that is associated with the branching constraint.

Reimplemented fromABA_BRANCHRULE.

6.28.3.5 constABA_CONBRANCHRULE & ABA_CONBRANCHRULE::operator= (const
ABA_CONBRANCHRULE & rhs) [private]

6.28.3.6 virtual void ABA_CONBRANCHRULE::unExtract (ABA_LPSUB ∗ lp) [virtual]

Should undo the modifictions of the linear programming relaxtion |lp|.

This function has to be redefined in a derived class, if alsoextract(ABA_LPSUB∗) is redefined there.

Parameters:
lp A pointer to a the linear programming relaxtion of a a subproblem.

Reimplemented fromABA_BRANCHRULE.

6.28.4 Friends And Related Function Documentation

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

344 Reference Manual

6.28.4.1 ostream& operator<< (ostream & out, constABA_CONBRANCHRULE & rhs) [friend]

The output operator writes the branching constraint on an output stream.

Returns:
A reference to the output stream.

Parameters:
out The output stream.

rhs The branch rule being output.

6.28.5 Member Data Documentation

6.28.5.1 ABA_POOLSLOTREF <ABA_CONSTRAINT , ABA_VARIABLE >

ABA_CONBRANCHRULE::poolSlotRef_ [private]

Definition at line 135 of file conbranchrule.h.

The documentation for this class was generated from the following file:

• Include/abacus/conbranchrule.h

6.29 ABA_POOL< BaseType, CoType> Class Template Reference

The public enumerations of ABA_POOL.

#include <pool.h>

Inheritance diagram for ABA_POOL< BaseType, CoType>::

ABA_POOL< BaseType, CoType >

ABA_ABACUSROOT

ABA_STANDARDPOOL< BaseType, CoType >

ABA_NONDUPLPOOL< BaseType, CoType >

Public Types

• enumRANKING { NO_RANK, RANK, ABS_RANK }

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.29 ABA_POOL< BaseType, CoType> Class Template Reference 345

Public Member Functions

• ABA_POOL(ABA_MASTER ∗master)
• virtual∼ABA_POOL()

The destructor.

• virtual ABA_POOLSLOT< BaseType, CoType> ∗ insert(BaseType∗cv)=0
• void removeConVar(ABA_POOLSLOT< BaseType, CoType> ∗slot)

Removes the constraint/variable stored in a pool slot and adds the slot to thelist of free slots.

• int number() const
• virtual int separate(double ∗z, ABA_ACTIVE< CoType, BaseType> ∗active, ABA_SUB ∗sub,

ABA_CUTBUFFER< BaseType, CoType> ∗cutBuffer, double minAbsViolation=0.001, int ranking=0)=0

Protected Member Functions

• virtual int softDeleteConVar(ABA_POOLSLOT< BaseType, CoType> ∗slot)

Removes the constraint/variable stored in the pool slotslot from the pool if the constraint/variable can be deleted.

• virtual voidhardDeleteConVar(ABA_POOLSLOT< BaseType, CoType> ∗slot)

Removes a constraint/variable from the pool and adds the slot to the set of free slots.

• virtual ABA_POOLSLOT< BaseType, CoType> ∗ getSlot()=0
• virtual voidputSlot(ABA_POOLSLOT< BaseType, CoType> ∗slot)=0

Protected Attributes

• ABA_MASTER ∗ master_
• int number_

6.29.1 Detailed Description

template<class BaseType, class CoType> class ABA_POOL< BaseType, CoType>

The public enumerations of ABA_POOL.

Definition at line 65 of file pool.h.

6.29.2 Member Enumeration Documentation

6.29.2.1 template<class BaseType, class CoType> enumABA_POOL::RANKING

Enumeration values:
NO_RANK

RANK

ABS_RANK

Definition at line 67 of file pool.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

346 Reference Manual

6.29.3 Constructor & Destructor Documentation

6.29.3.1 template<class BaseType, class CoType> ABA_POOL< BaseType, CoType>::ABA_POOL
(ABA_MASTER ∗ master)

The constructor initializes an empty pool.

Parameters:
master A pointer to the corresponding master of the optimization.

6.29.3.2 template<class BaseType, class CoType> virtual ABA_POOL< BaseType, CoType
>::∼ABA_POOL () [virtual]

The destructor.

6.29.4 Member Function Documentation

6.29.4.1 template<class BaseType, class CoType> virtual ABA_POOLSLOT <BaseType, CoType>∗
ABA_POOL< BaseType, CoType>::getSlot () [protected, pure virtual]

Implemented inABA_STANDARDPOOL< BaseType, CoType>, ABA_STANDARDPOOL< ABA_VARIABLE, ABA_CONSTRAINT
andABA_STANDARDPOOL< ABA_CONSTRAINT, ABA_VARIABLE >.

6.29.4.2 template<class BaseType, class CoType> virtual void ABA_POOL< BaseType, CoType
>::hardDeleteConVar (ABA_POOLSLOT < BaseType, CoType> ∗ slot) [protected,
virtual]

Removes a constraint/variable from the pool and adds the slot to the set of free slots.

Parameters:
slot A pointer to the pool slot from wich the constraint/variableshould be deleted.

Reimplemented inABA_NONDUPLPOOL< BaseType, CoType>.

6.29.4.3 template<class BaseType, class CoType> virtual ABA_POOLSLOT <BaseType, CoType>∗
ABA_POOL< BaseType, CoType>::insert (BaseType∗ cv) [pure virtual]

Implemented inABA_NONDUPLPOOL< BaseType, CoType>, andABA_STANDARDPOOL< BaseType, CoType>.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.29 ABA_POOL< BaseType, CoType> Class Template Reference 347

6.29.4.4 template<class BaseType, class CoType> int ABA_POOL< BaseType, CoType>::number ()
const

Returns:
The current number of items in the pool.

6.29.4.5 template<class BaseType, class CoType> virtual void ABA_POOL< BaseType, CoType
>::putSlot (ABA_POOLSLOT < BaseType, CoType> ∗ slot) [protected, pure
virtual]

Implemented inABA_STANDARDPOOL< BaseType, CoType>.

6.29.4.6 template<class BaseType, class CoType> void ABA_POOL< BaseType, CoType
>::removeConVar (ABA_POOLSLOT < BaseType, CoType> ∗ slot)

Removes the constraint/variable stored in a pool slot and adds the slot to the list of free slots.

Parameters:
slot The pool slot from which the constraint/variable is removed.

6.29.4.7 template<class BaseType, class CoType> virtual int ABA_POOL< BaseType, CoType
>::separate (double∗ z, ABA_ACTIVE < CoType, BaseType> ∗ active, ABA_SUB ∗ sub,
ABA_CUTBUFFER< BaseType, CoType> ∗ cutBuffer, doubleminAbsViolation= 0.001, int
ranking = 0) [pure virtual]

Implemented inABA_STANDARDPOOL< BaseType, CoType>.

6.29.4.8 template<class BaseType, class CoType> virtual int ABA_POOL< BaseType, CoType
>::softDeleteConVar (ABA_POOLSLOT < BaseType, CoType> ∗ slot) [protected,
virtual]

Removes the constraint/variable stored in the pool slotslot from the pool if the constraint/variable can be deleted.

If the constraint/variable can be removed the slot is added to the set of free slots.

Returns:
0 If the constraint/variable could be deleted.
1 otherwise.

Parameters:
slot A pointer to the pool slot from wich the constraint/variableshould be deleted.

Reimplemented inABA_NONDUPLPOOL< BaseType, CoType>.

6.29.5 Member Data Documentation

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

348 Reference Manual

6.29.5.1 template<class BaseType, class CoType> ABA_MASTER ∗ ABA_POOL< BaseType, CoType
>::master_ [protected]

Definition at line 136 of file pool.h.

6.29.5.2 template<class BaseType, class CoType> int ABA_POOL< BaseType, CoType>::number_
[protected]

Definition at line 137 of file pool.h.

The documentation for this class was generated from the following file:

• Include/abacus/pool.h

6.30 ABA_STANDARDPOOL< BaseType, CoType> Class Template
Reference

class provides a very simple implementation of a pool which is sufficient for a large class of applications. pool
slots stored in array, set of free slots is managed by a linearlist

#include <standardpool.h>

Inheritance diagram for ABA_STANDARDPOOL< BaseType, CoType>::

ABA_STANDARDPOOL< BaseType, CoType >

ABA_POOL< BaseType, CoType >

ABA_ABACUSROOT

ABA_NONDUPLPOOL< BaseType, CoType >

Public Member Functions

• ABA_STANDARDPOOL(ABA_MASTER ∗master, int size, bool autoRealloc=false)
• virtual∼ABA_STANDARDPOOL()

The destructor deletes all slots. The destructor of a pool slot deletes thenalso the respective constraint or variable.

• virtual ABA_POOLSLOT< BaseType, CoType> ∗ insert(BaseType∗cv)
• virtual void increase(int size)
• int cleanup()

Scans the pool, removes all deletable items, i.e., those items without havingreferences, and adds the corresponding
slots to the list of free slots.

• int size() const

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.30 ABA_STANDARDPOOL< BaseType, CoType> Class Template Reference349

• ABA_POOLSLOT< BaseType, CoType> ∗ slot (int i)

• virtual int separate(double ∗x, ABA_ACTIVE< CoType, BaseType> ∗active, ABA_SUB ∗sub,
ABA_CUTBUFFER< BaseType, CoType> ∗cutBuffer, double minAbsViolation=0.001, int ranking=0)

Checks if a pair of a vector and an active constraint/variable set violates any item in the pool. If the pool is a
constraint pool, then the vector is an LP-solution and the active set the set of active variables. Otherwise, if the pool
is a variable pool, then the vector stores the values of the dual variables and the active set the associated active
constraints.

Protected Member Functions

• int removeNonActive(int maxRemove)

• virtual ABA_POOLSLOT< BaseType, CoType> ∗ getSlot()

Returns a free slot, or 0 if no free slot is available. A returned slot is removed from the list of free slots.

• virtual voidputSlot(ABA_POOLSLOT< BaseType, CoType> ∗slot)

Protected Attributes

• ABA_ARRAY< ABA_POOLSLOT< BaseType, CoType> ∗ > pool_

• ABA_LIST< ABA_POOLSLOT< BaseType, CoType> ∗ > freeSlots_

• boolautoRealloc_

Private Member Functions

• ABA_STANDARDPOOL(constABA_STANDARDPOOL&rhs)

• constABA_STANDARDPOOL& operator=(constABA_STANDARDPOOL&rhs)

Friends

• ostream &operator<< (ostream &out, constABA_STANDARDPOOL&rhs)

The output operator calls the output operator of each item of a non-void pool slot.

6.30.1 Detailed Description

template<class BaseType, class CoType> class ABA_STANDARDPOOL< BaseType, CoType>

class provides a very simple implementation of a pool which is sufficient for a large class of applications. pool
slots stored in array, set of free slots is managed by a linearlist

Definition at line 58 of file standardpool.h.

6.30.2 Constructor & Destructor Documentation

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

350 Reference Manual

6.30.2.1 template<class BaseType, class CoType> ABA_STANDARDPOOL < BaseType, CoType
>::ABA_STANDARDPOOL (ABA_MASTER ∗ master, int size, bool autoRealloc= false)

The constructor for an empty pool.

All slots are inserted in the linked list of free slots.

Parameters:
master A pointer to the corresponding master of the optimization.

size The maximal number of items which can be inserted in the pool without reallocation.

autoRealloc If this argument istruean automatic reallocation is performed if the pool is full.

6.30.2.2 template<class BaseType, class CoType> virtual ABA_STANDARDPOOL < BaseType, CoType
>::∼ABA_STANDARDPOOL ()

The destructor deletes all slots. The destructor of a pool slot deletes then also the respective constraint or variable.

6.30.2.3 template<class BaseType, class CoType> ABA_STANDARDPOOL < BaseType, CoType
>::ABA_STANDARDPOOL (constABA_STANDARDPOOL < BaseType, CoType> & rhs)
[private]

6.30.3 Member Function Documentation

6.30.3.1 template<class BaseType, class CoType> int ABA_STANDARDPOOL < BaseType, CoType
>::cleanup ()

Scans the pool, removes all deletable items, i.e., those items without having references, and adds the corresponding
slots to the list of free slots.

Returns:
The number of “cleaned” slots.

6.30.3.2 template<class BaseType, class CoType> virtual ABA_POOLSLOT <BaseType,CoType>∗
ABA_STANDARDPOOL < BaseType, CoType>::getSlot () [protected, virtual]

Returns a free slot, or 0 if no free slot is available. A returned slot is removed from the list of free slots.

This function defines the pure virtual function of the base classABA_POOL.

ImplementsABA_POOL< BaseType, CoType>.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.30 ABA_STANDARDPOOL< BaseType, CoType> Class Template Reference351

6.30.3.3 template<class BaseType, class CoType> virtual void ABA_STANDARDPOOL < BaseType,
CoType>::increase (int size) [virtual]

Enlarges the pool to store.

To avoid fatal errors we do not allow decreasing the size of the pool.

Parameters:
size The new size of the pool.

Reimplemented inABA_NONDUPLPOOL< BaseType, CoType>.

6.30.3.4 template<class BaseType, class CoType> virtual ABA_POOLSLOT <BaseType,CoType>∗
ABA_STANDARDPOOL < BaseType, CoType>::insert (BaseType∗ cv) [virtual]

Tries to insert a constraint/variable in the pool.

If there is no free slot available, we try to generate free slots by removing redundant items, i.e., items which have
no reference to them. If this fails, we either perform an automatic reallocation of the pool or remove non-active
items.

Returns:
A pointer to the pool slot where the item has been inserted, or0 if the insertion failed.

Parameters:
cv The constraint/variable being inserted.

ImplementsABA_POOL< BaseType, CoType>.

Reimplemented inABA_NONDUPLPOOL< BaseType, CoType>.

6.30.3.5 template<class BaseType, class CoType> const ABA_STANDARDPOOL &
ABA_STANDARDPOOL < BaseType, CoType>::operator= (const ABA_STANDARDPOOL <

BaseType, CoType> & rhs) [private]

6.30.3.6 template<class BaseType, class CoType> virtual void ABA_STANDARDPOOL < BaseType,
CoType >::putSlot (ABA_POOLSLOT < BaseType, CoType> ∗ slot) [protected,
virtual]

Inserts theslot in the list of free slots.

It is an error to insert a slot which is not empty.

This function defines the pure virtual function of the base classABA_POOL.

ImplementsABA_POOL< BaseType, CoType>.

6.30.3.7 template<class BaseType, class CoType> int ABA_STANDARDPOOL < BaseType, CoType
>::removeNonActive (int maxRemove) [protected]

Tries to remove at mostmaxRemoveinactive items from the pool.

A minimum heap of the items with the reference counter as key is built up and items are removed in this order.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

352 Reference Manual

6.30.3.8 template<class BaseType, class CoType> virtual int ABA_STANDARDPOOL < BaseType,
CoType >::separate (double∗ x, ABA_ACTIVE < CoType, BaseType> ∗ active, ABA_SUB ∗
sub, ABA_CUTBUFFER< BaseType, CoType> ∗ cutBuffer, doubleminAbsViolation= 0.001,
int ranking = 0) [virtual]

Checks if a pair of a vector and an active constraint/variable set violates any item in the pool. If the pool is a
constraint pool, then the vector is an LP-solution and the active set the set of active variables. Otherwise, if the
pool is a variable pool, then the vector stores the values of the dual variables and the active set the associated active
constraints.

Before a constraint or variable is generated we check if it isvalid for the subproblemsub.

The function defines the pure virtual function of the base classABA_POOL.

This is a very simple version of the pool separation. Future versions might scan a priority queue of the available
constraints until a limited number of constraints is testedor separated.

Returns:
The number of violated items.

Parameters:
z The vector for which violation is checked.

active The constraint/variable set associated withz.

sub The subproblem for which validity of the violated item is required.

cutBuffer The violated constraints/variables are added to this buffer.

minAbsViolation A violated constraint/variable is only added to thecutBuffer if the absolute value of its
violation is at leastminAbsViolation. The default value is0.001.

ranking If 1, the violation is associated with a rank of item in the buffer, if 2 the absolute violation is used, if
3 the functionABA_CONVAR::rank()is used, if 0 no rank is associated with the item.

ImplementsABA_POOL< BaseType, CoType>.

6.30.3.9 template<class BaseType, class CoType> int ABA_STANDARDPOOL < BaseType, CoType
>::size () const

Returns:
The maximal number of constraints/variables that can be inserted in the pool.

6.30.3.10 template<class BaseType, class CoType> ABA_POOLSLOT <BaseType,CoType>∗
ABA_STANDARDPOOL < BaseType, CoType>::slot (int i)

Returns:
A pointer to thei-th slot in the pool.

Parameters:
i The number of the slot being accessed.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.30 ABA_STANDARDPOOL< BaseType, CoType> Class Template Reference353

6.30.4 Friends And Related Function Documentation

6.30.4.1 template<class BaseType, class CoType> ostream& operator<< (ostream & out, const
ABA_STANDARDPOOL < BaseType, CoType> & rhs) [friend]

The output operator calls the output operator of each item ofa non-void pool slot.

Returns:
A reference to the output stream.

Parameters:
out The output stream.

rhs The pool being output.

6.30.5 Member Data Documentation

6.30.5.1 template<class BaseType, class CoType> bool ABA_STANDARDPOOL < BaseType, CoType
>::autoRealloc_ [protected]

If the pool becomes full and this member istrue, then an automatic reallocation is performed.

Definition at line 245 of file standardpool.h.

6.30.5.2 template<class BaseType, class CoType> ABA_LIST <ABA_POOLSLOT <BaseType,CoType>
∗> ABA_STANDARDPOOL < BaseType, CoType>:: freeSlots_ [protected]

The linked lists of unused slots.

Definition at line 239 of file standardpool.h.

6.30.5.3 template<class BaseType, class CoType> ABA_ARRAY <ABA_POOLSLOT <Base-
Type,CoType> ∗> ABA_STANDARDPOOL < BaseType, CoType>::pool_
[protected]

The array with the pool slots.

Definition at line 235 of file standardpool.h.

The documentation for this class was generated from the following file:

• Include/abacus/standardpool.h

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

354 Reference Manual

6.31 ABA_NONDUPLPOOL< BaseType, CoType> Class Template Ref-
erence

class ABA_NONDUPLPOOL provides anABA_STANDARDPOOL with the additional feature that the same
constraint is at most stored once in the pool. For constraints and variables inserted in this pool the virtual member
functionsname(), hashKey(), andequal()of the base classABA_CONVAR have to be defined

#include <nonduplpool.h>

Inheritance diagram for ABA_NONDUPLPOOL< BaseType, CoType>::

ABA_NONDUPLPOOL< BaseType, CoType >

ABA_STANDARDPOOL< BaseType, CoType >

ABA_POOL< BaseType, CoType >

ABA_ABACUSROOT

Public Member Functions

• ABA_NONDUPLPOOL(ABA_MASTER ∗master, int size, bool autoRealloc=false)

• virtual∼ABA_NONDUPLPOOL()

The destructor.

• virtual ABA_POOLSLOT< BaseType, CoType> ∗ insert(BaseType∗cv)

Before the functioninsert() tries to insert a constraint/variable in the pool, it checks if the constraint/variable is
already contained in the pool. If the constraint/variablecv is contained in the pool, it is deleted.

• virtual ABA_POOLSLOT< BaseType, CoType> ∗ present(BaseType∗cv)

• virtual void increase(int size)

• void statistics(int &nDuplications, int &nCollisions) const

Determines the number of constraints that have not been inserted into the pool, because an equivalent was already
present.

Private Member Functions

• virtual int softDeleteConVar(ABA_POOLSLOT< BaseType, CoType> ∗slot)

Has to be redefined because the slot has to be removed from the hash tableif the constraint/variable can be deleted.

• virtual voidhardDeleteConVar(ABA_POOLSLOT< BaseType, CoType> ∗slot)

• ABA_NONDUPLPOOL(constABA_NONDUPLPOOL&rhs)

• constABA_NONDUPLPOOL& operator=(constABA_NONDUPLPOOL&rhs)

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.31 ABA_NONDUPLPOOL< BaseType, CoType> Class Template Reference355

Private Attributes

• ABA_HASH< unsigned,ABA_POOLSLOT< BaseType, CoType> ∗ > hash_
• int nDuplications_

6.31.1 Detailed Description

template<class BaseType, class CoType> class ABA_NONDUPLPOOL< BaseType, CoType>

class ABA_NONDUPLPOOL provides anABA_STANDARDPOOL with the additional feature that the same
constraint is at most stored once in the pool. For constraints and variables inserted in this pool the virtual member
functionsname(), hashKey(), andequal()of the base classABA_CONVAR have to be defined

Parameters:
hash_ A hash table for a fast access to the pool slot storing a constraint/variable.

nDuplications_ The number of insertions of constraints/variables that were rejected since the con-
straint/variable is stored already in the pool.

Definition at line 52 of file nonduplpool.h.

6.31.2 Constructor & Destructor Documentation

6.31.2.1 template<class BaseType, class CoType> ABA_NONDUPLPOOL < BaseType, CoType
>::ABA_NONDUPLPOOL (ABA_MASTER ∗ master, int size, bool autoRealloc= false)

The constructor for an empty pool.

Parameters:
master A pointer to the corresponding master of the optimization.

size The maximal number of items which can be inserted in the pool without reallocation.

autoRealloc If this argument istruean automatic reallocation is performed if the pool is full.

6.31.2.2 template<class BaseType, class CoType> virtual ABA_NONDUPLPOOL < BaseType, CoType
>::∼ABA_NONDUPLPOOL () [virtual]

The destructor.

6.31.2.3 template<class BaseType, class CoType> ABA_NONDUPLPOOL < BaseType, CoType
>::ABA_NONDUPLPOOL (constABA_NONDUPLPOOL < BaseType, CoType> & rhs)
[private]

6.31.3 Member Function Documentation

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

356 Reference Manual

6.31.3.1 template<class BaseType, class CoType> virtual void ABA_NONDUPLPOOL < BaseType,
CoType>::hardDeleteConVar (ABA_POOLSLOT < BaseType, CoType> ∗ slot) [private,
virtual]

Has to be redefined because the pool slot has to be removed fromthe hash table.

Parameters:
slot A pointer to the pool slot from wich the constraint/variableshould be deleted.

Reimplemented fromABA_POOL< BaseType, CoType>.

6.31.3.2 template<class BaseType, class CoType> virtual void ABA_NONDUPLPOOL < BaseType,
CoType>::increase (int size) [virtual]

Enlarges the pool to store.

To avoid fatal errors we do not allow decreasing the size of the pool. This function redefines the virtual function
of the base classABA_STANDARDPOOLbecause we have to reallocate the hash table.

Parameters:
size The new size of the pool.

Reimplemented fromABA_STANDARDPOOL< BaseType, CoType>.

6.31.3.3 template<class BaseType, class CoType> virtual ABA_POOLSLOT <BaseType, CoType>∗
ABA_NONDUPLPOOL < BaseType, CoType>::insert (BaseType∗ cv) [virtual]

Before the functioninsert() tries to insert a constraint/variable in the pool, it checksif the constraint/variable is
already contained in the pool. If the constraint/variablecv is contained in the pool, it is deleted.

Returns:
A pointer to the pool slot where the item has been inserted, ora pointer to the pool slot if the item is already
contained in the pool, or 0 if the insertion failed.

Parameters:
cv The constraint/variable being inserted.

Reimplemented fromABA_STANDARDPOOL< BaseType, CoType>.

6.31.3.4 template<class BaseType, class CoType> const ABA_NONDUPLPOOL &
ABA_NONDUPLPOOL < BaseType, CoType>::operator= (const ABA_NONDUPLPOOL <

BaseType, CoType> & rhs) [private]

6.31.3.5 template<class BaseType, class CoType> virtual ABA_POOLSLOT <BaseType, CoType>∗
ABA_NONDUPLPOOL < BaseType, CoType>::present (BaseType∗ cv) [virtual]

Checks if a constraint/variables is already contained in the pool.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.31 ABA_NONDUPLPOOL< BaseType, CoType> Class Template Reference357

Returns:
A pointer to the pool slot storing a constraint/variable that is equivalent tocv according to the function
ABA_CONVAR::equal(). If there is no such constraint/variable 0 is returned.

Parameters:
cv A pointer to a constraint/variable for which it should be checked if an equivalent item is already contained

in the pool.

6.31.3.6 template<class BaseType, class CoType> virtual int ABA_NONDUPLPOOL < BaseType,
CoType>::softDeleteConVar (ABA_POOLSLOT < BaseType, CoType> ∗ slot) [private,
virtual]

Has to be redefined because the slot has to be removed from the hash table if the constraint/variable can be deleted.

Returns:
0 If the constraint/variable could be deleted.
1 otherwise.

Parameters:
slot A pointer to the pool slot from wich the constraint/variableshould be deleted.

Reimplemented fromABA_POOL< BaseType, CoType>.

6.31.3.7 template<class BaseType, class CoType> void ABA_NONDUPLPOOL < BaseType, CoType
>::statistics (int & nDuplications, int & nCollisions) const

Determines the number of constraints that have not been inserted into the pool, because an equivalent was already
present.

Also the number of collisions in the hash table is computed. If this number is high, it might indicate that your hash
function is not chosen very well.

Parameters:
nDuplications The number of constraints that have not been inserted into the pool because an equivalent one

was already present.

nCollisions The number of collisions in the hash table.

6.31.4 Member Data Documentation

6.31.4.1 template<class BaseType, class CoType> ABA_HASH<unsigned,ABA_POOLSLOT <Base-
Type, CoType>∗> ABA_NONDUPLPOOL < BaseType, CoType>::hash_
[private]

Definition at line 142 of file nonduplpool.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

358 Reference Manual

6.31.4.2 template<class BaseType, class CoType> int ABA_NONDUPLPOOL < BaseType, CoType
>::nDuplications_ [private]

Definition at line 143 of file nonduplpool.h.

The documentation for this class was generated from the following file:

• Include/abacus/nonduplpool.h

6.32 ABA_POOLSLOT< BaseType, CoType> Class Template Refer-
ence

Constraints or variables are not directly stored in a pool. But are stored in a pool slot.

#include <poolslot.h>

Inheritance diagram for ABA_POOLSLOT< BaseType, CoType>::

ABA_POOLSLOT< BaseType, CoType >

ABA_ABACUSROOT

Public Member Functions

• ABA_POOLSLOT (ABA_MASTER ∗master, ABA_POOL< BaseType, CoType> ∗pool, BaseType
∗convar=0)

The constructor sets the version number to 1, if already a constraint is inserted in this slot, otherwise it is set to 0.

• ∼ABA_POOLSLOT()

The destructor for the poolslot must not be called if there are referencesto its constraint/variable.

• BaseType∗ conVar() const

Private Member Functions

• void insert(BaseType∗convar)
• int softDelete()
• void hardDelete()
• void removeConVarFromPool()
• unsigned longversion() const
• ABA_MASTER ∗ master()
• ABA_POOLSLOT(constABA_POOLSLOT< BaseType, CoType> &rhs)
• constABA_POOLSLOT< BaseType, CoType> & operator=(constABA_POOLSLOT< BaseType, Co-

Type> &rhs)

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.32 ABA_POOLSLOT< BaseType, CoType> Class Template Reference 359

Private Attributes

• ABA_MASTER ∗ master_
• BaseType∗ conVar_
• unsigned longversion_
• ABA_POOL< BaseType, CoType> ∗ pool_

Friends

• classABA_POOLSLOTREF< BaseType, CoType>
• classABA_POOL< BaseType, CoType>
• classABA_STANDARDPOOL< BaseType, CoType>
• classABA_CUTBUFFER< BaseType, CoType>
• classABA_SUB
• classABA_POOLSLOTREF< ABA_CONSTRAINT, ABA_VARIABLE >

• classABA_POOLSLOTREF< ABA_VARIABLE, ABA_CONSTRAINT >

• classABA_POOL< ABA_CONSTRAINT, ABA_VARIABLE >

• classABA_POOL< ABA_VARIABLE, ABA_CONSTRAINT >

• classABA_STANDARDPOOL< ABA_CONSTRAINT, ABA_VARIABLE >

• classABA_STANDARDPOOL< ABA_VARIABLE, ABA_CONSTRAINT >

• classABA_NONDUPLPOOL< ABA_CONSTRAINT, ABA_VARIABLE >

• classABA_NONDUPLPOOL< ABA_VARIABLE, ABA_CONSTRAINT >

• classABA_CUTBUFFER< ABA_CONSTRAINT, ABA_VARIABLE >

• classABA_CUTBUFFER< ABA_VARIABLE, ABA_CONSTRAINT >

6.32.1 Detailed Description

template<class BaseType, class CoType> class ABA_POOLSLOT< BaseType, CoType>

Constraints or variables are not directly stored in a pool. But are stored in a pool slot.

Definition at line 76 of file poolslot.h.

6.32.2 Constructor & Destructor Documentation

6.32.2.1 template<class BaseType, class CoType> ABA_POOLSLOT < BaseType, CoType
>::ABA_POOLSLOT (ABA_MASTER ∗ master, ABA_POOL< BaseType, CoType> ∗ pool,
BaseType∗ convar= 0)

The constructor sets the version number to 1, if already a constraint is inserted in this slot, otherwise it is set to 0.

Parameters:
master A pointer to the corresponding master of the optimization.

pool The pool this slot belongs to.

conVar The constraint/variable inserted in this slot if not 0. The default value is 0.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

360 Reference Manual

6.32.2.2 template<class BaseType, class CoType> ABA_POOLSLOT < BaseType, CoType
>::∼ABA_POOLSLOT ()

The destructor for the poolslot must not be called if there are references to its constraint/variable.

6.32.2.3 template<class BaseType, class CoType> ABA_POOLSLOT < BaseType, CoType
>::ABA_POOLSLOT (constABA_POOLSLOT < BaseType, CoType> & rhs) [private]

6.32.3 Member Function Documentation

6.32.3.1 template<class BaseType, class CoType> BaseType∗ ABA_POOLSLOT < BaseType, CoType
>::conVar () const

Returns:
A pointer to the constraint/variable in the pool slot.

6.32.3.2 template<class BaseType, class CoType> void ABA_POOLSLOT < BaseType, CoType
>::hardDelete () [private]

Deletes the constraint/variable in the slot.

Warning:
This function should be used very carefully.

6.32.3.3 template<class BaseType, class CoType> void ABA_POOLSLOT < BaseType, CoType>::insert
(BaseType∗ convar) [private]

Inserts a constraint/variable in the slot, and updates the version number.

If the slot still contains a constraint, the program stops.

The constantULONG_MAXis defined in the file { limits.h}.

Parameters:
conVar The constraint/variable that is inserted.

6.32.3.4 template<class BaseType, class CoType> ABA_MASTER ∗ ABA_POOLSLOT < BaseType,
CoType>::master () [private]

Returns:
A pointer to the corresponding master of the optimization.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.32 ABA_POOLSLOT< BaseType, CoType> Class Template Reference 361

6.32.3.5 template<class BaseType, class CoType> constABA_POOLSLOT <BaseType, CoType>&
ABA_POOLSLOT < BaseType, CoType>::operator= (const ABA_POOLSLOT < BaseType,
CoType> & rhs) [private]

6.32.3.6 template<class BaseType, class CoType> void ABA_POOLSLOT < BaseType, CoType
>::removeConVarFromPool () [private]

Removes the constraint contained in this ABA_POOLSLOT fromits ownABA_POOL.

6.32.3.7 template<class BaseType, class CoType> int ABA_POOLSLOT < BaseType, CoType
>::softDelete () [private]

Tries to remove the item from the slot.

This is possible if the functionABA_CONVAR::deletable()returnstrue.

Returns:
0 If the constraint/variable in the slot could be deleted,
1 otherwise.

6.32.3.8 template<class BaseType, class CoType> unsigned longABA_POOLSLOT < BaseType, CoType
>::version () const [private]

Returns:
The version number of the constraint/variable of the slot.

6.32.4 Friends And Related Function Documentation

6.32.4.1 template<class BaseType, class CoType> friend class ABA_CUTBUFFER<

ABA_CONSTRAINT , ABA_VARIABLE > [friend]

Definition at line 91 of file poolslot.h.

6.32.4.2 template<class BaseType, class CoType> friend classABA_CUTBUFFER< ABA_VARIABLE ,
ABA_CONSTRAINT > [friend]

Definition at line 92 of file poolslot.h.

6.32.4.3 template<class BaseType, class CoType> friend classABA_CUTBUFFER< BaseType, CoType
> [friend]

Definition at line 80 of file poolslot.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

362 Reference Manual

6.32.4.4 template<class BaseType, class CoType> friend class ABA_NONDUPLPOOL <

ABA_CONSTRAINT , ABA_VARIABLE > [friend]

Definition at line 89 of file poolslot.h.

6.32.4.5 template<class BaseType, class CoType> friend class ABA_NONDUPLPOOL <

ABA_VARIABLE , ABA_CONSTRAINT > [friend]

Definition at line 90 of file poolslot.h.

6.32.4.6 template<class BaseType, class CoType> friend classABA_POOL< ABA_CONSTRAINT ,
ABA_VARIABLE > [friend]

Definition at line 85 of file poolslot.h.

6.32.4.7 template<class BaseType, class CoType> friend classABA_POOL< ABA_VARIABLE ,
ABA_CONSTRAINT > [friend]

Definition at line 86 of file poolslot.h.

6.32.4.8 template<class BaseType, class CoType> friend classABA_POOL< BaseType, CoType>
[friend]

Definition at line 78 of file poolslot.h.

6.32.4.9 template<class BaseType, class CoType> friend class ABA_POOLSLOTREF <

ABA_CONSTRAINT , ABA_VARIABLE > [friend]

Definition at line 83 of file poolslot.h.

6.32.4.10 template<class BaseType, class CoType> friend class ABA_POOLSLOTREF <

ABA_VARIABLE , ABA_CONSTRAINT > [friend]

Definition at line 84 of file poolslot.h.

6.32.4.11 template<class BaseType, class CoType> friend classABA_POOLSLOTREF < BaseType,
CoType> [friend]

Definition at line 77 of file poolslot.h.

6.32.4.12 template<class BaseType, class CoType> friend class ABA_STANDARDPOOL <

ABA_CONSTRAINT , ABA_VARIABLE > [friend]

Definition at line 87 of file poolslot.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.32 ABA_POOLSLOT< BaseType, CoType> Class Template Reference 363

6.32.4.13 template<class BaseType, class CoType> friend class ABA_STANDARDPOOL <

ABA_VARIABLE , ABA_CONSTRAINT > [friend]

Definition at line 88 of file poolslot.h.

6.32.4.14 template<class BaseType, class CoType> friend classABA_STANDARDPOOL < BaseType,
CoType> [friend]

Definition at line 79 of file poolslot.h.

6.32.4.15 template<class BaseType, class CoType> friend classABA_SUB [friend]

Definition at line 82 of file poolslot.h.

6.32.5 Member Data Documentation

6.32.5.1 template<class BaseType, class CoType> BaseType∗ ABA_POOLSLOT < BaseType, CoType
>::conVar_ [private]

A pointer to the constraint/variable.

Definition at line 186 of file poolslot.h.

6.32.5.2 template<class BaseType, class CoType> ABA_MASTER ∗ ABA_POOLSLOT < BaseType,
CoType>::master_ [private]

A pointer to the corresponding master of the optimization.

Definition at line 182 of file poolslot.h.

6.32.5.3 template<class BaseType, class CoType> ABA_POOL<BaseType, CoType>∗
ABA_POOLSLOT < BaseType, CoType>::pool_ [private]

A pointer to the corresponding pool.

Definition at line 194 of file poolslot.h.

6.32.5.4 template<class BaseType, class CoType> unsigned longABA_POOLSLOT < BaseType, CoType
>::version_ [private]

The version of the constraint in the slot.

Definition at line 190 of file poolslot.h.

The documentation for this class was generated from the following file:

• Include/abacus/poolslot.h

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

364 Reference Manual

6.33 ABA_POOLSLOTREF< BaseType, CoType> Class Template Ref-
erence

we do not refer directly to constraints/variables but storea pointer to a pool slot and memorize the version number
of the slot at initialization time of the class ABA_POOLSLOTREF.

#include <poolslotref.h>

Inheritance diagram for ABA_POOLSLOTREF< BaseType, CoType>::

ABA_POOLSLOTREF< BaseType, CoType >

ABA_ABACUSROOT

Public Member Functions

• ABA_POOLSLOTREF(ABA_MASTER ∗master)

• ABA_POOLSLOTREF(ABA_POOLSLOT< BaseType, CoType> ∗slot)

• ABA_POOLSLOTREF(constABA_POOLSLOTREF< BaseType, CoType> &rhs)

The copy constructor may increments the reference counter of the constraint/variable only if version number of the
slot and version number of the reference are equal, since otherwise thisis not a correct reference toslot_->conVar().

• ∼ABA_POOLSLOTREF()

The destructor sends a message to the constraint that it will no longer be referred from this place in the program.

• BaseType∗ conVar() const

• unsigned longversion() const

• ABA_POOLSLOT< BaseType, CoType> ∗ slot () const

• void slot (ABA_POOLSLOT< BaseType, CoType> ∗s)

This version of the functionslot() initializes the referenced pool slot.

Private Member Functions

• void printDifferentVersionError() const

• constABA_POOLSLOTREF< BaseType, CoType> & operator=(constABA_POOLSLOTREF< Base-
Type, CoType> &rhs)

Private Attributes

• ABA_MASTER ∗ master_

• ABA_POOLSLOT< BaseType, CoType> ∗ slot_

• unsigned longversion_

The version number of the slot at construction/initialization time of this reference.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.33 ABA_POOLSLOTREF< BaseType, CoType> Class Template Reference365

Friends

• ostream &operator<< (ostream &out, constABA_POOLSLOTREF&rhs)

The output operator writes the constraint/variable stored in the referencedslot to an output stream.

6.33.1 Detailed Description

template<class BaseType, class CoType> class ABA_POOLSLOTREF< BaseType, CoType>

we do not refer directly to constraints/variables but storea pointer to a pool slot and memorize the version number
of the slot at initialization time of the class ABA_POOLSLOTREF.

Definition at line 54 of file poolslotref.h.

6.33.2 Constructor & Destructor Documentation

6.33.2.1 template<class BaseType, class CoType> ABA_POOLSLOTREF < BaseType, CoType
>::ABA_POOLSLOTREF (ABA_MASTER ∗ master)

This constructor generates an object referencing to no poolslot.

Parameters:
master A pointer to the corresponding master of the optimization.

6.33.2.2 template<class BaseType, class CoType> ABA_POOLSLOTREF < BaseType, CoType
>::ABA_POOLSLOTREF (ABA_POOLSLOT < BaseType, CoType> ∗ slot)

This constructor initializes the reference to a pool slot with a given slot.

Also the constraint/variable contained in this slot receives a message that a new references to it is created.

Parameters:
slot The pool slot that is referenced now.

6.33.2.3 template<class BaseType, class CoType> ABA_POOLSLOTREF < BaseType, CoType
>::ABA_POOLSLOTREF (constABA_POOLSLOTREF < BaseType, CoType> & rhs)

The copy constructor may increments the reference counter of the constraint/variable only if version number of
the slot and version number of the reference are equal, sinceotherwise this is not a correct reference toslot_-
>conVar().

Parameters:
rhs The pool slot that is copied in the initialization process.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

366 Reference Manual

6.33.2.4 template<class BaseType, class CoType> ABA_POOLSLOTREF < BaseType, CoType
>::∼ABA_POOLSLOTREF ()

The destructor sends a message to the constraint that it willno longer be referred from this place in the program.

If the version number of the reference and the version numberof the slot do not equal, we must not decrement the
reference counter ofslot_->conVar()because this is not a correct reference to this constraint/variable.

6.33.3 Member Function Documentation

6.33.3.1 template<class BaseType, class CoType> BaseType∗ ABA_POOLSLOTREF < BaseType,
CoType>::conVar () const

Returns:
A pointer to the constraint/variable stored in the referenced slot if the version number of the slot is equal to
the version number at construction/initialization time ofthis slot. Otherwise, it returns 0.

6.33.3.2 template<class BaseType, class CoType> constABA_POOLSLOTREF <BaseType, CoType>&
ABA_POOLSLOTREF < BaseType, CoType>::operator= (const ABA_POOLSLOTREF <

BaseType, CoType> & rhs) [private]

6.33.3.3 template<class BaseType, class CoType> void ABA_POOLSLOTREF < BaseType, CoType
>::printDifferentVersionError () const [private]

6.33.3.4 template<class BaseType, class CoType> void ABA_POOLSLOTREF < BaseType, CoType
>::slot (ABA_POOLSLOT < BaseType, CoType> ∗ s)

This version of the functionslot() initializes the referenced pool slot.

The functionslot() may decrement the reference counter ofslot_->conVar()only if the version number of the
reference and the version number of the slot are equal since otherwise this is not a valid reference.

Parameters:
s The new slot that is referenced. This must not be a 0-pointer.

6.33.3.5 template<class BaseType, class CoType> ABA_POOLSLOT <BaseType, CoType>∗
ABA_POOLSLOTREF < BaseType, CoType>::slot () const

Returns:
A pointer to the referenced slot.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.33 ABA_POOLSLOTREF< BaseType, CoType> Class Template Reference367

6.33.3.6 template<class BaseType, class CoType> unsigned longABA_POOLSLOTREF < BaseType,
CoType>::version () const

Returns:
The version number of the constraint/variable stored in thereferenced slot at construction time of the reference
to this slot.

6.33.4 Friends And Related Function Documentation

6.33.4.1 template<class BaseType, class CoType> ostream& operator<< (ostream & out, const
ABA_POOLSLOTREF < BaseType, CoType> & rhs) [friend]

The output operator writes the constraint/variable storedin the referenced slot to an output stream.

Returns:
A reference to the output stream.

Parameters:
out The output stream.

rhs The reference to a pool slot being output.

6.33.5 Member Data Documentation

6.33.5.1 template<class BaseType, class CoType> ABA_MASTER ∗ ABA_POOLSLOTREF < BaseType,
CoType>::master_ [private]

A pointer to the corresponding master of the optimization.

Definition at line 151 of file poolslotref.h.

6.33.5.2 template<class BaseType, class CoType> ABA_POOLSLOT <BaseType, CoType>∗
ABA_POOLSLOTREF < BaseType, CoType>::slot_ [private]

A pointer to the referenced pool slot.

Definition at line 155 of file poolslotref.h.

6.33.5.3 template<class BaseType, class CoType> unsigned longABA_POOLSLOTREF < BaseType,
CoType>::version_ [private]

The version number of the slot at construction/initialization time of this reference.

Definition at line 160 of file poolslotref.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

368 Reference Manual

The documentation for this class was generated from the following file:

• Include/abacus/poolslotref.h

6.34 ABA_ROW Class Reference

class refines its base classABA_SPARVECfor the representation of constraints in the row format

#include <row.h>

Inheritance diagram for ABA_ROW::

ABA_ROW

ABA_SPARVEC

ABA_ABACUSROOT

Public Member Functions

• ABA_ROW (ABA_GLOBAL ∗glob, int nnz, constABA_ARRAY< int > &s, constABA_ARRAY< dou-
ble> &c, constABA_CSENSEsense, double r)

• ABA_ROW (ABA_GLOBAL ∗glob, int nnz, constABA_ARRAY< int > &s, constABA_ARRAY< dou-
ble> &c, constABA_CSENSE::SENSEsense, double r)

This is an equivalent constructor usingABA_CSENSE::SENSEinstead of an object of the classSENSEto initialize
the sense of the constraint.

• ABA_ROW (ABA_GLOBAL ∗glob, int nnz, int∗s, double∗c, ABA_CSENSE::SENSEsense, double r)

This is also an equivalent constructor except thatsandc are C-style arrays.

• ABA_ROW (ABA_GLOBAL ∗glob, int size)
• ∼ABA_ROW ()

The destructor.

• doublerhs() const
• void rhs(double r)

This version ofrhs()sets the right hand side of the row.

• ABA_CSENSE∗ sense()
• void sense(ABA_CSENSE&s)

This version ofsense()sets the sense of the row.

• void sense(ABA_CSENSE::SENSEs)

And another version ofsense()to set the sense of the row.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.34 ABA_ROW Class Reference 369

• void copy(constABA_ROW &row)

Behaves like an assignment operator, however, the maximal number of the elements of this row only has to be at
least the number of nonzeros ofrow.

• void delInd(ABA_BUFFER< int > &buf, double rhsDelta)

Removes the indices listed inbuf from the support of the row and subtractsrhsDeltafrom its right hand side.

Protected Attributes

• ABA_CSENSE sense_

• doublerhs_

Friends

• ostream &operator<< (ostream &out, constABA_ROW &rhs)

The output operator writes the row on an output stream in format like { -2.5x1 + 3 x3<= 7}.

6.34.1 Detailed Description

class refines its base classABA_SPARVECfor the representation of constraints in the row format

Definition at line 48 of file row.h.

6.34.2 Constructor & Destructor Documentation

6.34.2.1 ABA_ROW::ABA_ROW (ABA_GLOBAL ∗ glob, int nnz, constABA_ARRAY < int > & s, const
ABA_ARRAY < double> & c, constABA_CSENSEsense, double r)

A constructor.

Parameters:
glob A pointer to the corresponding global object.

nnz The number of nonzero elements of the row.

s The array storing the nonzero elements.

c The array storing the nonzero coefficients of the elements ofs.

senseThe sense of the row.

r The right hand side of the row.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

370 Reference Manual

6.34.2.2 ABA_ROW::ABA_ROW (ABA_GLOBAL ∗ glob, int nnz, constABA_ARRAY < int > & s, const
ABA_ARRAY < double> & c, constABA_CSENSE::SENSEsense, double r)

This is an equivalent constructor usingABA_CSENSE::SENSEinstead of an object of the classSENSEto initialize
the sense of the constraint.

6.34.2.3 ABA_ROW::ABA_ROW (ABA_GLOBAL ∗ glob, int nnz, int ∗ s, double ∗ c,
ABA_CSENSE::SENSEsense, double r)

This is also an equivalent constructor except thatsandc are C-style arrays.

6.34.2.4 ABA_ROW::ABA_ROW (ABA_GLOBAL ∗ glob, int size)

A constructor without initialization of the nonzeros of therow.

Parameters:
glob A pointer to the corresponding global object.

size The maximal numbers of nonzeros.

6.34.2.5 ABA_ROW::∼ABA_ROW ()

The destructor.

6.34.3 Member Function Documentation

6.34.3.1 void ABA_ROW::copy (constABA_ROW & row)

Behaves like an assignment operator, however, the maximal number of the elements of this row only has to be at
least the number of nonzeros ofrow.

Parameters:
row The row that is copied.

6.34.3.2 void ABA_ROW::delInd (ABA_BUFFER< int > & buf, double rhsDelta)

Removes the indices listed inbuf from the support of the row and subtractsrhsDeltafrom its right hand side.

Parameters:
buf The components being removed from the row.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.34 ABA_ROW Class Reference 371

rhsDelta The correction of the right hand side of the row.

6.34.3.3 void ABA_ROW::rhs (doubler) [inline]

This version ofrhs()sets the right hand side of the row.

Parameters:
r The new value of the right hand side.

Definition at line 195 of file row.h.

6.34.3.4 double ABA_ROW::rhs () const [inline]

Returns:
The right hand side stored in the row format.

Definition at line 190 of file row.h.

6.34.3.5 void ABA_ROW::sense (ABA_CSENSE::SENSEs) [inline]

And another version ofsense()to set the sense of the row.

Parameters:
s The new sense of the row.

Definition at line 210 of file row.h.

6.34.3.6 void ABA_ROW::sense (ABA_CSENSE& s) [inline]

This version ofsense()sets the sense of the row.

Parameters:
s The new sense of the row.

Definition at line 205 of file row.h.

6.34.3.7 ABA_CSENSE∗ ABA_ROW::sense () [inline]

Returns:
A pointer to the sense of the row.

Definition at line 200 of file row.h.

6.34.4 Friends And Related Function Documentation

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

372 Reference Manual

6.34.4.1 ostream& operator<< (ostream & out, constABA_ROW & rhs) [friend]

The output operator writes the row on an output stream in format like { -2.5 x1 + 3 x3<= 7}.

Only variables with nonzero coefficients are output. The output operator does neither output a’+’ before the first
coefficient of a row, if it is positive, nor outputs coefficients with absolute value 1.

Returns:
A reference to the output stream.

Parameters:
out The output stream.

rhs The row being output.

6.34.5 Member Data Documentation

6.34.5.1 doubleABA_ROW::rhs_ [protected]

The right hand side of the row.

Definition at line 186 of file row.h.

6.34.5.2 ABA_CSENSE ABA_ROW::sense_ [protected]

The sense of the row.

Definition at line 182 of file row.h.

The documentation for this class was generated from the following file:

• Include/abacus/row.h

6.35 ABA_COLUMN Class Reference

class ABA_COLUMN refinesABA_SPARVECfor the representation of variables in column format.

#include <column.h>

Inheritance diagram for ABA_COLUMN::

ABA_COLUMN

ABA_SPARVEC

ABA_ABACUSROOT

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.35 ABA_COLUMN Class Reference 373

Public Member Functions

• ABA_COLUMN (ABA_GLOBAL ∗glob, double obj, double lb, double ub, int nnz,ABA_ARRAY< int >

&s, ABA_ARRAY< double> &c)

• ABA_COLUMN (ABA_GLOBAL ∗glob, int maxNnz)

• ABA_COLUMN (ABA_GLOBAL ∗glob, double obj, double lb, double ub,ABA_SPARVEC&vec)

• ∼ABA_COLUMN ()

• doubleobj () const

• void obj (double c)

This version of the functionobj() sets the objective function coefficient of the column.

• doublelBound() const

• void lBound(double l)

This version of the functionlBound()sets the lower bound of the column.

• doubleuBound() const

• void uBound(double u)

This version of the functionuBound()sets the upper bound of the column.

• void copy(constABA_COLUMN &col)

Is very similar to the assignment operator, yet the columns do not have tobe of equal size. A reallocation is performed
if required.

Private Attributes

• doubleobj_

• doublelBound_

• doubleuBound_

Friends

• ostream &operator<< (ostream &out, constABA_COLUMN &rhs)

6.35.1 Detailed Description

class ABA_COLUMN refinesABA_SPARVECfor the representation of variables in column format.

Definition at line 44 of file column.h.

6.35.2 Constructor & Destructor Documentation

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

374 Reference Manual

6.35.2.1 ABA_COLUMN::ABA_COLUMN (ABA_GLOBAL ∗ glob, doubleobj, double lb, doubleub, int
nnz, ABA_ARRAY < int > & s, ABA_ARRAY < double> & c)

A constructor.

Parameters:
glob A pointer to the corresponding global object.

obj {The objective function coefficient.

lb The lower bound.

ub The upper bound.

nnz The number of nonzero elements stored in the arrays|s| and|c|.

s An array of the nonzero elements of the column.

c An array of the nonzero coefficients associated with the elements of|s|.

6.35.2.2 ABA_COLUMN::ABA_COLUMN (ABA_GLOBAL ∗ glob, int maxNnz)

Another constructor generating an uninitialized column.

Parameters:
glob A pointer to the corresponding global object.

maxNnz The maximal number of nonzero elements that can be stored in the row.

6.35.2.3 ABA_COLUMN::ABA_COLUMN (ABA_GLOBAL ∗ glob, doubleobj, double lb, doubleub,
ABA_SPARVEC & vec)

A constructor using a sparse vector for the initialization.

Parameters:
glob A pointer to the corresponding global object.

obj The objective function coefficient.

lb The lower bound.

ub The upper bound.

vec A sparse vector storing the support and the coefficients of the column.

6.35.2.4 ABA_COLUMN::∼ABA_COLUMN ()

6.35.3 Member Function Documentation

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.35 ABA_COLUMN Class Reference 375

6.35.3.1 void ABA_COLUMN::copy (constABA_COLUMN & col)

Is very similar to the assignment operator, yet the columns do not have to be of equal size. A reallocation is
performed if required.

Parameters:
col The column that is copied.

6.35.3.2 void ABA_COLUMN::lBound (double l) [inline]

This version of the functionlBound()sets the lower bound of the column.

Parameters:
l The new value of the lower bound.

Definition at line 187 of file column.h.

6.35.3.3 double ABA_COLUMN::lBound () const [inline]

Returns:
The lower bound of the column.

Definition at line 182 of file column.h.

6.35.3.4 void ABA_COLUMN::obj (double c) [inline]

This version of the functionobj() sets the objective function coefficient of the column.

Parameters:
c The new value of the objective function coefficient.

Definition at line 177 of file column.h.

6.35.3.5 double ABA_COLUMN::obj () const [inline]

Returns:
The objective function coefficient of the column.

Definition at line 172 of file column.h.

6.35.3.6 void ABA_COLUMN::uBound (doubleu) [inline]

This version of the functionuBound()sets the upper bound of the column.

Parameters:
u The new value of the upper bound.

Definition at line 197 of file column.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

376 Reference Manual

6.35.3.7 double ABA_COLUMN::uBound () const [inline]

Returns:
The upper bound of the column.

Definition at line 192 of file column.h.

6.35.4 Friends And Related Function Documentation

6.35.4.1 ostream& operator<< (ostream & out, constABA_COLUMN & rhs) [friend]

The output operator.

Returns:
A reference to the output stream.

Parameters:
out The output stream.

rhs The column being output.

6.35.5 Member Data Documentation

6.35.5.1 doubleABA_COLUMN::lBound_ [private]

The lower bound of the column.

Definition at line 164 of file column.h.

6.35.5.2 doubleABA_COLUMN::obj_ [private]

The objective function coefficient of the column.

Definition at line 160 of file column.h.

6.35.5.3 doubleABA_COLUMN::uBound_ [private]

The upper bound of the column.

Definition at line 168 of file column.h.

The documentation for this class was generated from the following file:

• Include/abacus/column.h

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.36 ABA_NUMCON Class Reference 377

6.36 ABA_NUMCON Class Reference

Like the classABA_NUMVAR for variables we provide the class ABA_NUMCON for constraints which are
uniquely defined by an integer number.

#include <numcon.h>

Inheritance diagram for ABA_NUMCON::

ABA_NUMCON

ABA_CONSTRAINT

ABA_CONVAR

ABA_ABACUSROOT

Public Member Functions

• ABA_NUMCON (ABA_MASTER ∗master, constABA_SUB ∗sub,ABA_CSENSE::SENSEsense, bool
dynamic, bool local, bool liftable, int number, double rhs)

• virtual∼ABA_NUMCON ()

The destructor.

• virtual doublecoeff (ABA_VARIABLE ∗v)
• virtual voidprint (ostream &out)
• int number() const

Private Attributes

• int number_

Friends

• ostream &operator<< (ostream &out, constABA_NUMCON &rhs)

6.36.1 Detailed Description

Like the classABA_NUMVAR for variables we provide the class ABA_NUMCON for constraints which are
uniquely defined by an integer number.

Parameters:
int number_ The identification number of the constraint.

Definition at line 38 of file numcon.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

378 Reference Manual

6.36.2 Constructor & Destructor Documentation

6.36.2.1 ABA_NUMCON::ABA_NUMCON (ABA_MASTER ∗ master, constABA_SUB ∗ sub,
ABA_CSENSE::SENSEsense, bool dynamic, bool local, bool liftable, int number, double rhs)

The constructor.

Parameters:
master A pointer to the corresponding master of the optimization.

sub A pointer to the subproblem associated with the constraint.This can be also the 0-pointer.

senseThe sense of the constraint.

dynamic If this argument istrue, then the constraint can be removed from the active constraint set during the
cutting plane phase of the subproblem optimization.

local If this argument istrue, then the constraint is considered to be only locally valid.As a local constraint
is associated with a subproblem,submust not be 0 iflocal is true.

liftable If this argument istrue, then a lifting procedure must be available, i.e., that the coefficients of variables
which have not been active at generation time of the constraint can be computed.

number The identification number of the constraint.

rhs The right hand side of the constraint.

6.36.2.2 virtual ABA_NUMCON::∼ABA_NUMCON () [virtual]

The destructor.

6.36.3 Member Function Documentation

6.36.3.1 virtual double ABA_NUMCON::coeff (ABA_VARIABLE ∗ v) [virtual]

Returns:
The coefficient of the variablev.

Parameters:
v The variable of which the coefficient is determined. It must point to an object of the classABA_COLVAR.

ImplementsABA_CONSTRAINT.

6.36.3.2 int ABA_NUMCON::number () const [inline]

Returns:
Returns the identification number of the constraint.

Definition at line 130 of file numcon.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.37 ABA_ROWCON Class Reference 379

6.36.3.3 virtual void ABA_NUMCON::print (ostream & out) [virtual]

Writes the row format of the constraint on an output stream.

It redefines the virtual functionprint() of the base classABA_CONVAR.

Parameters:
out The output stream.

Reimplemented fromABA_CONVAR.

6.36.4 Friends And Related Function Documentation

6.36.4.1 ostream& operator<< (ostream & out, constABA_NUMCON & rhs) [friend]

The output operator writes the identification number and theright hand side to an output stream.

Returns:
A reference to the output stream.

Parameters:
out The output stream.

rhs The variable being output.

6.36.5 Member Data Documentation

6.36.5.1 intABA_NUMCON::number_ [private]

Definition at line 126 of file numcon.h.

The documentation for this class was generated from the following file:

• Include/abacus/numcon.h

6.37 ABA_ROWCON Class Reference

class ABA_ROWCON implements constraints stored in the classABA_ROW.

#include <rowcon.h>

Inheritance diagram for ABA_ROWCON::

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

380 Reference Manual

ABA_ROWCON

ABA_CONSTRAINT

ABA_CONVAR

ABA_ABACUSROOT

ABA_SROWCON

Public Member Functions

• ABA_ROWCON(ABA_MASTER ∗master, constABA_SUB ∗sub,ABA_CSENSE::SENSEsense, int nnz,
constABA_ARRAY< int > &support, constABA_ARRAY< double> &coeff, double rhs, bool dynamic,
bool local, bool liftable)

• ABA_ROWCON(ABA_MASTER ∗master, constABA_SUB ∗sub,ABA_CSENSE::SENSEsense, int nnz,
int ∗support, double∗coeff, double rhs, bool dynamic, bool local, bool liftable)

This constructor is equivalent to the previous constructor except that it uses C-style arrays forsupportandcoeff.

• virtual∼ABA_ROWCON()

The destructor.

• virtual doublecoeff (ABA_VARIABLE ∗v)

Computes the coefficient of a variable which must be of typeABA_NUMVAR.

• virtual voidprint (ostream &out)

• ABA_ROW ∗ row ()

Protected Attributes

• ABA_ROW row_

6.37.1 Detailed Description

class ABA_ROWCON implements constraints stored in the classABA_ROW.

Definition at line 44 of file rowcon.h.

6.37.2 Constructor & Destructor Documentation

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.37 ABA_ROWCON Class Reference 381

6.37.2.1 ABA_ROWCON::ABA_ROWCON (ABA_MASTER ∗ master, constABA_SUB ∗ sub,
ABA_CSENSE::SENSEsense, int nnz, constABA_ARRAY < int > & support, const
ABA_ARRAY < double> & coeff, double rhs, bool dynamic, bool local, bool liftable)

The constructor.

Parameters:
master A pointer to the corresponding master of the optimization.

sub A pointer to the subproblem associated with the constraint.This can also be the 0-pointer.

senseThe sense of the constraint.

nnz The number of nonzero elements of the constraint.

support The array storing the variables with nonzero coefficients.

coeff The nonzero coefficients of the variables stored insupport.

rhs The right hand side of the constraint.

dynamic If this argument istrue, then the constraint can be removed from the active constraint set during the
cutting plane phase of the subproblem optimization.

local If this argument istrue, then the constraint is considered to be only locally valid.As a locally valid
constraint is associated with a subproblem,submust not be 0 iflocal is true.

liftable If this argument istrue, then a lifting procedure must be available, i.e., that the coefficients of variables
which have not been active at generation time of the constraint can be computed.

6.37.2.2 ABA_ROWCON::ABA_ROWCON (ABA_MASTER ∗ master, constABA_SUB ∗ sub,
ABA_CSENSE::SENSEsense, int nnz, int ∗ support, double∗ coeff, double rhs, bool dynamic,
bool local, bool liftable)

This constructor is equivalent to the previous constructorexcept that it uses C-style arrays forsupportandcoeff.

6.37.2.3 virtual ABA_ROWCON::∼ABA_ROWCON () [virtual]

The destructor.

6.37.3 Member Function Documentation

6.37.3.1 virtual double ABA_ROWCON::coeff (ABA_VARIABLE ∗ v) [virtual]

Computes the coefficient of a variable which must be of typeABA_NUMVAR .

It redefines the virtual functioncoeff()of the base classABA_CONSTRAINT.

Warning:
The worst case complexity of the call of this function is the number of nonzero elements of the constraint.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

382 Reference Manual

Returns:
The coefficient of the variablev.

Parameters:
v The variable of which the coefficient is determined.

ImplementsABA_CONSTRAINT.

6.37.3.2 virtual void ABA_ROWCON::print (ostream & out) [virtual]

Writes the row format of the constraint on an output stream.

It redefines the virtual functionprint() of the base classABA_CONVAR.

Parameters:
out The output stream.

Reimplemented fromABA_CONVAR.

6.37.3.3 ABA_ROW ∗ ABA_ROWCON::row () [inline]

Returns:
A pointer to the object of the classABA_ROW representing the constraint.

Definition at line 158 of file rowcon.h.

6.37.4 Member Data Documentation

6.37.4.1 ABA_ROW ABA_ROWCON::row_ [protected]

The representation of the constraint.

Definition at line 154 of file rowcon.h.

The documentation for this class was generated from the following file:

• Include/abacus/rowcon.h

6.38 ABA_NUMVAR Class Reference

class is derived from the classABA_VARIABLE and implements a variable which is uniquely defined by a number

#include <numvar.h>

Inheritance diagram for ABA_NUMVAR::

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.38 ABA_NUMVAR Class Reference 383

ABA_NUMVAR

ABA_VARIABLE

ABA_CONVAR

ABA_ABACUSROOT

Public Member Functions

• ABA_NUMVAR (ABA_MASTER ∗master, constABA_SUB ∗sub, int number, bool dynamic, bool local,
double obj, double lBound, double uBound,ABA_VARTYPE::TYPEtype)

• virtual∼ABA_NUMVAR ()

The destructor.

• int number() const

Protected Attributes

• int number_

Friends

• ostream &operator<< (ostream &out, constABA_NUMVAR &rhs)

6.38.1 Detailed Description

class is derived from the classABA_VARIABLE and implements a variable which is uniquely defined by a number

Definition at line 38 of file numvar.h.

6.38.2 Constructor & Destructor Documentation

6.38.2.1 ABA_NUMVAR::ABA_NUMVAR (ABA_MASTER ∗ master, constABA_SUB ∗ sub, int number,
bool dynamic, bool local, doubleobj, double lBound, doubleuBound, ABA_VARTYPE::TYPE
type)

The constructor.

Parameters:
master A pointer to the corresponding master of the optimization.

sub A pointer to the subproblem associated with variable. This can also be the 0-pointer.

number The number of the column associated with the variable.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

384 Reference Manual

dynamic If this argument istrue, then the variable can also be removed again from the set of active variables
after it is added once.

local If this argument istrue, then the variable is only locally valid, otherwise it is globally valid. As a locally
valid variable is associated with a subproblem,submust not be 0, iflocal is true.

obj The objective function coefficient of the variable.

lBound The lower bound of the variable.

uBound The upper Bound of the variable.

type The type of the variable.

6.38.2.2 virtual ABA_NUMVAR:: ∼ABA_NUMVAR () [virtual]

The destructor.

6.38.3 Member Function Documentation

6.38.3.1 int ABA_NUMVAR::number () const [inline]

Returns:
The number of the variable.

Definition at line 133 of file numvar.h.

6.38.4 Friends And Related Function Documentation

6.38.4.1 ostream& operator<< (ostream & out, constABA_NUMVAR & rhs) [friend]

Writes the number of the variable to an output stream.

Returns:
A reference to the output stream.

Parameters:
out The output stream.

rhs The variable being output.

6.38.5 Member Data Documentation

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.39 ABA_SROWCON Class Reference 385

6.38.5.1 intABA_NUMVAR::number_ [protected]

The identification number of the variable.

Definition at line 129 of file numvar.h.

The documentation for this class was generated from the following file:

• Include/abacus/numvar.h

6.39 ABA_SROWCON Class Reference

The member functionsgenRow()andslack()of the classABA_ROWCON can be significantly improved if the
variable set is static, i.e., no variables are added or removed during the optimization.

#include <srowcon.h>

Inheritance diagram for ABA_SROWCON::

ABA_SROWCON

ABA_ROWCON

ABA_CONSTRAINT

ABA_CONVAR

ABA_ABACUSROOT

Public Member Functions

• ABA_SROWCON(ABA_MASTER ∗master, constABA_SUB ∗sub, ABA_CSENSE::SENSEsense, int
nnz, constABA_ARRAY< int > &support, constABA_ARRAY< double> &coeff, double rhs, bool
dynamic, bool local, bool liftable)

• ABA_SROWCON(ABA_MASTER ∗master, constABA_SUB ∗sub, ABA_CSENSE::SENSEsense, int
nnz, int∗support, double∗coeff, double rhs, bool dynamic, bool local, bool liftable)

This constructor is equivalent to the previous constructor except that it uses C-style arrays forsupportandcoeff.

• virtual∼ABA_SROWCON()

The destructor.

• virtual int genRow (ABA_ACTIVE< ABA_VARIABLE , ABA_CONSTRAINT > ∗var, ABA_ROW
&row)

Generates the row format of the constraint associated with the variable setvar.

• virtual doubleslack(ABA_ACTIVE< ABA_VARIABLE , ABA_CONSTRAINT> ∗variables, double∗x)

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

386 Reference Manual

6.39.1 Detailed Description

The member functionsgenRow()andslack()of the classABA_ROWCON can be significantly improved if the
variable set is static, i.e., no variables are added or removed during the optimization.

Definition at line 39 of file srowcon.h.

6.39.2 Constructor & Destructor Documentation

6.39.2.1 ABA_SROWCON::ABA_SROWCON (ABA_MASTER ∗ master, constABA_SUB ∗ sub,
ABA_CSENSE::SENSEsense, int nnz, constABA_ARRAY < int > & support, const
ABA_ARRAY < double> & coeff, double rhs, bool dynamic, bool local, bool liftable)

The constructor.

Parameters:
master A pointer to the corresponding master of the optimization.

sub A pointer to the subproblem associated with the constraint.This can be also the 0-pointer.

senseThe sense of the constraint.

nnz The number of nonzero elements of the constraint.

support The array storing the variables with nonzero coefficients.

coeff The nonzero coefficients of the variables stored insupport.

rhs The right hand side of the constraint.

dynamic If this argument istrue, then the constraint can be removed from the active constraint set during the
cutting plane phase of the subproblem optimization.

local If this argument istrue, then the constraint is considered to be only locally valid.As a locally valid
constraint is associated with a subproblem,submust not be 0 iflocal is true.

liftable If this argument istrue, then a lifting procedure must be available, i.e., that the coefficients of variables
which have not been active at generation time of the constraint can be computed.

6.39.2.2 ABA_SROWCON::ABA_SROWCON (ABA_MASTER ∗ master, constABA_SUB ∗ sub,
ABA_CSENSE::SENSEsense, int nnz, int ∗ support, double∗ coeff, double rhs, bool dynamic,
bool local, bool liftable)

This constructor is equivalent to the previous constructorexcept that it uses C-style arrays forsupportandcoeff.

6.39.2.3 virtual ABA_SROWCON::∼ABA_SROWCON () [virtual]

The destructor.

6.39.3 Member Function Documentation

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.40 ABA_COLVAR Class Reference 387

6.39.3.1 virtual int ABA_SROWCON::genRow (ABA_ACTIVE < ABA_VARIABLE ,
ABA_CONSTRAINT > ∗ var, ABA_ROW & row) [virtual]

Generates the row format of the constraint associated with the variable setvar.

This function redefines a virtual function of the base classABA_ROWCON.

Returns:
It returns the number of nonzero elements in the row format.

Parameters:
var The variable set for which the row format is generated is onlya dummy since the the variable set is

assumed to be fixed for this constraint class.

row Holds the row format of the constraint after the execution ofthis function.

Reimplemented fromABA_CONSTRAINT.

6.39.3.2 virtual double ABA_SROWCON::slack (ABA_ACTIVE < ABA_VARIABLE ,
ABA_CONSTRAINT > ∗ variables, double∗ x) [virtual]

Computes the slack of a vector associated with the variable setvariables.

This function redefines a virtual function of the base classABA_ROWCON.

Returns:
The slack of the vectorx.

Parameters:
variable The variable set for which the row format is generated is onlya dummy since the the variable set is

assumed to be fixed for this constraint class.

x An array of length equal to the number of variables.

Reimplemented fromABA_CONSTRAINT.

The documentation for this class was generated from the following file:

• Include/abacus/srowcon.h

6.40 ABA_COLVAR Class Reference

Some optimization problems, in particular column generation problems, are better described from a variable point
of view instead of a constraint point of view. For such context we provide the class ABA_COLVAR.

#include <colvar.h>

Inheritance diagram for ABA_COLVAR::

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

388 Reference Manual

ABA_COLVAR

ABA_VARIABLE

ABA_CONVAR

ABA_ABACUSROOT

Public Member Functions

• ABA_COLVAR (ABA_MASTER ∗master, constABA_SUB ∗sub, bool dynamic, bool local, double l-
Bound, double uBound,ABA_VARTYPE::TYPE varType, double obj, int nnz,ABA_ARRAY< int >

&support,ABA_ARRAY< double> &coeff)
• ABA_COLVAR (ABA_MASTER ∗master, constABA_SUB ∗sub, bool dynamic, bool local, double l-

Bound, double uBound,ABA_VARTYPE::TYPEvarType, double obj,ABA_SPARVEC&vector)

A constructor substitutingnnz, support, and coeff of the previous constructor by an object of the class
ABA_SPARVEC.

• virtual∼ABA_COLVAR ()
• virtual voidprint (ostream &out)
• virtual doublecoeff (ABA_CONSTRAINT∗con)
• doublecoeff (int i)
• ABA_COLUMN ∗ column()

Protected Attributes

• ABA_COLUMN column_

Friends

• ostream &operator<< (ostream &out, constABA_COLVAR &rhs)

6.40.1 Detailed Description

Some optimization problems, in particular column generation problems, are better described from a variable point
of view instead of a constraint point of view. For such context we provide the class ABA_COLVAR.

Parameters:
ABA_COLUMN column_ The column representing the variable.

Definition at line 49 of file colvar.h.

6.40.2 Constructor & Destructor Documentation

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.40 ABA_COLVAR Class Reference 389

6.40.2.1 ABA_COLVAR::ABA_COLVAR (ABA_MASTER ∗ master, constABA_SUB ∗ sub, bool
dynamic, bool local, double lBound, doubleuBound, ABA_VARTYPE::TYPE varType, double
obj, int nnz, ABA_ARRAY < int > & support, ABA_ARRAY < double> & coeff)

The constructor.

Parameters:
master A pointer to the corresponding master of the optimization.

sub A pointer to the subproblem associated with the variable. This can be also the 0-pointer.

dynamic If this argument istrue, then the variable can be removed from the active variable set during the
subproblem optimization.

local If this argument istrue, then the constraint is considered to be only locally valid.As a local variable is
associated with a subproblem,submust not be 0 if local istrue.

lBound The lower bound of the variable.

uBound The upper bound of the variable.

varType The type of the variable.

obj The objective function coefficient of the variable.

nnz The number of nonzero elements of the variable.

support The array storing the constraints with the nonzero coefficients.

coeff The nonzero coefficients of the constraints stored insupport.

6.40.2.2 ABA_COLVAR::ABA_COLVAR (ABA_MASTER ∗ master, constABA_SUB ∗ sub, bool
dynamic, bool local, double lBound, doubleuBound, ABA_VARTYPE::TYPE varType, double
obj, ABA_SPARVEC & vector)

A constructor substitutingnnz, support, and coeff of the previous constructor by an object of the class
ABA_SPARVEC.

6.40.2.3 virtual ABA_COLVAR:: ∼ABA_COLVAR () [virtual]

The destructor.

6.40.3 Member Function Documentation

6.40.3.1 double ABA_COLVAR::coeff (int i)

This version of the functioncoeff()computes the coefficient of a constraint with a given number.

Returns:
The coefficient of constrainti.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

390 Reference Manual

Parameters:
i The number of the constraint.

6.40.3.2 virtual double ABA_COLVAR::coeff (ABA_CONSTRAINT ∗ con) [virtual]

Returns:
The coefficient of the constraintcon.

Parameters:
con The constraint of which the coefficient is computed. This must be a pointer to the classABA_NUMCON.

Reimplemented fromABA_VARIABLE .

6.40.3.3 ABA_COLUMN ∗ ABA_COLVAR::column ()

Returns:
A pointer to the column representing the variable.

6.40.3.4 virtual void ABA_COLVAR::print (ostream & out) [virtual]

Writes the column representing the variable to an output stream.

It redefines the virtual functionprint() of the base classABA_CONVAR.

Parameters:
out The output stream.

Reimplemented fromABA_CONVAR.

6.40.4 Friends And Related Function Documentation

6.40.4.1 ostream& operator<< (ostream & out, constABA_COLVAR & rhs) [friend]

The output operator writes the column representing the variable to an output stream.

Returns:
A reference to the output stream.

Parameters:
out The output stream.

rhs The variable being output.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.41 ABA_ACTIVE< BaseType, CoType> Class Template Reference 391

6.40.5 Member Data Documentation

6.40.5.1 ABA_COLUMN ABA_COLVAR::column_ [protected]

Definition at line 161 of file colvar.h.

The documentation for this class was generated from the following file:

• Include/abacus/colvar.h

6.41 ABA_ACTIVE< BaseType, CoType> Class Template Reference

template class implements the sets of act ive constraints and variables which are associated w ith each subproblem

#include <active.h>

Inheritance diagram for ABA_ACTIVE< BaseType, CoType>::

ABA_ACTIVE< BaseType, CoType >

ABA_ABACUSROOT

Public Member Functions

• ABA_ACTIVE (ABA_MASTER ∗master, int max)
• ABA_ACTIVE (ABA_MASTER ∗master,ABA_ACTIVE ∗a, int max)

In addition to the previous constructor, this constructor initializes the active set.

• ABA_ACTIVE (constABA_ACTIVE< BaseType, CoType> &rhs)
• ∼ABA_ACTIVE ()

The destructor.

• int number() const
• int max() const
• BaseType∗ operator[](int i)
• ABA_POOLSLOTREF< BaseType, CoType> ∗ poolSlotRef(int i)
• void insert(ABA_POOLSLOT< BaseType, CoType> ∗ps)
• void insert(ABA_BUFFER< ABA_POOLSLOT< BaseType, CoType> ∗ > &ps)

Is overloaded that also several items can be added at the same time.

• void remove(ABA_BUFFER< int > &del)

Removes items from the list of active items.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

392 Reference Manual

• void realloc(int newSize)

Changes the maximum number of active items which can be stored in an object of this class.

• int redundantAge(int i) const
• void incrementRedundantAge(int i)

Increments the number of iterations the itemi is already redundant by 1.

• void resetRedundantAge(int i)

Private Member Functions

• constABA_ACTIVE< BaseType, CoType> & operator=(constABA_ACTIVE< BaseType, CoType>
&rhs)

Private Attributes

• ABA_MASTER ∗ master_
• int n_
• ABA_ARRAY< ABA_POOLSLOTREF< BaseType, CoType> ∗ > active_
• ABA_ARRAY< int > redundantAge_

Friends

• ostream &operator<< (ostream &out, constABA_ACTIVE< BaseType, CoType> &rhs)

The output operator writes all active constraints and variables to an outputstream. If an associated pool slot is
void, or the item is newer than the one we refer to, then"void" is output.

6.41.1 Detailed Description

template<class BaseType, class CoType> class ABA_ACTIVE< BaseType, CoType>

template class implements the sets of act ive constraints and variables which are associated w ith each subproblem

Definition at line 62 of file active.h.

6.41.2 Constructor & Destructor Documentation

6.41.2.1 template<class BaseType, class CoType> ABA_ACTIVE < BaseType, CoType>::ABA_ACTIVE
(ABA_MASTER ∗ master, int max)

The constructor.

Parameters:
master A pointer to the corresponding master of the optimization.

max The maximal number of active constraints/variables.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.41 ABA_ACTIVE< BaseType, CoType> Class Template Reference 393

6.41.2.2 template<class BaseType, class CoType> ABA_ACTIVE < BaseType, CoType>::ABA_ACTIVE
(ABA_MASTER ∗ master, ABA_ACTIVE < BaseType, CoType> ∗ a, int max)

In addition to the previous constructor, this constructor initializes the active set.

Parameters:
master A pointer to the corresponding master of the optimization.

a At mostmaxactive constraints/variables are taken from this set.

max The maximal number of active constraints/variables.

6.41.2.3 template<class BaseType, class CoType> ABA_ACTIVE < BaseType, CoType>::ABA_ACTIVE
(constABA_ACTIVE < BaseType, CoType> & rhs)

The copy constructor.

Parameters:
rhs The active set that is copied.

6.41.2.4 template<class BaseType, class CoType> ABA_ACTIVE < BaseType, CoType
>::∼ABA_ACTIVE ()

The destructor.

6.41.3 Member Function Documentation

6.41.3.1 template<class BaseType, class CoType> void ABA_ACTIVE < BaseType, CoType
>::incrementRedundantAge (int i)

Increments the number of iterations the itemi is already redundant by 1.

Parameters:
i The index of the constraint/variable.

6.41.3.2 template<class BaseType, class CoType> void ABA_ACTIVE < BaseType, CoType>::insert
(ABA_BUFFER< ABA_POOLSLOT < BaseType, CoType> ∗ > & ps)

Is overloaded that also several items can be added at the sametime.

Parameters:
ps The buffer storing the pool slots of all constraints/variables that are added.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

394 Reference Manual

6.41.3.3 template<class BaseType, class CoType> void ABA_ACTIVE < BaseType, CoType>::insert
(ABA_POOLSLOT < BaseType, CoType> ∗ ps)

Adds a constraint/variable to the active items.

Parameters:
ps The pool slot storing the constraint/variable being added.

6.41.3.4 template<class BaseType, class CoType> int ABA_ACTIVE < BaseType, CoType>::max ()
const

Returns:
The maximum number of storable active items (without reallocation).

6.41.3.5 template<class BaseType, class CoType> int ABA_ACTIVE < BaseType, CoType>::number ()
const

Returns:
The current number of active items.

6.41.3.6 template<class BaseType, class CoType> constABA_ACTIVE <BaseType, CoType>&
ABA_ACTIVE < BaseType, CoType>::operator= (const ABA_ACTIVE < BaseType, CoType>
& rhs) [private]

6.41.3.7]

template<class BaseType, class CoType> BaseType∗ ABA_ACTIVE< BaseType, CoType>::operator[] (inti)

The operator [].

Returns:
A pointer to thei-th active item or
0 if this item has been removed in the meantime.

Parameters:
i The number of the active item.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.41 ABA_ACTIVE< BaseType, CoType> Class Template Reference 395

6.41.3.8 template<class BaseType, class CoType> ABA_POOLSLOTREF <BaseType, CoType>∗
ABA_ACTIVE < BaseType, CoType>::poolSlotRef (int i)

Returns:
The i-th entry in theABA_ARRAY active.

Parameters:
i The number of the active item.

6.41.3.9 template<class BaseType, class CoType> void ABA_ACTIVE < BaseType, CoType>::realloc
(int newSize)

Changes the maximum number of active items which can be stored in an object of this class.

Parameters:
newSizeThe new maximal number of active items.

6.41.3.10 template<class BaseType, class CoType> int ABA_ACTIVE < BaseType, CoType
>::redundantAge (int i) const

Returns:
The number of iterations a constraint/variable is already redundant.

6.41.3.11 template<class BaseType, class CoType> void ABA_ACTIVE < BaseType, CoType>::remove
(ABA_BUFFER< int > & del)

Removes items from the list of active items.

Parameters:
del The numbers of the items that should be removed. These numbers must be upward sorted.

6.41.3.12 template<class BaseType, class CoType> void ABA_ACTIVE < BaseType, CoType
>::resetRedundantAge (int i)

the number of iterations itemi is redundant to 0.

Parameters:
i The index of the constraint/variable.

6.41.4 Friends And Related Function Documentation

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

396 Reference Manual

6.41.4.1 template<class BaseType, class CoType> ostream& operator<< (ostream & out, const
ABA_ACTIVE < BaseType, CoType> & rhs) [friend]

The output operator writes all active constraints and variables to an output stream. If an associated pool slot is
void, or the item is newer than the one we refer to, then"void" is output.

Returns:
A reference to the output stream.

Parameters:
out The output stream.

rhs The active set being output.

6.41.5 Member Data Documentation

6.41.5.1 template<class BaseType, class CoType> ABA_ARRAY <ABA_POOLSLOTREF <BaseType,
CoType> ∗> ABA_ACTIVE < BaseType, CoType>::active_ [private]

The array storing references to the pool slots of the active items.

Definition at line 263 of file active.h.

6.41.5.2 template<class BaseType, class CoType> ABA_MASTER ∗ ABA_ACTIVE < BaseType, CoType
>::master_ [private]

A pointer to corresponding master of the optimization.

Definition at line 256 of file active.h.

6.41.5.3 template<class BaseType, class CoType> int ABA_ACTIVE < BaseType, CoType>::n_
[private]

The number of active items.

Definition at line 259 of file active.h.

6.41.5.4 template<class BaseType, class CoType> ABA_ARRAY <int> ABA_ACTIVE < BaseType,
CoType>:: redundantAge_ [private]

The number of iterations a constraint is already redundant.

Definition at line 267 of file active.h.

The documentation for this class was generated from the following file:

• Include/abacus/active.h

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.42 ABA_CUTBUFFER< BaseType, CoType> Class Template Reference 397

6.42 ABA_CUTBUFFER< BaseType, CoType> Class Template Refer-
ence

template class implements a buffer for constraints and variables which are generated during the cutting plane or
column generation phase.

#include <cutbuffer.h>

Inheritance diagram for ABA_CUTBUFFER< BaseType, CoType>::

ABA_CUTBUFFER< BaseType, CoType >

ABA_ABACUSROOT

Public Member Functions

• ABA_CUTBUFFER(ABA_MASTER ∗master, int size)
• ∼ABA_CUTBUFFER()
• int size() const
• int number() const
• int space() const
• int insert(ABA_POOLSLOT< BaseType, CoType> ∗slot, bool keepInPool)
• int insert(ABA_POOLSLOT< BaseType, CoType> ∗slot, bool keepInPool, double rank)

In addition to the previous version of the functioninsert() this version also adds a rank to the item such that all
buffered items can be sorted with the functionsort().

• void remove(ABA_BUFFER< int > &index)
• ABA_POOLSLOT< BaseType, CoType> ∗ slot (int i)

Private Member Functions

• void extract(int max,ABA_BUFFER< ABA_POOLSLOT< BaseType, CoType> ∗ > &newSlots)
• void sort(int threshold)
• ABA_CUTBUFFER(constABA_CUTBUFFER< BaseType, CoType> &rhs)
• constABA_CUTBUFFER< BaseType, CoType> & operator=(constABA_CUTBUFFER< BaseType,

CoType> &rhs)

Private Attributes

• ABA_MASTER ∗ master_
• int n_
• ABA_ARRAY< ABA_POOLSLOTREF< BaseType, CoType> ∗ > psRef_
• ABA_ARRAY< bool> keepInPool_

If keepInPool_[i] is truefor a buffered constraint/variables, then it is not removed from its pool although it might be
discarded inextract().

• ABA_ARRAY< double> rank_

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

398 Reference Manual

• bool ranking_

This flag istrue if a rank for each buffered item is available. As soon as an item without rank isinserted it becomes
false.

Friends

• classABA_SUB

6.42.1 Detailed Description

template<class BaseType, class CoType> class ABA_CUTBUFFER< BaseType, CoType>

template class implements a buffer for constraints and variables which are generated during the cutting plane or
column generation phase.

Definition at line 49 of file cutbuffer.h.

6.42.2 Constructor & Destructor Documentation

6.42.2.1 template<class BaseType, class CoType> ABA_CUTBUFFER< BaseType, CoType
>::ABA_CUTBUFFER (ABA_MASTER ∗ master, int size)

The constructor.

Parameters:
master A pointer to the corresponding master of the optimization.

size The maximal number of constraints/variables which can be buffered.

6.42.2.2 template<class BaseType, class CoType> ABA_CUTBUFFER< BaseType, CoType
>::∼ABA_CUTBUFFER ()

The destructor.

If there are still items buffered when this object is destructed then we have to unset the locks of the buffered items.
This can happen if in the feasibility test constraints are generated but for some reason (e.g., due to tailing off) the
optimization of the subproblem is terminated.

6.42.2.3 template<class BaseType, class CoType> ABA_CUTBUFFER< BaseType, CoType
>::ABA_CUTBUFFER (constABA_CUTBUFFER< BaseType, CoType> & rhs) [private]

6.42.3 Member Function Documentation

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.42 ABA_CUTBUFFER< BaseType, CoType> Class Template Reference 399

6.42.3.1 template<class BaseType, class CoType> void ABA_CUTBUFFER< BaseType, CoType
>::extract (int max, ABA_BUFFER< ABA_POOLSLOT < BaseType, CoType> ∗ > & newSlots)
[private]

Takes the firstmaxitems from the buffer and clears the buffer.

Constraints or variables stored in slots which are not extracted are also removed from their pools ifkeepInPoolhas
not been set totrueat insertion time.

Parameters:
max The maximal number of extracted items.

newSlotsThe extracted items are inserted into this buffer.

6.42.3.2 template<class BaseType, class CoType> int ABA_CUTBUFFER< BaseType, CoType>::insert
(ABA_POOLSLOT < BaseType, CoType> ∗ slot, bool keepInPool, double rank)

In addition to the previous version of the functioninsert() this version also adds a rank to the item such that all
buffered items can be sorted with the functionsort().

Returns:
0 If the item can be inserted.
1 If the buffer is already full.

Parameters:
rank A rank associated with the constraint/variable.

6.42.3.3 template<class BaseType, class CoType> int ABA_CUTBUFFER< BaseType, CoType>::insert
(ABA_POOLSLOT < BaseType, CoType> ∗ slot, bool keepInPool)

Adds a slot to the buffer.

The memberranking_has to be set tofalse, because since no rank is added together with this item a ranking of all
items is impossible. Such that newly generated items cannotbe removed immediately in a cleaning up process of
the pool we set a lock which will be removed in the functionextract().

Returns:
0 If the item can be inserted.
1 If the buffer is already full.

Parameters:
slot The inserted pool slot.

keepInPool If the flagkeepInPoolis true, then the item stored in theslot is not removed from the pool, even
if it is discarded inextract(). Items regenerated from a pool should always have this flag set to true.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

400 Reference Manual

6.42.3.4 template<class BaseType, class CoType> int ABA_CUTBUFFER< BaseType, CoType
>::number () const

Returns:
The number of buffered items.

6.42.3.5 template<class BaseType, class CoType> constABA_CUTBUFFER<BaseType, CoType>&
ABA_CUTBUFFER< BaseType, CoType>::operator= (const ABA_CUTBUFFER< BaseType,
CoType> & rhs) [private]

6.42.3.6 template<class BaseType, class CoType> void ABA_CUTBUFFER< BaseType, CoType
>::remove (ABA_BUFFER< int > & index)

Removes the specified elements from the buffer.

Parameters:
index The numbers of the elements which should be removed.

6.42.3.7 template<class BaseType, class CoType> int ABA_CUTBUFFER< BaseType, CoType>::size ()
const

Returns:
The maximal number of items that can be buffered.

6.42.3.8 template<class BaseType, class CoType> ABA_POOLSLOT <BaseType, CoType>∗
ABA_CUTBUFFER< BaseType, CoType>::slot (int i)

Returns:
A pointer to thei-th ABA_POOLSLOTthat is buffered.

6.42.3.9 template<class BaseType, class CoType> void ABA_CUTBUFFER< BaseType, CoType>::sort
(int threshold) [private]

Sorts the items according to their ranks.

Parameters:
threshold Only if more thanthresholditems are buffered, the sorting is performed.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.42 ABA_CUTBUFFER< BaseType, CoType> Class Template Reference 401

6.42.3.10 template<class BaseType, class CoType> int ABA_CUTBUFFER< BaseType, CoType
>::space () const

Returns:
The number of items which can still be inserted into the buffer.

6.42.4 Friends And Related Function Documentation

6.42.4.1 template<class BaseType, class CoType> friend classABA_SUB [friend]

Definition at line 50 of file cutbuffer.h.

6.42.5 Member Data Documentation

6.42.5.1 template<class BaseType, class CoType> ABA_ARRAY <bool> ABA_CUTBUFFER<

BaseType, CoType>::keepInPool_ [private]

If keepInPool_[i] is true for a buffered constraint/variables, then it is not removedfrom its pool although it might
be discarded inextract().

Definition at line 164 of file cutbuffer.h.

6.42.5.2 template<class BaseType, class CoType> ABA_MASTER ∗ ABA_CUTBUFFER< BaseType,
CoType>::master_ [private]

A pointer to the corresponding master of the optimization.

Definition at line 150 of file cutbuffer.h.

6.42.5.3 template<class BaseType, class CoType> int ABA_CUTBUFFER< BaseType, CoType>::n_
[private]

The number of buffered items.

Definition at line 154 of file cutbuffer.h.

6.42.5.4 template<class BaseType, class CoType> ABA_ARRAY <ABA_POOLSLOTREF <BaseType,
CoType>∗> ABA_CUTBUFFER< BaseType, CoType>::psRef_ [private]

References to the pool slots of the buffered constraints/variables.

Definition at line 158 of file cutbuffer.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

402 Reference Manual

6.42.5.5 template<class BaseType, class CoType> ABA_ARRAY <double> ABA_CUTBUFFER<

BaseType, CoType>:: rank_ [private]

This array stores optionally the rank of the buffered items.

Definition at line 168 of file cutbuffer.h.

6.42.5.6 template<class BaseType, class CoType> bool ABA_CUTBUFFER< BaseType, CoType
>:: ranking_ [private]

This flag istrue if a rank for each buffered item is available. As soon as an item without rank is inserted it becomes
false.

Definition at line 173 of file cutbuffer.h.

The documentation for this class was generated from the following file:

• Include/abacus/cutbuffer.h

6.43 ABA_INFEASCON Class Reference

If a constraint is transformed from its pool to the row formatit may turn out that the constraint is infeasible since
variables are fixed or set such that all nonzero coefficients of the left hand side are eliminated and the right hand
side has to be updated.

#include <infeascon.h>

Inheritance diagram for ABA_INFEASCON::

ABA_INFEASCON

ABA_ABACUSROOT

Public Types

• enumINFEAS{ TooSmall= -1, Feasible, TooLarge}

Public Member Functions

• ABA_INFEASCON(ABA_MASTER ∗master,ABA_CONSTRAINT∗con,INFEAS inf)

• ABA_CONSTRAINT∗ constraint() const

• INFEAS infeas() const

• boolgoodVar(ABA_VARIABLE ∗v)

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.43 ABA_INFEASCON Class Reference 403

Private Attributes

• ABA_MASTER ∗ master_
• ABA_CONSTRAINT∗ constraint_
• INFEAS infeas_

6.43.1 Detailed Description

If a constraint is transformed from its pool to the row formatit may turn out that the constraint is infeasible since
variables are fixed or set such that all nonzero coefficients of the left hand side are eliminated and the right hand
side has to be updated.

Definition at line 48 of file infeascon.h.

6.43.2 Member Enumeration Documentation

6.43.2.1 enumABA_INFEASCON::INFEAS

The different ways of infeasibility of a constraint.

Parameters:
TooSmall The left hand side is too small for the right hand side.

Feasible The constraint is not infeasible.

TooLarge The left hand side is too large for the right hand side.

Enumeration values:
TooSmall

Feasible

TooLarge

Definition at line 57 of file infeascon.h.

6.43.3 Constructor & Destructor Documentation

6.43.3.1 ABA_INFEASCON::ABA_INFEASCON (ABA_MASTER ∗ master, ABA_CONSTRAINT ∗ con,
INFEAS inf)

The constructor.

Parameters:
master A pointer to the corresponding master of the optimization.

con The infeasible constraint.

inf The way of infeasibility.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

404 Reference Manual

6.43.4 Member Function Documentation

6.43.4.1 ABA_CONSTRAINT ∗ ABA_INFEASCON::constraint () const [inline]

Returns:
A pointer to the infeasible constraint.

Definition at line 99 of file infeascon.h.

6.43.4.2 bool ABA_INFEASCON::goodVar (ABA_VARIABLE ∗ v)

Returns:
true If the variablev might reduce the infeasibility,
false otherwise.

Parameters:
v A variable for which we test if its addition might reduce infeasibility.

6.43.4.3 ABA_INFEASCON::INFEAS ABA_INFEASCON::infeas () const [inline]

Returns:
The way of infeasibility of the constraint.

Definition at line 104 of file infeascon.h.

6.43.5 Member Data Documentation

6.43.5.1 ABA_CONSTRAINT ∗ ABA_INFEASCON::constraint_ [private]

A pointer to the infeasible constraint.

Definition at line 91 of file infeascon.h.

6.43.5.2 INFEAS ABA_INFEASCON::infeas_ [private]

The way of infeasibility.

Definition at line 95 of file infeascon.h.

6.43.5.3 ABA_MASTER ∗ ABA_INFEASCON::master_ [private]

A pointer to the corresponding master of the optimization.

Definition at line 87 of file infeascon.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.44 ABA_OPENSUB Class Reference 405

The documentation for this class was generated from the following file:

• Include/abacus/infeascon.h

6.44 ABA_OPENSUB Class Reference

New subproblems are inserted in this set after a branching step, or when a subproblem becomes dormant. A
subproblem is extracted from this list if it becomes the active subproblem which is optimized.

#include <opensub.h>

Inheritance diagram for ABA_OPENSUB::

ABA_OPENSUB

ABA_ABACUSROOT

Public Member Functions

• ABA_OPENSUB(ABA_MASTER ∗master)

The constructor does not initialize the memberdualBound_since this can only be done if we know the sense of the
objective function which is normally unknown when the constructor of the classABA_MASTERis called which again
calls this constructor.

• int number() const

• boolempty() const

• doubledualBound() const

Private Member Functions

• ABA_SUB ∗ select()

Selects a subproblem according to the strategy inmasterand removes it from the list of open subproblems.

• void insert(ABA_SUB ∗sub)

• void remove(ABA_SUB ∗sub)

• void prune()

• void updateDualBound()

Updates the memberdualBound_according to the dual bounds of the subproblems contained in this set.

• ABA_OPENSUB(constABA_OPENSUB&rhs)

• constABA_OPENSUB& operator=(constABA_OPENSUB&rhs)

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

406 Reference Manual

Private Attributes

• ABA_MASTER ∗ master_

• ABA_DLIST< ABA_SUB ∗ > list_

• int n_

• doubledualBound_

Friends

• classABA_SUB

• classABA_MASTER

6.44.1 Detailed Description

New subproblems are inserted in this set after a branching step, or when a subproblem becomes dormant. A
subproblem is extracted from this list if it becomes the active subproblem which is optimized.

Definition at line 50 of file opensub.h.

6.44.2 Constructor & Destructor Documentation

6.44.2.1 ABA_OPENSUB::ABA_OPENSUB (ABA_MASTER ∗ master)

The constructor does not initialize the memberdualBound_since this can only be done if we know the sense of the
objective function which is normally unknown when the constructor of the classABA_MASTER is called which
again calls this constructor.

Parameters:
master A pointer to the corresponding master of the optimization.

6.44.2.2 ABA_OPENSUB::ABA_OPENSUB (constABA_OPENSUB & rhs) [private]

6.44.3 Member Function Documentation

6.44.3.1 double ABA_OPENSUB::dualBound () const

Returns:
The value of the dual bound of all subproblems in the list.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.44 ABA_OPENSUB Class Reference 407

6.44.3.2 bool ABA_OPENSUB::empty () const [inline]

Returns:
true If there is no subproblem in the set of open subproblems,
false otherwise.

Definition at line 179 of file opensub.h.

6.44.3.3 void ABA_OPENSUB::insert (ABA_SUB ∗ sub) [private]

Adds a subproblem to the set of open subproblems.

Parameters:
sub The subproblem that is inserted.

6.44.3.4 int ABA_OPENSUB::number () const [inline]

Returns:
The current number of open subproblems contained in this set.

Definition at line 174 of file opensub.h.

6.44.3.5 constABA_OPENSUB& ABA_OPENSUB::operator= (const ABA_OPENSUB & rhs)
[private]

6.44.3.6 void ABA_OPENSUB::prune () [private]

Removes all elements from the set of opens subproblems.

6.44.3.7 void ABA_OPENSUB::remove (ABA_SUB ∗ sub) [private]

Removes subproblem from the set of open subproblems.

Parameters:
sub The subproblem that is removed.

6.44.3.8 ABA_SUB∗ ABA_OPENSUB::select () [private]

Selects a subproblem according to the strategy inmasterand removes it from the list of open subproblems.

The functionselect()scans the list of open subproblems, and selects the subproblem with highest priority from the
set of open subproblems. Dormant subproblems are ignored ifpossible.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

408 Reference Manual

Returns:
The selected subproblem. If the set of open subproblems is empty, 0 is returned.

6.44.3.9 void ABA_OPENSUB::updateDualBound () [private]

Updates the memberdualBound_according to the dual bounds of the subproblems contained inthis set.

6.44.4 Friends And Related Function Documentation

6.44.4.1 friend classABA_MASTER [friend]

Definition at line 52 of file opensub.h.

6.44.4.2 friend classABA_SUB [friend]

Definition at line 51 of file opensub.h.

6.44.5 Member Data Documentation

6.44.5.1 doubleABA_OPENSUB::dualBound_ [private]

The dual bound of all open subproblems.

Definition at line 167 of file opensub.h.

6.44.5.2 ABA_DLIST <ABA_SUB∗> ABA_OPENSUB::list_ [private]

The doubly linked list storing the open subproblems.

Definition at line 159 of file opensub.h.

6.44.5.3 ABA_MASTER ∗ ABA_OPENSUB::master_ [private]

A pointer to corresponding master of the optimization.

Definition at line 137 of file opensub.h.

6.44.5.4 intABA_OPENSUB::n_ [private]

The number of open subproblems.

Definition at line 163 of file opensub.h.

The documentation for this class was generated from the following file:

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.45 ABA_FIXCAND Class Reference 409

• Include/abacus/opensub.h

6.45 ABA_FIXCAND Class Reference

candidates for fixing

#include <fixcand.h>

Inheritance diagram for ABA_FIXCAND::

ABA_FIXCAND

ABA_ABACUSROOT

Public Member Functions

• ABA_FIXCAND (ABA_MASTER ∗master)

• ∼ABA_FIXCAND ()

The destructor.

Private Member Functions

• void saveCandidates(ABA_SUB ∗sub)

• void fixByRedCost(ABA_CUTBUFFER< ABA_VARIABLE , ABA_CONSTRAINT> ∗addVarBuffer)

• void deleteAll()

• void allocate(int nCand)

• ABA_FIXCAND (constABA_FIXCAND &rhs)

• constABA_FIXCAND & operator=(constABA_FIXCAND &rhs)

Private Attributes

• ABA_MASTER ∗ master_

• ABA_BUFFER< ABA_POOLSLOTREF< ABA_VARIABLE , ABA_CONSTRAINT> ∗ > ∗ candidates_

• ABA_BUFFER< ABA_FSVARSTAT∗ > ∗ fsVarStat_

• ABA_BUFFER< double> ∗ lhs_

Friends

• classABA_SUB

• classABA_MASTER

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

410 Reference Manual

6.45.1 Detailed Description

candidates for fixing

Definition at line 60 of file fixcand.h.

6.45.2 Constructor & Destructor Documentation

6.45.2.1 ABA_FIXCAND::ABA_FIXCAND (ABA_MASTER ∗ master)

The constructor.

Parameters:
master A pointer to the corresponding master of the optimization.

6.45.2.2 ABA_FIXCAND::∼ABA_FIXCAND ()

The destructor.

6.45.2.3 ABA_FIXCAND::ABA_FIXCAND (const ABA_FIXCAND & rhs) [private]

6.45.3 Member Function Documentation

6.45.3.1 void ABA_FIXCAND::allocate (int nCand) [private]

Allocates memory to storenCandcandidates for fixing.

6.45.3.2 void ABA_FIXCAND::deleteAll () [private]

Deletes all allocated memory of members.

The member pointers are set to 0 that multiple deletion cannot cause any error.

6.45.3.3 void ABA_FIXCAND::fixByRedCost (ABA_CUTBUFFER< ABA_VARIABLE ,
ABA_CONSTRAINT > ∗ addVarBuffer) [private]

Tries to fix as many candidates as possible.

The new variable status is both stored in the global variablestatus of the classABA_MASTER and in the local
variable status ofABA_SUB. Candidates which are fixed are removed from the candidate set.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.45 ABA_FIXCAND Class Reference 411

Returns:
1 If contradictions to the variables statuses ofsubare detected.
0 otherwise.

Parameters:
addVarBuffer Inactive variables which are fixed to a nonzero value are added toaddVarBufferto be activated

in the next iteration.

We do not used the functionABA_MASTER::primalViolated()for checking of a variable can be fixed, because
here we also have to be careful for integer objective function.

6.45.3.4 constABA_FIXCAND & ABA_FIXCAND::operator= (const ABA_FIXCAND & rhs)
[private]

6.45.3.5 void ABA_FIXCAND::saveCandidates (ABA_SUB ∗ sub) [private]

Memorizes suitable variables for fixing.

Parameters:
sub A pointer to the root node of the remaining\ tree.

6.45.4 Friends And Related Function Documentation

6.45.4.1 friend classABA_MASTER [friend]

Definition at line 62 of file fixcand.h.

6.45.4.2 friend classABA_SUB [friend]

Definition at line 61 of file fixcand.h.

6.45.5 Member Data Documentation

6.45.5.1 ABA_BUFFER<ABA_POOLSLOTREF <ABA_VARIABLE , ABA_CONSTRAINT >∗>∗
ABA_FIXCAND::candidates_ [private]

The candidates for fixing.

Definition at line 119 of file fixcand.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

412 Reference Manual

6.45.5.2 ABA_BUFFER<ABA_FSVARSTAT∗>∗ ABA_FIXCAND::fsVarStat_ [private]

The fixing status of the candidates.

Definition at line 123 of file fixcand.h.

6.45.5.3 ABA_BUFFER<double>∗ ABA_FIXCAND::lhs_ [private]

The left hand side of the expression evaluated for fixing.

Definition at line 127 of file fixcand.h.

6.45.5.4 ABA_MASTER ∗ ABA_FIXCAND::master_ [private]

A pointer to the corresponding master of the optimization.

Definition at line 115 of file fixcand.h.

The documentation for this class was generated from the following file:

• Include/abacus/fixcand.h

6.46 ABA_TAILOFF Class Reference

This class stores the history of the values of the last LP-solutions and implements all functions to control tailing-off
effect.

#include <tailoff.h>

Inheritance diagram for ABA_TAILOFF::

ABA_TAILOFF

ABA_ABACUSROOT

Public Member Functions

• ABA_TAILOFF (ABA_MASTER ∗master)

The constructor takes the length of the tailing off history fromABA_MASTER::tailOffNLp().

• ABA_TAILOFF (ABA_MASTER ∗master, int NLp)

An alternative constructor takes the length of the tailing off history from the parameter NLp.

• ∼ABA_TAILOFF ()

The destructor.

• bool tailOff () const

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.46 ABA_TAILOFF Class Reference 413

• int diff (int nLps, double &d) const

Can be used to retrieve the difference between the last and a previous LP-solution in percent.

Private Member Functions

• void update(double value)
• void reset()

Private Attributes

• ABA_MASTER ∗ master_
• ABA_RING< double> ∗ lpHistory_

Friends

• classABA_SUB
• ostream &operator<< (ostream &out, constABA_TAILOFF &rhs)

The output operator writes the memorized LP-values on an output stream.

6.46.1 Detailed Description

This class stores the history of the values of the last LP-solutions and implements all functions to control tailing-off
effect.

Definition at line 53 of file tailoff.h.

6.46.2 Constructor & Destructor Documentation

6.46.2.1 ABA_TAILOFF::ABA_TAILOFF (ABA_MASTER ∗ master)

The constructor takes the length of the tailing off history from ABA_MASTER::tailOffNLp().

Parameters:
master A pointer to the corresponding master of the optimization.

6.46.2.2 ABA_TAILOFF::ABA_TAILOFF (ABA_MASTER ∗ master, int NLp)

An alternative constructor takes the length of the tailing off history from the parameter NLp.

Parameters:
master A pointer to the corresponding master of the optimization.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

414 Reference Manual

NLp The length of the tailing off history.

6.46.2.3 ABA_TAILOFF::∼ABA_TAILOFF ()

The destructor.

6.46.3 Member Function Documentation

6.46.3.1 int ABA_TAILOFF::diff (int nLps, double & d) const

Can be used to retrieve the difference between the last and a previous LP-solution in percent.

Returns:
0 If the difference could be computed, i.e., the old LP-valuenLPsbefore the last one is store in the history,
1 otherwise.

Parameters:
nLps The number of LPs before the last solved linear program with which the last solved LP-value should be

compared.

d Contains the absolute difference bewteen the value of the last solved linear program and the value of the
linear program solvednLPsbefore in percent relative to the older value.

6.46.3.2 void ABA_TAILOFF::reset () [private]

Clears the solution history.

This function should be called if variables are added, because normally the solution value of the LP-relaxation
gets worse after the addition of variables. Such a change could falsely indicate a tailing-off effect if the history of
LP-values is not reset.

6.46.3.3 bool ABA_TAILOFF::tailOff () const

Checks if there is a tailing-off effect.

We assume a tailing-off effect if during the last ABA_MASTER::tailOffNLps() iterations of the cutting plane
algorithms the dual bound changed at mostABA_MASTER::tailOffPercent()percent.

Returns:
true If a tailing off effect is observed,
false otherwise.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.46 ABA_TAILOFF Class Reference 415

6.46.3.4 void ABA_TAILOFF::update (double value) [private]

A new LP-solution value can be stored by calling the functionupdate().

This update should be performed after every solution of an LPin the cutting plane generation phase of the sub-
problem optimization process.

Parameters:
value The LP-solution value.

6.46.4 Friends And Related Function Documentation

6.46.4.1 friend classABA_SUB [friend]

Definition at line 54 of file tailoff.h.

6.46.4.2 ostream& operator<< (ostream & out, constABA_TAILOFF & rhs) [friend]

The output operator writes the memorized LP-values on an output stream.

Returns:
A reference to the output stream.

Parameters:
out The output stream.

rhs The tailing-off manager being output.

6.46.5 Member Data Documentation

6.46.5.1 ABA_RING <double>∗ ABA_TAILOFF::lpHistory_ [private]

The LP-values considered in the tailing off analysis.

Definition at line 143 of file tailoff.h.

6.46.5.2 ABA_MASTER ∗ ABA_TAILOFF::master_ [private]

A pointer to the corresponding master of the optimization.

Definition at line 139 of file tailoff.h.

The documentation for this class was generated from the following file:

• Include/abacus/tailoff.h

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

416 Reference Manual

6.47 ABA_HISTORY Class Reference

class implements the storage of the solution history.

#include <history.h>

Inheritance diagram for ABA_HISTORY::

ABA_HISTORY

ABA_ABACUSROOT

Public Member Functions

• ABA_HISTORY (ABA_MASTER ∗master)
• virtual∼ABA_HISTORY ()

The destructor.

• void update()

Adds an additional line to the history table, primal bound, dual bound, andthe time are taken from the corresponding
master object. The history table is automatically reallocated if necessary.

Private Member Functions

• int size() const
• void realloc()

The functionrealloc()enlarges the history table by 100 components.

Private Attributes

• ABA_MASTER ∗ master_
• ABA_ARRAY< double> primalBound_
• ABA_ARRAY< double> dualBound_
• ABA_ARRAY< long> time_
• int n_

Friends

• ostream &operator<< (ostream &out, constABA_HISTORY &rhs)

6.47.1 Detailed Description

class implements the storage of the solution history.

Definition at line 43 of file history.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.47 ABA_HISTORY Class Reference 417

6.47.2 Constructor & Destructor Documentation

6.47.2.1 ABA_HISTORY::ABA_HISTORY (ABA_MASTER ∗ master)

The constructor initializes a history table with 100 possible entries.

If this number is exceeded an automatic reallocation is performed.

Parameters:
master A pointer to the corresponding master of the optimization.

6.47.2.2 virtual ABA_HISTORY::∼ABA_HISTORY () [virtual]

The destructor.

6.47.3 Member Function Documentation

6.47.3.1 void ABA_HISTORY::realloc () [private]

The functionrealloc()enlarges the history table by 100 components.

6.47.3.2 int ABA_HISTORY::size () const [inline, private]

Returns the length of the history table.

Definition at line 107 of file history.h.

6.47.3.3 void ABA_HISTORY::update ()

Adds an additional line to the history table, primal bound, dual bound, and the time are taken from the correspond-
ing master object. The history table is automatically reallocated if necessary.

Usually an explicit call to this function from an application class is not required sinceupdate()is automatically
called if a new global primal or dual bound is found.

6.47.4 Friends And Related Function Documentation

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

418 Reference Manual

6.47.4.1 ostream& operator<< (ostream & out, constABA_HISTORY & rhs) [friend]

The output operator.

Returns:
A reference to the output stream.

Parameters:
out The output stream.

rhs The solution history being output.

6.47.5 Member Data Documentation

6.47.5.1 ABA_ARRAY <double> ABA_HISTORY::dualBound_ [private]

The array storing the value of the best dual solution.

Definition at line 95 of file history.h.

6.47.5.2 ABA_MASTER ∗ ABA_HISTORY::master_ [private]

A pointer to corresponding master of the optimization.

Definition at line 87 of file history.h.

6.47.5.3 intABA_HISTORY::n_ [private]

The number of entries in the history table.

Definition at line 103 of file history.h.

6.47.5.4 ABA_ARRAY <double> ABA_HISTORY::primalBound_ [private]

The array storing the value of the best primal solution.

Definition at line 91 of file history.h.

6.47.5.5 ABA_ARRAY <long> ABA_HISTORY::time_ [private]

The CPU time in seconds, when the entry in the table was made.

Definition at line 99 of file history.h.

The documentation for this class was generated from the following file:

• Include/abacus/history.h

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.48 Basic Data Structures 419

6.48 Basic Data Structures

This subsection documents various basic data structures which we have used withinABACUS. They can also be
used within an application. The templated basic data structures are documented in Section6.53.

6.49 ABA_SPARVEC Class Reference

Since other classes, e.g., the class ABA_RO are derived fromthis class, all data members are protected in order to
provide efficient access also in these derived classes.

#include <sparvec.h>

Inheritance diagram for ABA_SPARVEC::

ABA_SPARVEC

ABA_ABACUSROOT

ABA_COLUMN ABA_ROW

Public Member Functions

• ABA_SPARVEC(ABA_GLOBAL ∗glob, int size, double reallocFac=10.0)
• ABA_SPARVEC(ABA_GLOBAL ∗glob, int size, constABA_ARRAY< int > &s, constABA_ARRAY<

double> &c, double reallocFac=10.0)

A constructor with initialization of the support and coefficients of the sparsevector.

• ABA_SPARVEC(ABA_GLOBAL ∗glob, int size, int∗s, double∗c, double reallocFac=10.0)

This constructor is equivalent to the previous one except that it is using C-style arrays for the initialization of the
sparse vector.

• ABA_SPARVEC(constABA_SPARVEC&rhs)
• ∼ABA_SPARVEC()

The destructor.

• constABA_SPARVEC& operator=(constABA_SPARVEC&rhs)

The assignment operator requires that the left hand and the right hand side have the same length (otherwise use the
functioncopy()).

• int support(int i) const

A range check is performed if the function is compiled with-DABACUSSAFE.

• doublecoeff (int i) const

A range check is performed if the function is compiled with-DABACUSSAFE.

• doubleorigCoeff(int i) const

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

420 Reference Manual

• void insert(int s, double c)
• void leftShift (ABA_BUFFER< int > &del)
• void copy(constABA_SPARVEC&vec)

Is very similar to the assignment operator, yet the size of the two vectors need not be equal and only the support, the
coefficients, and the number of nonzeros is copied. A reallocation is performed if required.

• void clear()
• void rename(ABA_ARRAY< int > &newName)
• int size() const
• int nnz() const
• doublenorm()
• void realloc()
• void realloc(int newSize)

This other version ofrealloc()reallocates the sparse vector to a given length.

Protected Member Functions

• void rangeCheck(int i) const

Terminates the program with an error message ifi is negative or greater or equal than the number of nonzero
elements.

Protected Attributes

• ABA_GLOBAL ∗ glob_
• int size_

The maximal number of nonzero coefficients which can be stored without reallocation.

• int nnz_
• doublereallocFac_

If a new element is inserted but the sparse vector is full, then its size is increased byreallocFac_percent.

• int ∗ support_
• double∗ coeff_

Friends

• ostream &operator<< (ostream &out, constABA_SPARVEC&rhs)

The output operator writes the elements of the support and their coefficients line by line on an output stream.

6.49.1 Detailed Description

Since other classes, e.g., the class ABA_RO are derived fromthis class, all data members are protected in order to
provide efficient access also in these derived classes.

Definition at line 50 of file sparvec.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.49 ABA_SPARVEC Class Reference 421

6.49.2 Constructor & Destructor Documentation

6.49.2.1 ABA_SPARVEC::ABA_SPARVEC (ABA_GLOBAL ∗ glob, int size, double reallocFac= 10.0)

The constructor for an empty sparse vector.

Parameters:
glob A pointer to the corresponding global object.

size The maximal number of nonzeros of the sparse vector (withoutreallocation).

reallocFac The reallocation factor (in percent of the original size), which is used in a default reallocation if a
variable is inserted when the sparse vector is already full.Its default value is 10.

If no memory forsupport_andcoeff_is allocated then an automatic allocation will be performedwhen the function
insert() is called the first time.

6.49.2.2 ABA_SPARVEC::ABA_SPARVEC (ABA_GLOBAL ∗ glob, int size, constABA_ARRAY < int >

& s, constABA_ARRAY < double> & c, double reallocFac= 10.0)

A constructor with initialization of the support and coefficients of the sparse vector.

The minimum value ofsizeands.sizeis the number of nonzeros of the sparse vector.

Parameters:
glob A pointer to the corresponding global object.

size The maximal number of nonzeros (without reallocation).

s An array storing the support of the sparse vector, i.e., the elements for which a (normally nonzero) coefficient
is given inc.

c An array storing the coefficients of the support elements given ins. This array must have at least the length
of the minimum ofsizeands.size().

reallocFac The reallocation factor (in percent of the original size), which is used in a default reallocation if a
variable is inserted when the sparse vector is already full.Its default value is 10.

If sizeis 0, then also no elements are copied in thefor-loopsincennz_will be also 0.

6.49.2.3 ABA_SPARVEC::ABA_SPARVEC (ABA_GLOBAL ∗ glob, int size, int ∗ s, double∗ c, double
reallocFac= 10.0)

This constructor is equivalent to the previous one except that it is using C-style arrays for the initialization of the
sparse vector.

6.49.2.4 ABA_SPARVEC::ABA_SPARVEC (constABA_SPARVEC & rhs)

The copy constructor.

Parameters:
rhs The sparse vector that is copied.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

422 Reference Manual

6.49.2.5 ABA_SPARVEC::∼ABA_SPARVEC ()

The destructor.

6.49.3 Member Function Documentation

6.49.3.1 void ABA_SPARVEC::clear () [inline]

Removes all nonzeros from the sparse vector.

Definition at line 327 of file sparvec.h.

6.49.3.2 double ABA_SPARVEC::coeff (inti) const [inline]

A range check is performed if the function is compiled with-DABACUSSAFE.

Returns:
The coefficient of thei-th nonzero element.

Parameters:
i The number of the nonzero element.

Definition at line 308 of file sparvec.h.

6.49.3.3 void ABA_SPARVEC::copy (constABA_SPARVEC & vec)

Is very similar to the assignment operator, yet the size of the two vectors need not be equal and only the support,
the coefficients, and the number of nonzeros is copied. A reallocation is performed if required.

Parameters:
vec The sparse vector that is copied.

6.49.3.4 void ABA_SPARVEC::insert (ints, doublec) [inline]

Adds a new support/coefficient pair to the vector.

If necessary a reallocation of the member data is performed automatically.

Parameters:
s The new support.

c The new coefficient.

Definition at line 316 of file sparvec.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.49 ABA_SPARVEC Class Reference 423

6.49.3.5 void ABA_SPARVEC::leftShift (ABA_BUFFER< int > & del)

Deletes the elements listed in a buffer from the sparse vector.

The numbers of indices in this buffer must be upward sorted. The elements before the first element in the buffer
are unchanged. Then the elements which are not deleted are shifted left in the arrays.

Parameters:
del The numbers of the elements removed from the sparse vector.

6.49.3.6 int ABA_SPARVEC::nnz () const [inline]

Returns:
The number of nonzero elements. This is not necessarily the correct number of nonzeros, yet the number of
coefficient/support pairs, which are stored. Some of these pairs may have a zero coefficient.

Definition at line 337 of file sparvec.h.

6.49.3.7 double ABA_SPARVEC::norm ()

Returns:
The Euclidean norm of the sparse vector.

6.49.3.8 constABA_SPARVEC& ABA_SPARVEC::operator= (const ABA_SPARVEC & rhs)

The assignment operator requires that the left hand and the right hand side have the same length (otherwise use the
functioncopy()).

Returns:
A reference to the left hand side.

Parameters:
rhs The right hand side of the assignment.

6.49.3.9 double ABA_SPARVEC::origCoeff (inti) const

Returns:
The coefficient having supporti.

Parameters:
i The number of the original coefficient.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

424 Reference Manual

6.49.3.10 void ABA_SPARVEC::rangeCheck (inti) const [protected]

Terminates the program with an error message ifi is negative or greater or equal than the number of nonzero
elements.

If the class ABA_SPARVEC is compiled with the flag-DABACUSSAFE, then before each access operation on
elementi of the sparse vector the functionrangeCheck()is called.

Parameters:
i An integer that should be checked if it is in the range of the sparse vector.

6.49.3.11 void ABA_SPARVEC::realloc (intnewSize)

This other version ofrealloc() reallocates the sparse vector to a given length.

It is an error to decrease size below the current number of nonzeros.

Parameters:
newSizeThe new maximal number of nonzeroes that can be stored in the sparse vector.

6.49.3.12 void ABA_SPARVEC::realloc ()

Increases the size of the sparse vector byreallocFac_percent of the original size.

This function is called if an automatic reallocation takes place.

6.49.3.13 void ABA_SPARVEC::rename (ABA_ARRAY < int > & newName)

Replaces the index of the support by new names.

Parameters:
newNameThe new names (support) of the elements of the sparse vector.The arraynewNamemust have at

least a length equal to the maximal element in the support of the sparse vector.

6.49.3.14 int ABA_SPARVEC::size () const [inline]

Returns:
The maximal length of the sparse vector.

Definition at line 332 of file sparvec.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.49 ABA_SPARVEC Class Reference 425

6.49.3.15 int ABA_SPARVEC::support (int i) const [inline]

A range check is performed if the function is compiled with-DABACUSSAFE.

Returns:
The support of thei-th nonzero element.

Parameters:
i The number of the nonzero element.

Definition at line 300 of file sparvec.h.

6.49.4 Friends And Related Function Documentation

6.49.4.1 ostream& operator<< (ostream & out, constABA_SPARVEC & rhs) [friend]

The output operator writes the elements of the support and their coefficients line by line on an output stream.

Returns:
A reference to the output stream.

Parameters:
out The output stream.

rhs The sparse vector being output.

6.49.5 Member Data Documentation

6.49.5.1 double∗ ABA_SPARVEC::coeff_ [protected]

The array storing the corresponding nonzero coefficients.

Definition at line 296 of file sparvec.h.

6.49.5.2 ABA_GLOBAL ∗ ABA_SPARVEC::glob_ [protected]

A pointer to the corresponding global object.

Definition at line 273 of file sparvec.h.

6.49.5.3 intABA_SPARVEC::nnz_ [protected]

The number of stored elements (“nonzeros”).

Definition at line 282 of file sparvec.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

426 Reference Manual

6.49.5.4 doubleABA_SPARVEC::reallocFac_ [protected]

If a new element is inserted but the sparse vector is full, then its size is increased byreallocFac_percent.

Definition at line 288 of file sparvec.h.

6.49.5.5 intABA_SPARVEC::size_ [protected]

The maximal number of nonzero coefficients which can be stored without reallocation.

Definition at line 278 of file sparvec.h.

6.49.5.6 int∗ ABA_SPARVEC::support_ [protected]

The array storing the nonzero variables.

Definition at line 292 of file sparvec.h.

The documentation for this class was generated from the following file:

• Include/abacus/sparvec.h

6.50 ABA_SET Class Reference

class implements a data structure for collections of dynamic disjoint sets of integers

#include <set.h>

Inheritance diagram for ABA_SET::

ABA_SET

ABA_ABACUSROOT

ABA_FASTSET

Public Member Functions

• ABA_SET (ABA_GLOBAL ∗glob, int size)

• virtual∼ABA_SET ()

The destructor.

• void makeSet(int x)

• boolunionSets(int x, int y)

• int findSet(int x)

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.50 ABA_SET Class Reference 427

Protected Attributes

• ABA_GLOBAL ∗ glob_
• ABA_ARRAY< int > parent_

The collection of sets is implemented by a collection of trees.parent[i] is the parent of nodei in the tree representing
the set containingi. If i is the root of a tree thenparent[i] is i itself.

6.50.1 Detailed Description

class implements a data structure for collections of dynamic disjoint sets of integers

Definition at line 41 of file set.h.

6.50.2 Constructor & Destructor Documentation

6.50.2.1 ABA_SET::ABA_SET (ABA_GLOBAL ∗ glob, int size)

The constructor.

Parameters:
glob A pointer to the corresponding global object.

size Only integers between 0 andsize-1can be inserted in the set.

6.50.2.2 virtual ABA_SET::∼ABA_SET () [virtual]

The destructor.

6.50.3 Member Function Documentation

6.50.3.1 int ABA_SET::findSet (intx)

Finds the representative of the set containingx.

This operation may be only performed ifx has been earlier added to the collection of sets by the functionmakeSet().

A path compression is performed, i.e., all nodes of the tree on the path fromx to the root are directly attached
to the root of the tree.

Returns:
The representative of the set containingx.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

428 Reference Manual

Parameters:
x An element of the searched set.

6.50.3.2 void ABA_SET::makeSet (intx)

Creates a set storing only one element and adds it to the collection of sets.

Parameters:
x The single element of the new set.

6.50.3.3 bool ABA_SET::unionSets (intx, int y)

Unites the two sets which containx andy, respectively.

This operation may only be performed if bothx andy have earlier been added to the collection of sets by the
functionmakeSet().

We do not use the heuristic attaching the smaller subtree to the bigger one, since we want to guarantee that the
representative ofx is always the representative of the two united sets.

Returns:
true If both sets have been disjoint before the function call,
false otherwise.

Parameters:
x An element of the first set of the union operation.

y An element in the second set of the union operation.

Reimplemented inABA_FASTSET.

6.50.4 Member Data Documentation

6.50.4.1 ABA_GLOBAL ∗ ABA_SET::glob_ [protected]

A pointer to the corresponding global object.

Definition at line 101 of file set.h.

6.50.4.2 ABA_ARRAY <int> ABA_SET::parent_ [protected]

The collection of sets is implemented by a collection of trees. parent [i] is the parent of nodei in the tree repre-
senting the set containingi. If i is the root of a tree thenparent[i] is i itself.

Definition at line 108 of file set.h.

The documentation for this class was generated from the following file:

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.51 ABA_FASTSET Class Reference 429

• Include/abacus/set.h

6.51 ABA_FASTSET Class Reference

class is derived from the classABA_SET and holds for each set a rank which approximates the logarithm of the
tree size representing the set and is also an upper bound for the height of this tree.

#include <fastset.h>

Inheritance diagram for ABA_FASTSET::

ABA_FASTSET

ABA_SET

ABA_ABACUSROOT

Public Member Functions

• ABA_FASTSET(ABA_GLOBAL ∗glob, int size)

• boolunionSets(int x, int y)

Private Attributes

• ABA_ARRAY< int > rank_

6.51.1 Detailed Description

class is derived from the classABA_SET and holds for each set a rank which approximates the logarithm of the
tree size representing the set and is also an upper bound for the height of this tree.

Parameters:
rank_ The rank of each set.

Definition at line 42 of file fastset.h.

6.51.2 Constructor & Destructor Documentation

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

430 Reference Manual

6.51.2.1 ABA_FASTSET::ABA_FASTSET (ABA_GLOBAL ∗ glob, int size)

The constructor.

At the beginning each possible set receives the rank 0.

Parameters:
glob A pointer to the corresponding global object.

size Only integers between 0 andsize-1can be inserted in the set.

6.51.3 Member Function Documentation

6.51.3.1 bool ABA_FASTSET::unionSets (intx, int y)

Unites the setsx andy.

It differs from the functionunionSets()of the base classABA_SETsuch that the tree with smaller rank is attached
to the one with larger rank. Therefore,x is no more guaranteed to be the representative of the joint set.

Returns:
true If both sets have been disjoint before the function call,
false otherwise.

Parameters:
x An element of the first set of the union operation.

y An element in the second set of the union operation.

Reimplemented fromABA_SET.

6.51.4 Member Data Documentation

6.51.4.1 ABA_ARRAY <int> ABA_FASTSET::rank_ [private]

Definition at line 71 of file fastset.h.

The documentation for this class was generated from the following file:

• Include/abacus/fastset.h

6.52 ABA_STRING Class Reference

class ABA_STRING implements are very simple class for the representation of character strings.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.52 ABA_STRING Class Reference 431

#include <string.h>

Inheritance diagram for ABA_STRING::

ABA_STRING

ABA_ABACUSROOT

Public Member Functions

• ABA_STRING (ABA_GLOBAL ∗glob, const char∗cString="")
• ABA_STRING (ABA_GLOBAL ∗glob, const char∗cString, int index)
• ABA_STRING (constABA_STRING&rhs)
• ∼ABA_STRING ()

The destructor.

• constABA_STRING& operator=(constABA_STRING&rhs)

The assignment operator makes a copy of the right hand side and reallocates memory if required.

• constABA_STRING& operator=(const char∗rhs)

The assignment operator is overloaded for character strings.

• char &operator[](int i)

With the subscript operator a single character of the string can be accessed or modified.

• const char &operator[](int i) const

The subscript operator is overloaded for constant use.

• int size() const
• int ascii2int(int i=0) const
• unsigned intascii2unsignedint() const
• doubleascii2double() const

Emulates the functionatof()of the standard C library and converts the string to a floating point number.

• boolascii2bool() const
• boolending(const char∗end) const
• char∗ string() const

Private Member Functions

• void rangeCheck(int i) const

Terminates the program with an error message ifi is not the position of a character of the string.

Private Attributes

• ABA_GLOBAL ∗ glob_
• char∗ string_

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

432 Reference Manual

Friends

• int operator==(constABA_STRING&lhs, constABA_STRING &rhs)

• int operator==(constABA_STRING&lhs, const char∗rhs)

The comparison operator is overloaded for character strings on the right hand side.

• int operator!=(constABA_STRING &lhs, constABA_STRING&rhs)

• int operator!=(constABA_STRING &lhs, const char∗rhs)

The not-equal operator is overloaded for character strings on the righthand side.

• ostream &operator<< (ostream &out, constABA_STRING&rhs)

6.52.1 Detailed Description

class ABA_STRING implements are very simple class for the representation of character strings.

Definition at line 45 of file string.h.

6.52.2 Constructor & Destructor Documentation

6.52.2.1 ABA_STRING::ABA_STRING (ABA_GLOBAL ∗ glob, const char∗ cString= "")

The constructor.

Parameters:
glob A pointer to the corresponding global object.

cString The initializing string, by default the empty string.

6.52.2.2 ABA_STRING::ABA_STRING (ABA_GLOBAL ∗ glob, const char∗ cString, int index)

A constructor building a string from a string and an integer.

This constructor is especially useful for building variable or constraint names like { con18}.

Parameters:
glob A pointer to the corresponding global object.

cString The initializing string.

index The integer value appending to thecString(must be less than { MAX}).

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.52 ABA_STRING Class Reference 433

6.52.2.3 ABA_STRING::ABA_STRING (constABA_STRING & rhs)

The copy constructor.

Parameters:
rhs The string that is copied.

6.52.2.4 ABA_STRING::∼ABA_STRING ()

The destructor.

6.52.3 Member Function Documentation

6.52.3.1 bool ABA_STRING::ascii2bool () const

Converts the string to a boolean value.

This is only possible for the strings"true" and"false".

Returns:
The string converted totrueor false.

6.52.3.2 double ABA_STRING::ascii2double () const

Emulates the functionatof()of the standard C library and converts the string to a floatingpoint number.

Returns:
The string converted to a floating point number

6.52.3.3 int ABA_STRING::ascii2int (int i = 0) const

Is very similar to the functionatoi() from <string.h>.

It converts the substring starting at componenti and ending in the first following component with { ’\ 0’} to an
integer.ascii2int(0)converts the complete string.

Returns:
The string converted to an integer value.

Parameters:
i The number of the character at which the conversion should start. The default value ofi is 0.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

434 Reference Manual

6.52.3.4 unsigned int ABA_STRING::ascii2unsignedint () const

The functionascii2unsignedint()converts the string to anunsignedint value.

Returns:
The string converted to an unsigned integer.

6.52.3.5 bool ABA_STRING::ending (const char∗ end) const

Returns:
true If the string ends with the stringend,
false otherwise.

Parameters:
end The string with which the ending of the string is compared.

6.52.3.6 constABA_STRING& ABA_STRING::operator= (const char ∗ rhs)

The assignment operator is overloaded for character strings.

6.52.3.7 constABA_STRING& ABA_STRING::operator= (const ABA_STRING & rhs)

The assignment operator makes a copy of the right hand side and reallocates memory if required.

Returns:
A reference to the object.

Parameters:
rhs The right hand side of the assignment.

6.52.3.8]

const char& ABA_STRING::operator[] (inti) const

The subscript operator is overloaded for constant use.

6.52.3.9]

char& ABA_STRING::operator[] (inti)

With the subscript operator a single character of the stringcan be accessed or modified.

If the class is compiled with the preprocessor flag-DABACUSSAFE, then a range check is performed.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.52 ABA_STRING Class Reference 435

Returns:
A reference to thei-th character of the string.

Parameters:
i The number of the character that should be accessed or modified. The first character has number 0.

6.52.3.10 void ABA_STRING::rangeCheck (inti) const [private]

Terminates the program with an error message ifi is not the position of a character of the string.

The ’ ’ at the end of the string is not a valid character in this sense.

6.52.3.11 int ABA_STRING::size () const

Returns:
The length of the string, not including the { ’\ 0’} terminating the string.

6.52.3.12 char∗ ABA_STRING::string () const

Returns:
Thechar∗ representing the string to make it accessible for C-functions.

6.52.4 Friends And Related Function Documentation

6.52.4.1 int operator!= (constABA_STRING & lhs, const char∗ rhs) [friend]

The not-equal operator is overloaded for character stringson the right hand side.

6.52.4.2 int operator!= (constABA_STRING & lhs, constABA_STRING & rhs) [friend]

The not-equal operator.

Note:
the C-library functionstrcmp()returns 0 if both strings equal.

Returns:
0 If both strings are equal,
1 otherwise.

Parameters:
lhs The left hand side of the comparison.

rhs The right hand side of the comparison.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

436 Reference Manual

6.52.4.3 ostream& operator<< (ostream & out, constABA_STRING & rhs) [friend]

The output operator.

Returns:
A reference to the output stream.

Parameters:
out The output stream.

rhs The string being output.

6.52.4.4 int operator== (constABA_STRING & lhs, const char∗ rhs) [friend]

The comparison operator is overloaded for character strings on the right hand side.

6.52.4.5 int operator== (constABA_STRING & lhs, constABA_STRING & rhs) [friend]

The comparison operator.

Note:
the C-library functionstrcmp()returns 0 if both strings equal.

Returns:
0 If both strings are not equal,
1 otherwise.

Parameters:
lhs The left hand side of the comparison.

rhs The right hand side of the comparison.

6.52.5 Member Data Documentation

6.52.5.1 ABA_GLOBAL ∗ ABA_STRING::glob_ [private]

A pointer to the corresponding master of the optimization.

Definition at line 239 of file string.h.

6.52.5.2 char∗ ABA_STRING::string_ [private]

An array storing the character of the string. This array mustbe terminated with a’ ’.

Definition at line 244 of file string.h.

The documentation for this class was generated from the following file:

• Include/abacus/string.h

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.53 Templates 437

6.53 Templates

Various basic data structures are available as templates within ABACUS. For the instantiation of templates we
refer to Section5.3.

6.54 ABA_ARRAY< Type > Class Template Reference

it is a template for arrays. It can be used like a “normal” C-style array

#include <array.h>

Inheritance diagram for ABA_ARRAY< Type>::

ABA_ARRAY< Type >

ABA_ABACUSROOT

Public Member Functions

• ABA_ARRAY (ABA_GLOBAL ∗glob, int size)
• ABA_ARRAY (ABA_GLOBAL ∗glob, int size, Type init)
• ABA_ARRAY (ABA_GLOBAL ∗glob, constABA_BUFFER< Type> &buf)
• ABA_ARRAY (constABA_ARRAY< Type> &rhs)
• ∼ABA_ARRAY ()

The destructor.

• constABA_ARRAY< Type> & operator=(constABA_ARRAY< Type> &rhs)
• constABA_ARRAY< Type> & operator=(constABA_BUFFER< Type> &rhs)

To assign an object of the classABA_BUFFERto an object of the class ABA_ARRAY the size of the left hand side
must be at least the size ofrhs. Then all buffered elements ofrhsare copied.

• Type & operator[](int i)
• const Type &operator[](int i) const
• void copy(constABA_ARRAY< Type> &rhs)
• void copy(constABA_ARRAY< Type> &rhs, int l, int r)

This version of the functioncopy() copies the elementsrhs[l], rhs[l+1]„ rhs[r] into the components0„r-l of the
array.

• void leftShift (ABA_BUFFER< int > &ind)

Removes the components listed inind by shifting the remaining components to the left.

• void leftShift (ABA_ARRAY< bool> &remove)

This version of the functionleftShift() removes all componentsi with marked[i]==true from the array by shifting
the other components to the left.

• void set(int l, int r, Type val)

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

438 Reference Manual

• void set(Type val)

This version of the functionset()initializes all components of the array with the same value.

• int size() const

• void realloc(int newSize)

The length of an array can be changed with the functionrealloc(). If the array is enlarged all elements of the old
array are copied and the values of the additional new elements are undefined. If the array is shortened only the first
newSizeelements are copied.

• void realloc(int newSize, Type init)

Is overloaded such that also an initialization with a new value of the elements ofthe array after reallocation is
possible.

Private Member Functions

• void rangeCheck(int i) const

Stops the program with an error message if the indexi is not within the bounds of the array.

Private Attributes

• ABA_GLOBAL ∗ glob_

• int n_

• Type∗ a_

Friends

• ostream &operator<< (ostream &out, constABA_ARRAY< Type> &array)

The output operator writes first the number of the element and a’ :’ followed by the value of the element line by line
to the streamout.

6.54.1 Detailed Description

template<class Type> class ABA_ARRAY< Type >

it is a template for arrays. It can be used like a “normal” C-style array

Definition at line 53 of file array.h.

6.54.2 Constructor & Destructor Documentation

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.54 ABA_ARRAY< Type > Class Template Reference 439

6.54.2.1 template<class Type> ABA_ARRAY < Type >::ABA_ARRAY (ABA_GLOBAL ∗ glob, int size)

A constructor without initialization.

Parameters:
glob A pointer to the corresponding global object.

size The length of the array.

6.54.2.2 template<class Type> ABA_ARRAY < Type >::ABA_ARRAY (ABA_GLOBAL ∗ glob, int size,
Type init)

A constructor with initialization.

Parameters:
glob A pointer to the corresponding global object.

size The length of the array.

init The initial value of all elements of the array.

6.54.2.3 template<class Type> ABA_ARRAY < Type >::ABA_ARRAY (ABA_GLOBAL ∗ glob, const
ABA_BUFFER< Type > & buf)

A constructor.

Parameters:
glob A pointer to the corresponding global object.

buf The array receives the length of this buffer and all bufferedelements are copied to the array.

6.54.2.4 template<class Type> ABA_ARRAY < Type >::ABA_ARRAY (constABA_ARRAY < Type > &
rhs)

The copy constructor.

Parameters:
rhs The array being copied.

6.54.2.5 template<class Type> ABA_ARRAY < Type >::∼ABA_ARRAY ()

The destructor.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

440 Reference Manual

6.54.3 Member Function Documentation

6.54.3.1 template<class Type> void ABA_ARRAY < Type >::copy (constABA_ARRAY < Type > & rhs,
int l, int r)

This version of the functioncopy()copies the elementsrhs[l], rhs[l+1]„ rhs[r] into the components0„r-l of the
array.

If the size of the array is smaller thanr-l+1 storage is reallocated.

Parameters:
rhs The array that is partially copied.

l The first element being copied.

r the last element being copied.

6.54.3.2 template<class Type> void ABA_ARRAY < Type >::copy (constABA_ARRAY < Type > & rhs)

Copies all elements ofrhs.

The difference to the operator= is that also copying between arrays of different size is allowed. If necessary the
array on the left hand side is reallocated.

Parameters:
rhs The array being copied.

6.54.3.3 template<class Type> void ABA_ARRAY < Type >::leftShift (ABA_ARRAY < bool > &
remove)

This version of the functionleftShift()removes all componentsi with marked[i]==true from the array by shifting
the other components to the left.

Parameters:
remove The marked components are removed from the array.

6.54.3.4 template<class Type> void ABA_ARRAY < Type >::leftShift (ABA_BUFFER< int > & ind)

Removes the components listed inind by shifting the remaining components to the left.

Memory management of the removed components must be carefully implemented by the user of this function to
avoid memory leaks.

Parameters:
ind The compenents being removed from the array.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.54 ABA_ARRAY< Type > Class Template Reference 441

6.54.3.5 template<class Type> constABA_ARRAY <Type>& ABA_ARRAY < Type >::operator= (const
ABA_BUFFER< Type > & rhs)

To assign an object of the classABA_BUFFERto an object of the class ABA_ARRAY the size of the left hand
side must be at least the size ofrhs. Then all buffered elements ofrhs are copied.

Returns:
A reference to the array on the left hand side.

Parameters:
rhs The buffer being assigned.

6.54.3.6 template<class Type> constABA_ARRAY <Type>& ABA_ARRAY < Type >::operator= (const
ABA_ARRAY < Type > & rhs)

The assignment operator can only be used for arrays with equal length.

Returns:
A reference to the array on the left hand side.

Parameters:
rhs The array being assigned.

6.54.3.7]

template<class Type> const Type&ABA_ARRAY< Type>::operator[] (inti) const

The operator [] is overloaded for constant use.

6.54.3.8]

template<class Type> Type& ABA_ARRAY< Type>::operator[] (inti)

The operator [].

Returns:
The i-th element of the array.

Parameters:
i The element being accessed.

6.54.3.9 template<class Type> void ABA_ARRAY < Type >::rangeCheck (int i) const [private]

Stops the program with an error message if the indexi is not within the bounds of the array.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

442 Reference Manual

6.54.3.10 template<class Type> void ABA_ARRAY < Type >::realloc (int newSize, Type init)

Is overloaded such that also an initialization with a new value of the elements of the array after reallocation is
possible.

Parameters:
newSizeThe new length of the array.

init The new value of all components of the array.

6.54.3.11 template<class Type> void ABA_ARRAY < Type >::realloc (int newSize)

The length of an array can be changed with the functionrealloc(). If the array is enlarged all elements of the old
array are copied and the values of the additional new elements are undefined. If the array is shortened only the first
newSizeelements are copied.

Parameters:
newSizeThe new length of the array.

6.54.3.12 template<class Type> void ABA_ARRAY < Type >::set (Typeval)

This version of the functionset()initializes all components of the array with the same value.

Parameters:
val The new value of all components.

6.54.3.13 template<class Type> void ABA_ARRAY < Type >::set (int l, int r, Type val)

Assigns the same value to a subset of the components of the array.

Parameters:
l The first component the value is assigned.

r The last component the value is assigned.

val The new value of these components.

6.54.3.14 template<class Type> int ABA_ARRAY < Type >::size () const

Returns:
The length of the array.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.55 ABA_BUFFER< Type > Class Template Reference 443

6.54.4 Friends And Related Function Documentation

6.54.4.1 template<class Type> ostream& operator<< (ostream & out, constABA_ARRAY < Type > &
array) [friend]

The output operator writes first the number of the element anda ’ :’ followed by the value of the element line by
line to the streamout.

Returns:
A reference to the output stream.

Parameters:
out The output stream.

array The array being output.

6.54.5 Member Data Documentation

6.54.5.1 template<class Type> Type∗ ABA_ARRAY < Type >::a_ [private]

The /-style array storing the elements of theABA_ARRAY.

Definition at line 265 of file array.h.

6.54.5.2 template<class Type> ABA_GLOBAL ∗ ABA_ARRAY < Type >::glob_ [private]

A pointer to the corresponding global object.

Definition at line 257 of file array.h.

6.54.5.3 template<class Type> int ABA_ARRAY < Type >::n_ [private]

The length of the array.

Definition at line 261 of file array.h.

The documentation for this class was generated from the following file:

• Include/abacus/array.h

6.55 ABA_BUFFER< Type > Class Template Reference

class implements a buffer by an array and storing the number of already buffered elements.

#include <buffer.h>

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

444 Reference Manual

Inheritance diagram for ABA_BUFFER< Type>::

ABA_BUFFER< Type >

ABA_ABACUSROOT

Public Member Functions

• ABA_BUFFER(ABA_GLOBAL ∗glob, int size)
• ABA_BUFFER(constABA_BUFFER< Type> &rhs)
• ∼ABA_BUFFER()

The destructor.

• constABA_BUFFER< Type> & operator=(constABA_BUFFER< Type> &rhs)
• Type & operator[](int i)
• const Type &operator[](int i) const
• int size() const
• int number() const
• bool full () const
• boolempty() const
• void push(Type item)
• Typepop()
• void clear()
• void leftShift (ABA_BUFFER< int > &ind)

Removes the components listed in the bufferind by shifting the remaining components to the left.

• void realloc(int newSize)

The length of a buffer can be changed with the functionrealloc(). If the size of the buffer is increased all buffered
elements are copied. If the size is decreased the number of buffered elements is updated if necessary.

Private Attributes

• ABA_GLOBAL ∗ glob_
• int size_
• int n_
• Type∗ buf_

Friends

• ostream &operator<< (ostream &out, constABA_BUFFER< Type> &buffer)

The output operator writes all buffered elements line by line to an output stream in the format { number\/}{ : }{
value\/}.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.55 ABA_BUFFER< Type > Class Template Reference 445

6.55.1 Detailed Description

template<class Type> class ABA_BUFFER< Type >

class implements a buffer by an array and storing the number of already buffered elements.

Definition at line 61 of file buffer.h.

6.55.2 Constructor & Destructor Documentation

6.55.2.1 template<class Type> ABA_BUFFER< Type >::ABA_BUFFER (ABA_GLOBAL ∗ glob, int
size)

The constructor generates an empty buffer.

Parameters:
glob The corresponding global object.

size The size of the buffer.

6.55.2.2 template<class Type> ABA_BUFFER< Type >::ABA_BUFFER (constABA_BUFFER< Type
> & rhs)

The copy constructor.

Parameters:
rhs The buffer being copied.

6.55.2.3 template<class Type> ABA_BUFFER< Type >::∼ABA_BUFFER ()

The destructor.

6.55.3 Member Function Documentation

6.55.3.1 template<class Type> void ABA_BUFFER< Type >::clear ()

Sets the number of buffered items to 0 such that the buffer is empty.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

446 Reference Manual

6.55.3.2 template<class Type> bool ABA_BUFFER< Type >::empty () const

Returns:
true If no items are buffered,
false otherwise.

6.55.3.3 template<class Type> bool ABA_BUFFER< Type >::full () const

Returns:
true If no more elements can be inserted into the buffer,
false otherwise.

6.55.3.4 template<class Type> void ABA_BUFFER< Type >::leftShift (ABA_BUFFER< int > & ind)

Removes the components listed in the bufferind by shifting the remaining components to the left.

The values stored inind have to be upward sorted. Memory management of the removed components must be
carefully implemented by the user of this function to avoid memory leaks.

If this function is compiled with-DABACUSSAFEthen it is checked if each value ofind is in the range 0„number()-
1.

Parameters:
ind The numbers of the components being removed.

6.55.3.5 template<class Type> int ABA_BUFFER< Type >::number () const

Returns:
The number of buffered elements.

6.55.3.6 template<class Type> constABA_BUFFER<Type>& ABA_BUFFER< Type >::operator=
(constABA_BUFFER< Type > & rhs)

The assignment operator is only allowed between buffers having equal size.

Returns:
A reference to the buffer on the left hand side of the assignment operator.

Parameters:
rhs The buffer being assigned.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.55 ABA_BUFFER< Type > Class Template Reference 447

6.55.3.7]

template<class Type> const Type&ABA_BUFFER< Type>::operator[] (inti) const

The operator [] is overloaded that it can be also used to access elements of constant buffers.

6.55.3.8]

template<class Type> Type& ABA_BUFFER< Type>::operator[] (inti)

The operator [] can be used to access an element of the buffer.

It is only allowed to access buffered elements. Otherwise, if the function is compiled with-DABACUSSAFEthe
program stops with an error message.

Returns:
The i-th element of the buffer.

Parameters:
i The number of the component which should be returned.

6.55.3.9 template<class Type> Type ABA_BUFFER< Type >::pop ()

Removes and returns the last inserted item from the buffer.

It is a fatal error to perform this operation on an empty buffer.

In this case the program stops with an error message if this function is compiled with-DABACUSSAFE.

Returns:
The last item that has been inserted into the buffer.

6.55.3.10 template<class Type> void ABA_BUFFER< Type >::push (Type item)

Inserts an item into the buffer.

It is a fatal error to perform this operation if the buffer is full.

In this case the program stops with an error message if this function is compiled with-DABACUSSAFE.

Parameters:
item The item that should be inserted into the buffer.

6.55.3.11 template<class Type> void ABA_BUFFER< Type >::realloc (int newSize)

The length of a buffer can be changed with the functionrealloc(). If the size of the buffer is increased all buffered
elements are copied. If the size is decreased the number of buffered elements is updated if necessary.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

448 Reference Manual

Parameters:
newSizeThe new length of the buffer.

6.55.3.12 template<class Type> int ABA_BUFFER< Type >::size () const

Returns:
The maximal number of elements which can be stored in the buffer.

6.55.4 Friends And Related Function Documentation

6.55.4.1 template<class Type> ostream& operator<< (ostream & out, constABA_BUFFER< Type > &
buffer) [friend]

The output operator writes all buffered elements line by line to an output stream in the format { number\/}{ : }{
value\/}.

Returns:
A reference to the stream the buffer is written to.

Parameters:
out The output stream.

buffer The buffer being output.

6.55.5 Member Data Documentation

6.55.5.1 template<class Type> Type∗ ABA_BUFFER< Type >::buf_ [private]

The /-style array storing the buffered elements.

Definition at line 231 of file buffer.h.

6.55.5.2 template<class Type> ABA_GLOBAL ∗ ABA_BUFFER< Type >::glob_ [private]

A pointer to the corresponding global object.

Definition at line 219 of file buffer.h.

6.55.5.3 template<class Type> int ABA_BUFFER< Type >::n_ [private]

The number of buffered elements.

Definition at line 227 of file buffer.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.56 ABA_LISTITEM < Type > Class Template Reference 449

6.55.5.4 template<class Type> int ABA_BUFFER< Type >::size_ [private]

The maximal number of elements which can be stored in the buffer.

Definition at line 223 of file buffer.h.

The documentation for this class was generated from the following file:

• Include/abacus/buffer.h

6.56 ABA_LISTITEM < Type > Class Template Reference

We call the basic building block of a linked list an { item\/} that is implemented by the class ABA_LISTITEM.

#include <listitem.h>

Inheritance diagram for ABA_LISTITEM< Type>::

ABA_LISTITEM< Type >

ABA_ABACUSROOT

Public Member Functions

• ABA_LISTITEM (const Type &elem,ABA_LISTITEM< Type> ∗succ)
• Typeelem() const
• ABA_LISTITEM< Type> ∗ succ() const

Private Attributes

• Typeelem_
• ABA_LISTITEM< Type> ∗ succ_

Friends

• classABA_LIST< Type>

• ostream &operator<< (ostream &out, constABA_LISTITEM< Type> &item)

6.56.1 Detailed Description

template<class Type> class ABA_LISTITEM < Type >

We call the basic building block of a linked list an { item\/} that is implemented by the class ABA_LISTITEM.

Parameters:
Type elem_ The element of the item.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

450 Reference Manual

ABA_LISTITEM <Type> ∗succ_ A pointer to the successor of the item in the list. The successor of the last
item is0.

Definition at line 55 of file listitem.h.

6.56.2 Constructor & Destructor Documentation

6.56.2.1 template<class Type> ABA_LISTITEM < Type >::ABA_LISTITEM (const Type & elem,
ABA_LISTITEM < Type > ∗ succ)

The constructor.

Parameters:
elem A copy ofelembecomes the element of the list item.

succ A pointer to the successor of the item in the list.

6.56.3 Member Function Documentation

6.56.3.1 template<class Type> Type ABA_LISTITEM < Type >::elem () const

Returns:
The element of the item.

6.56.3.2 template<class Type> ABA_LISTITEM <Type>∗ ABA_LISTITEM < Type >::succ () const

Returns:
The successor of the item in the list.

6.56.4 Friends And Related Function Documentation

6.56.4.1 template<class Type> friend classABA_LIST < Type > [friend]

Definition at line 56 of file listitem.h.

6.56.4.2 template<class Type> ostream& operator<< (ostream & out, constABA_LISTITEM < Type >

& item) [friend]

The output operator.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.57 ABA_LIST< Type > Class Template Reference 451

Returns:
A reference to the output stream.

Parameters:
out The output stream.

item The list item being output.

6.56.5 Member Data Documentation

6.56.5.1 template<class Type> Type ABA_LISTITEM < Type >::elem_ [private]

Definition at line 95 of file listitem.h.

6.56.5.2 template<class Type> ABA_LISTITEM <Type>∗ ABA_LISTITEM < Type >::succ_
[private]

Definition at line 96 of file listitem.h.

The documentation for this class was generated from the following file:

• Include/abacus/listitem.h

6.57 ABA_LIST< Type > Class Template Reference

class ABA_LIST

#include <list.h>

Inheritance diagram for ABA_LIST< Type>::

ABA_LIST< Type >

ABA_ABACUSROOT

Public Member Functions

• ABA_LIST (constABA_GLOBAL ∗glob)
• ∼ABA_LIST ()
• void appendHead(const Type &elem)
• void appendTail(const Type &elem)
• int extractHead(Type &elem)
• int firstElem(Type &elem) const

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

452 Reference Manual

Assignelemthe first element as the functionextractHead()but does not remove this element from the list.

• boolempty() const

Private Member Functions

• ABA_LISTITEM< Type> ∗ first () const
• ABA_LISTITEM< Type> ∗ last() const
• void appendHead(ABA_LISTITEM< Type> ∗item)

This version of the functionappendHead()addsitem at the front of the list.

• void appendTail(ABA_LISTITEM< Type> ∗item)

This version of the functionappendTail()addsitem at the end of the list.

• ABA_LIST (constABA_LIST &rhs)
• constABA_LIST< Type> & operator=(constABA_LIST< Type> &rhs)

Private Attributes

• constABA_GLOBAL ∗ glob_
• ABA_LISTITEM< Type> ∗ first_
• ABA_LISTITEM< Type> ∗ last_

Friends

• classABA_LISTITEM< Type>

• ostream &operator<< (ostream &, constABA_LIST< Type> &list)

6.57.1 Detailed Description

template<class Type> class ABA_LIST< Type >

class ABA_LIST

Definition at line 56 of file list.h.

6.57.2 Constructor & Destructor Documentation

6.57.2.1 template<class Type> ABA_LIST < Type >::ABA_LIST (constABA_GLOBAL ∗ glob)

The constructor initializes the list with the empty list.

This is done by assigningfirst_andlast_to the0-pointer.

Parameters:
glob A pointer to the corresponding global object.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.57 ABA_LIST< Type > Class Template Reference 453

6.57.2.2 template<class Type> ABA_LIST < Type >::∼ABA_LIST ()

The destructor deallocates the memory of all items in the list.

6.57.2.3 template<class Type> ABA_LIST < Type >::ABA_LIST (constABA_LIST < Type > & rhs)
[private]

6.57.3 Member Function Documentation

6.57.3.1 template<class Type> void ABA_LIST < Type >::appendHead (ABA_LISTITEM < Type > ∗
item) [private]

This version of the functionappendHead()addsitemat the front of the list.

6.57.3.2 template<class Type> void ABA_LIST < Type >::appendHead (const Type &elem)

Adds an element at the front of the list.

Parameters:
elem The element being appended.

6.57.3.3 template<class Type> void ABA_LIST < Type >::appendTail (ABA_LISTITEM < Type > ∗
item) [private]

This version of the functionappendTail()addsitemat the end of the list.

6.57.3.4 template<class Type> void ABA_LIST < Type >::appendTail (const Type & elem)

Adds an element at the end of the list.

Parameters:
elem The element being appended.

6.57.3.5 template<class Type> bool ABA_LIST < Type >::empty () const

Returns:
true If no element is contained in the list,
false otherwise.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

454 Reference Manual

6.57.3.6 template<class Type> int ABA_LIST < Type >::extractHead (Type & elem)

Assigns toelemthe first element in the list and removes it from the list.

Returns:
0 If the operation can be be executed successfully.
1 If the list is empty.

Parameters:
elem If the list is nonemty, the first element is assigned toelem.

6.57.3.7 template<class Type> ABA_LISTITEM <Type>∗ ABA_LIST < Type >::first () const
[private]

Returns a pointer to the first item in the list.

6.57.3.8 template<class Type> int ABA_LIST < Type >::firstElem (Type & elem) const

Assignelemthe first element as the functionextractHead()but does not remove this element from the list.

Returns:
0 If the operation can be be executed successfully.
1 If the list is empty.

Parameters:
elem If the list is nonemty, the first element is assigned toelem.

6.57.3.9 template<class Type> ABA_LISTITEM <Type>∗ ABA_LIST < Type >::last () const
[private]

Returns a pointer to the last item in the list.

6.57.3.10 template<class Type> constABA_LIST <Type>& ABA_LIST < Type >::operator= (const
ABA_LIST < Type > & rhs) [private]

6.57.4 Friends And Related Function Documentation

6.57.4.1 template<class Type> friend classABA_LISTITEM < Type > [friend]

Definition at line 57 of file list.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.58 ABA_DLISTITEM < Type > Class Template Reference 455

6.57.4.2 template<class Type> ostream& operator<< (ostream &, constABA_LIST < Type > & list)
[friend]

The output operator writes all items of the list on an output stream.

Returns:
A reference to the output stream.

Parameters:
out The output stream.

list The list being output.

6.57.5 Member Data Documentation

6.57.5.1 template<class Type> ABA_LISTITEM <Type>∗ ABA_LIST < Type >::first_ [private]

A pointer to the first item of the list.

Definition at line 158 of file list.h.

6.57.5.2 template<class Type> constABA_GLOBAL ∗ ABA_LIST < Type >::glob_ [private]

A pointer to the corresponding global object.

Definition at line 154 of file list.h.

6.57.5.3 template<class Type> ABA_LISTITEM <Type>∗ ABA_LIST < Type >:: last_ [private]

Definition at line 162 of file list.h.

The documentation for this class was generated from the following file:

• Include/abacus/list.h

6.58 ABA_DLISTITEM < Type > Class Template Reference

A ABA_DLISTITEM stores a copy of the inserted element and haspointers to its predecessor and its successor.

#include <dlistitem.h>

Inheritance diagram for ABA_DLISTITEM< Type>::

ABA_DLISTITEM< Type >

ABA_ABACUSROOT

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

456 Reference Manual

Public Member Functions

• ABA_DLISTITEM (const Type &elem,ABA_DLISTITEM< Type> ∗pred,ABA_DLISTITEM< Type>

∗succ)
• Typeelem() const
• ABA_DLISTITEM< Type> ∗ succ() const
• ABA_DLISTITEM< Type> ∗ pred() const

Private Attributes

• Typeelem_
• ABA_DLISTITEM< Type> ∗ pred_
• ABA_DLISTITEM< Type> ∗ succ_

Friends

• classABA_DLIST< Type>

• ostream &operator<< (ostream &out, constABA_DLISTITEM< Type> &item)

6.58.1 Detailed Description

template<class Type> class ABA_DLISTITEM < Type >

A ABA_DLISTITEM stores a copy of the inserted element and haspointers to its predecessor and its successor.

Parameters:
Type elem_ The element stored in the item.

ABA_DLISTITEM <Type> ∗pred_ A pointer to predecessor of the item in the list.

ABA_DLISTITEM <Type> ∗succ_ A pointer to the successor of the item in the list.

Definition at line 54 of file dlistitem.h.

6.58.2 Constructor & Destructor Documentation

6.58.2.1 template<class Type> ABA_DLISTITEM < Type >::ABA_DLISTITEM (const Type & elem,
ABA_DLISTITEM < Type > ∗ pred, ABA_DLISTITEM < Type > ∗ succ)

The constructor.

Parameters:
elem The element of the item.

pred A pointer to the previous item in the list.

succ A pointer to the next item in the list.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.58 ABA_DLISTITEM < Type > Class Template Reference 457

6.58.3 Member Function Documentation

6.58.3.1 template<class Type> Type ABA_DLISTITEM < Type >::elem () const

Returns:
The element stored in the item.

6.58.3.2 template<class Type> ABA_DLISTITEM <Type>∗ ABA_DLISTITEM < Type >::pred () const

Returns:
A pointer to the predecessor of the item in the list.

6.58.3.3 template<class Type> ABA_DLISTITEM <Type>∗ ABA_DLISTITEM < Type >::succ () const

Returns:
A pointer to the successor of the item in the list.

6.58.4 Friends And Related Function Documentation

6.58.4.1 template<class Type> friend classABA_DLIST < Type > [friend]

Definition at line 55 of file dlistitem.h.

6.58.4.2 template<class Type> ostream& operator<< (ostream & out, constABA_DLISTITEM < Type
> & item) [friend]

The output operator.

Returns:
A reference to the output stream.

Parameters:
out The output stream.

item The list item being output.

6.58.5 Member Data Documentation

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

458 Reference Manual

6.58.5.1 template<class Type> Type ABA_DLISTITEM < Type >::elem_ [private]

Definition at line 102 of file dlistitem.h.

6.58.5.2 template<class Type> ABA_DLISTITEM <Type>∗ ABA_DLISTITEM < Type >::pred_
[private]

Definition at line 103 of file dlistitem.h.

6.58.5.3 template<class Type> ABA_DLISTITEM <Type>∗ ABA_DLISTITEM < Type >::succ_
[private]

Definition at line 104 of file dlistitem.h.

The documentation for this class was generated from the following file:

• Include/abacus/dlistitem.h

6.59 ABA_DLIST< Type > Class Template Reference

class ABA_DLIST implements a doubly linked linear list. Thelist is implemented by a doubly linked list of
ABA_DLISTITEMs.

#include <dlist.h>

Inheritance diagram for ABA_DLIST< Type>::

ABA_DLIST< Type >

ABA_ABACUSROOT

Public Member Functions

• ABA_DLIST (ABA_GLOBAL ∗glob)
• ∼ABA_DLIST ()
• void append(const Type &elem)
• int extractHead(Type &elem)
• int removeHead()

If the list is non-empty, the functionremoveHead()removes the head of the list.

• void remove(const Type &elem)
• void remove(ABA_DLISTITEM< Type> ∗item)

This version of the functionremove()scans the list for an item with elementelembeginning at the first element of
the list.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.59 ABA_DLIST< Type > Class Template Reference 459

• ABA_DLISTITEM< Type> ∗ first () const

• ABA_DLISTITEM< Type> ∗ last() const

• boolempty() const

• int firstElem(Type &elem) const

Private Member Functions

• ABA_DLIST (constABA_DLIST &rhs)

• constABA_DLIST< Type> & operator=(constABA_DLIST< Type> &rhs)

Private Attributes

• ABA_GLOBAL ∗ glob_

• ABA_DLISTITEM< Type> ∗ first_

• ABA_DLISTITEM< Type> ∗ last_

Friends

• ostream &operator<< (ostream &, constABA_DLIST< Type> &list)

6.59.1 Detailed Description

template<class Type> class ABA_DLIST< Type >

class ABA_DLIST implements a doubly linked linear list. Thelist is implemented by a doubly linked list of
ABA_DLISTITEMs.

Definition at line 62 of file dlist.h.

6.59.2 Constructor & Destructor Documentation

6.59.2.1 template<class Type> ABA_DLIST < Type >::ABA_DLIST (ABA_GLOBAL ∗ glob)

The constructor for an empty list.

Parameters:
glob A pointer to the corresponding global object.

6.59.2.2 template<class Type> ABA_DLIST < Type >::∼ABA_DLIST ()

The destructor deallocates the memory of all items in the list.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

460 Reference Manual

6.59.2.3 template<class Type> ABA_DLIST < Type >::ABA_DLIST (constABA_DLIST < Type > &
rhs) [private]

6.59.3 Member Function Documentation

6.59.3.1 template<class Type> void ABA_DLIST < Type >::append (const Type &elem)

Adds an element at the end of the list.

Parameters:
elem The element being appended.

6.59.3.2 template<class Type> bool ABA_DLIST < Type >::empty () const

Returns:
true If no element is contained in the list,
false otherwise.

6.59.3.3 template<class Type> int ABA_DLIST < Type >::extractHead (Type & elem)

Assigns toelemthe first element in the list and removes it from the list.

Returns:
0 If the operation can be executed successfully.
1 If the list is empty.

Parameters:
elem If the list is nonemty, the first element is assigned toelem.

6.59.3.4 template<class Type> ABA_DLISTITEM <Type>∗ ABA_DLIST < Type >::first () const

Returns a pointer to the first item of the list.

6.59.3.5 template<class Type> int ABA_DLIST < Type >::firstElem (Type & elem) const

Retrieves the first element of the list.

Returns:
0 If the list is not empty,
1 otherwise.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.59 ABA_DLIST< Type > Class Template Reference 461

Parameters:
elem Stores the first element of the list after the function call ifthe list is not empty.

6.59.3.6 template<class Type> ABA_DLISTITEM <Type>∗ ABA_DLIST < Type >::last () const

Returns a pointer to the last item of the list.

6.59.3.7 template<class Type> constABA_DLIST <Type>& ABA_DLIST < Type >::operator= (const
ABA_DLIST < Type > & rhs) [private]

6.59.3.8 template<class Type> void ABA_DLIST < Type >::remove (ABA_DLISTITEM < Type > ∗
item)

This version of the functionremove()scans the list for an item with elementelembeginning at the first element of
the list.

The first matching item is removed from the list.

Parameters:
elem The element which should be removed.

6.59.3.9 template<class Type> void ABA_DLIST < Type >::remove (const Type &elem)

The functionremove()removesitemfrom the list.

6.59.3.10 template<class Type> int ABA_DLIST < Type >::removeHead ()

If the list is non-empty, the functionremoveHead()removes the head of the list.

Returns:
0 If the list is non-empty before the function is called,
1 otherwise.

6.59.4 Friends And Related Function Documentation

6.59.4.1 template<class Type> ostream& operator<< (ostream &, constABA_DLIST < Type > & list)
[friend]

The output operator writes all elements of thelist on an output stream.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

462 Reference Manual

Returns:
A reference to the output stream.

Parameters:
out The output stream.

list The list being output.

6.59.5 Member Data Documentation

6.59.5.1 template<class Type> ABA_DLISTITEM <Type>∗ ABA_DLIST < Type >::first_ [private]

A pointer to the first item of the list.

Definition at line 166 of file dlist.h.

6.59.5.2 template<class Type> ABA_GLOBAL ∗ ABA_DLIST < Type >::glob_ [private]

A pointer to corresponding global object.

Definition at line 162 of file dlist.h.

6.59.5.3 template<class Type> ABA_DLISTITEM <Type>∗ ABA_DLIST < Type >:: last_ [private]

A pointer to the last item in the list.

Definition at line 170 of file dlist.h.

The documentation for this class was generated from the following file:

• Include/abacus/dlist.h

6.60 ABA_RING< Type > Class Template Reference

template ABA_RING implements a bounded circular list with the property that if the list is full and an element is
inserted the oldest element of the ring is removed

#include <ring.h>

Inheritance diagram for ABA_RING< Type>::

ABA_RING< Type >

ABA_ABACUSROOT

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.60 ABA_RING< Type > Class Template Reference 463

Public Member Functions

• ABA_RING (ABA_GLOBAL ∗glob, int size)
• virtual∼ABA_RING ()

The destructor.

• Type & operator[](int i)
• const Type &operator[](int i) const

The operator [] is overloaded for constant use.

• void insert(Type elem)
• void clear()
• int size() const
• int number() const
• Typeoldest() const
• int oldestIndex() const
• Typenewest() const
• int newestIndex() const
• int previous(int i, Type &p) const
• boolempty() const
• bool filled () const
• void realloc(int newSize)

Private Attributes

• ABA_GLOBAL ∗ glob_
• ABA_ARRAY< Type> ring_
• int head_
• bool filled_

Friends

• ostream &operator<< (ostream &out, constABA_RING< Type> &ring)

The output operator writes the elements of the ring to an output stream starting with the oldest element in the ring.

6.60.1 Detailed Description

template<class Type> class ABA_RING< Type >

template ABA_RING implements a bounded circular list with the property that if the list is full and an element is
inserted the oldest element of the ring is removed

Definition at line 49 of file ring.h.

6.60.2 Constructor & Destructor Documentation

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

464 Reference Manual

6.60.2.1 template<class Type> ABA_RING < Type >::ABA_RING (ABA_GLOBAL ∗ glob, int size)

The constructor.

Parameters:
glob A pointer to the corresponding global object.

size The length of the ring.

6.60.2.2 template<class Type> virtual ABA_RING < Type >::∼ABA_RING () [virtual]

The destructor.

6.60.3 Member Function Documentation

6.60.3.1 template<class Type> void ABA_RING < Type >::clear ()

Empties the ring.

6.60.3.2 template<class Type> bool ABA_RING < Type >::empty () const

Returns:
true If no element is contained in the ring,
false otherwise.

6.60.3.3 template<class Type> bool ABA_RING < Type >::filled () const

Returns:
true If the ABA_RING is completely filled up,
false otherwise.

6.60.3.4 template<class Type> void ABA_RING < Type >::insert (Type elem)

Inserts a new element into the ring.

If the ring is already full, this operation overwrites the oldest element in the ring.

Parameters:
elem The element being inserted.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.60 ABA_RING< Type > Class Template Reference 465

6.60.3.5 template<class Type> Type ABA_RING < Type >::newest () const

Returns:
The newest element in the ring.
The result is undefined if the ring is empty.

6.60.3.6 template<class Type> int ABA_RING < Type >::newestIndex () const

Returns:
The index of the newest element in the ring.
The result is undefined if the ring is empty.

6.60.3.7 template<class Type> int ABA_RING < Type >::number () const

Returns:
The current number of elements in the ring.

6.60.3.8 template<class Type> Type ABA_RING < Type >::oldest () const

Returns:
The oldest element in the ring.
The result is undefined, if the ring is empty.

6.60.3.9 template<class Type> int ABA_RING < Type >::oldestIndex () const

Returns:
The index of the oldest element in the ring.
The result is undefined, if the ring is empty.

6.60.3.10]

template<class Type> const Type&ABA_RING< Type>::operator[] (inti) const

The operator [] is overloaded for constant use.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

466 Reference Manual

6.60.3.11]

template<class Type> Type& ABA_RING< Type>::operator[] (inti)

Returns:
The i-th element of the ring. The operation is undefined if no element has been inserted in thei-th position so
far.

Parameters:
i The element being accessed.

6.60.3.12 template<class Type> int ABA_RING < Type >::previous (int i, Type & p) const

Can be used to access any element between the oldest and newest inserted element.

Returns:
0 If there are enough elements in the ring such that the element i entries before the newest one could be
accessed,
1 otherwise.

Parameters:
i The elementi elements before the newest element is retrieved. Ifi is 0, then the function retrieves the newest

element.

p Contains thei-th element before the newest one in a successful call.

6.60.3.13 template<class Type> void ABA_RING < Type >::realloc (int newSize)

Changes the length of the ring.

Parameters:
newSizeThe new length of the ring. If the ring decreases below the current number of elements in the ring,

then thenewSizenewest elements stay in the ring.

6.60.3.14 template<class Type> int ABA_RING < Type >::size () const

Returns:
The size of the ring.

6.60.4 Friends And Related Function Documentation

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.61 ABA_BSTACK< Type > Class Template Reference 467

6.60.4.1 template<class Type> ostream& operator<< (ostream & out, constABA_RING < Type > &
ring) [friend]

The output operator writes the elements of the ring to an output stream starting with the oldest element in the ring.

Returns:
A reference to the output stream.

Parameters:
out The output stream.

rhs The ring being output.

6.60.5 Member Data Documentation

6.60.5.1 template<class Type> bool ABA_RING < Type >::filled_ [private]

This member becomestrue if ring is completely filled up.

Definition at line 189 of file ring.h.

6.60.5.2 template<class Type> ABA_GLOBAL ∗ ABA_RING < Type >::glob_ [private]

A pointer to the corresponding global object.

Definition at line 177 of file ring.h.

6.60.5.3 template<class Type> int ABA_RING < Type >::head_ [private]

The position in the arrayring_ where the next element will be inserted.

Definition at line 185 of file ring.h.

6.60.5.4 template<class Type> ABA_ARRAY <Type> ABA_RING < Type >:: ring_ [private]

{An array storing the elements of the ring.

Definition at line 181 of file ring.h.

The documentation for this class was generated from the following file:

• Include/abacus/ring.h

6.61 ABA_BSTACK< Type > Class Template Reference

a set of elements, following the last-in first-out (LIFO) principle the access to or the deletion of an element is
restricted to the most recently inserted element.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

468 Reference Manual

#include <bstack.h>

Inheritance diagram for ABA_BSTACK< Type>::

ABA_BSTACK< Type >

ABA_ABACUSROOT

Public Member Functions

• ABA_BSTACK (ABA_GLOBAL ∗glob, int size)
• int size() const
• int tos() const
• boolempty() const
• bool full () const
• void push(Type item)
• Typetop () const
• Typepop()

Accesses liketop() the last element pushed on the stack and removes in addition this item from the stack.

• void realloc(int newSize)

Private Attributes

• ABA_GLOBAL ∗ glob_
• ABA_ARRAY< Type> stack_
• int tos_

Friends

• ostream &operator<< (ostream &out, constABA_BSTACK< Type> &rhs)

The output operator writes the numbers of all stacked elements and the elements line by line on an output stream.

6.61.1 Detailed Description

template<class Type> class ABA_BSTACK< Type >

a set of elements, following the last-in first-out (LIFO) principle the access to or the deletion of an element is
restricted to the most recently inserted element.

Definition at line 56 of file bstack.h.

6.61.2 Constructor & Destructor Documentation

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.61 ABA_BSTACK< Type > Class Template Reference 469

6.61.2.1 template<class Type> ABA_BSTACK < Type >::ABA_BSTACK (ABA_GLOBAL ∗ glob, int
size)

The constructor initializes an empty stack.

Parameters:
glob A pointer to the corresponding global object.

size The maximal number of elements the stack can store.

6.61.3 Member Function Documentation

6.61.3.1 template<class Type> bool ABA_BSTACK < Type >::empty () const

Returns:
true If there is no element in the stack,
false otherwise.

6.61.3.2 template<class Type> bool ABA_BSTACK < Type >::full () const

Returns:
true If the maximal number of elements has been inserted in the stack,
false otherwise.

6.61.3.3 template<class Type> Type ABA_BSTACK < Type >::pop ()

Accesses liketop() the last element pushed on the stack and removes in addition this item from the stack.

It is an error to perform this operation on an empty stack. If this function is compiled with-DABACUSSAFE, then
the program terminates if this error occurs.

Returns:
The last element pushed on the stack.

6.61.3.4 template<class Type> void ABA_BSTACK < Type >::push (Type item)

Adds an element to the stack.

It is a fatal error to insert an element if the stack is full. Ifthis function is compiled with-DABACUSSAFE, then
the program terminates if this error occurs.

Parameters:
item The element added to the stack.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

470 Reference Manual

6.61.3.5 template<class Type> void ABA_BSTACK < Type >::realloc (int newSize)

Changes the maximal number of elements of the stack.

Parameters:
newSizeThe new maximal number of elements on the stack. IfnewSizeis less than the current number of

elements in the stack, then thenewSizeoldest element are contained in the stack after the reallocation.

6.61.3.6 template<class Type> int ABA_BSTACK < Type >::size () const

Returns:
The maximal number of elements which can be inserted into thestack.

6.61.3.7 template<class Type> Type ABA_BSTACK < Type >::top () const

Accesses the last element pushed on the stack without removing it.

It is an error to perform this operation on an empty stack. If this function is compiled with-DABACUSSAFE, then
the program terminates if this error occurs.

Returns:
The last element pushed on the stack.

6.61.3.8 template<class Type> int ABA_BSTACK < Type >::tos () const

Returns:
The top of the stack, i.e., the number of the next free component of the stack. This is also the number of
elements currently contained in the stack since the first element is inserted in position 0.

6.61.4 Friends And Related Function Documentation

6.61.4.1 template<class Type> ostream& operator<< (ostream & out, constABA_BSTACK < Type > &
rhs) [friend]

The output operator writes the numbers of all stacked elements and the elements line by line on an output stream.

Returns:
A reference to the output stream.

Parameters:
out The output stream.

rhs The stack being output.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.62 ABA_BHEAP< Type, Key > Class Template Reference 471

6.61.5 Member Data Documentation

6.61.5.1 template<class Type> ABA_GLOBAL ∗ ABA_BSTACK < Type >::glob_ [private]

A pointer to the corresponding global object.

Definition at line 157 of file bstack.h.

6.61.5.2 template<class Type> ABA_ARRAY <Type> ABA_BSTACK < Type >::stack_ [private]

The array storing the elements of the stack.

Definition at line 161 of file bstack.h.

6.61.5.3 template<class Type> int ABA_BSTACK < Type >:: tos_ [private]

The top of stack (next free component).

Definition at line 165 of file bstack.h.

The documentation for this class was generated from the following file:

• Include/abacus/bstack.h

6.62 ABA_BHEAP< Type, Key > Class Template Reference

This template class implements a heap with a fixed maximal size, however a reallocation can be performed if
required.

#include <bheap.h>

Inheritance diagram for ABA_BHEAP< Type, Key>::

ABA_BHEAP< Type, Key >

ABA_ABACUSROOT

Public Member Functions

• ABA_BHEAP (ABA_GLOBAL ∗glob, int size)
• ABA_BHEAP (ABA_GLOBAL ∗glob, constABA_BUFFER< Type > &elems, constABA_BUFFER<

Key > &keys)
• void insert(Type elem, Key key)
• TypegetMin () const
• Key getMinKey() const

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

472 Reference Manual

• TypeextractMin()
• void clear()
• int size() const
• int number() const
• boolempty() const
• void realloc(int newSize)
• void check() const

Private Member Functions

• int leftSon(int i) const
• int rightSon(int i) const
• int father(int i) const
• void heapify(int i)

Private Attributes

• ABA_GLOBAL ∗ glob_
• ABA_ARRAY< Type> heap_
• ABA_ARRAY< Key > keys_
• int n_

Friends

• ostream &operator<< (ostream &out, constABA_BHEAP< Type, Key> &rhs)

The output operator writes the elements of the heap together with their keys on an output stream.

6.62.1 Detailed Description

template<class Type, class Key> class ABA_BHEAP< Type, Key >

This template class implements a heap with a fixed maximal size, however a reallocation can be performed if
required.

Definition at line 74 of file bheap.h.

6.62.2 Constructor & Destructor Documentation

6.62.2.1 template<class Type, class Key> ABA_BHEAP< Type, Key >::ABA_BHEAP (ABA_GLOBAL
∗ glob, int size)

A constructor.

Parameters:
glob A pointer to the corresponding global object.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.62 ABA_BHEAP< Type, Key > Class Template Reference 473

size The maximal number of elements which can be stored.

6.62.2.2 template<class Type, class Key> ABA_BHEAP< Type, Key >::ABA_BHEAP (ABA_GLOBAL
∗ glob, constABA_BUFFER< Type > & elems, constABA_BUFFER< Key > & keys)

A constructor with initialization.

The heap is initialized from anABA_BUFFER of elements and a correspondingABA_BUFFER of keys. The
running time is O(n) for n elements.

Parameters:
glob A pointer to the corresponding global object.

elem A ABA_BUFFERwich contains the elements.

elem A ABA_BUFFERwich contains the keys.

6.62.3 Member Function Documentation

6.62.3.1 template<class Type, class Key> void ABA_BHEAP< Type, Key >::check () const

Stops with an error message if the heap properties are violated.

This function is used for debugging this class.

6.62.3.2 template<class Type, class Key> void ABA_BHEAP< Type, Key >::clear ()

Empties the heap.

6.62.3.3 template<class Type, class Key> bool ABA_BHEAP< Type, Key >::empty () const

Returns:
true If there are no elements in the heap,
false otherwise.

6.62.3.4 template<class Type, class Key> Type ABA_BHEAP< Type, Key >::extractMin ()

Accesses and removes the minimum element from the heap.

The minimum element is stored in the root of the tree, i.e., inheap_[0]. If the heap does not become empty by
removing the minimal element, we move the last element stored in heap_to the root (heap_[0]). Whereas this
operation can destroy the heap property, the two subtrees rooted at nodes 1 and 2 still satisfy the heap property.
Hence callingheapify(0)will restore the overall heap property.

Returns:
The minimum element of the heap.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

474 Reference Manual

6.62.3.5 template<class Type, class Key> int ABA_BHEAP< Type, Key >::father (int i) const
[private]

Returns the index of the father of elementi.

6.62.3.6 template<class Type, class Key> Type ABA_BHEAP< Type, Key >::getMin () const

Returns:
The minimum element of the heap. This operation must not be performed if the heap is empty. Since the heap
property holds the element having minimal key is always stored inheap_[0].

6.62.3.7 template<class Type, class Key> Key ABA_BHEAP< Type, Key >::getMinKey () const

Returns:
The key of the minimum element of the heap. This operation must not be performed if the heap is empty.
Since the heap property holds the element having minimal keyis always stored inheap_[0] and its key in
key_[0].

6.62.3.8 template<class Type, class Key> void ABA_BHEAP< Type, Key>::heapify (int i) [private]

Is the central function to maintain the heap property.

The function assumes that the two trees rooted atleft(i) andright(i) fulfil already the heap property and restores
the heap property of the (sub-) tree rooted ati.

6.62.3.9 template<class Type, class Key> void ABA_BHEAP< Type, Key >::insert (Type elem, Key key)

Inserts an item with a key into the heap.

It is a fatal error to perform this operation if the heap is full. If the precompiler flag-DABACUSSAFEis set, we
check if the heap is not already full.

Parameters:
elem The element being inserted into the heap.

key The key of this element.

6.62.3.10 template<class Type, class Key> int ABA_BHEAP< Type, Key >::leftSon (int i) const
[private]

Returns the index of the left son of nodei.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.62 ABA_BHEAP< Type, Key > Class Template Reference 475

6.62.3.11 template<class Type, class Key> int ABA_BHEAP< Type, Key >::number () const

Returns:
The number of elements in the heap.

6.62.3.12 template<class Type, class Key> void ABA_BHEAP< Type, Key >::realloc (int newSize)

Changes the size of the heap.

Parameters:
newSizeThe new maximal number of elements in the heap.

6.62.3.13 template<class Type, class Key> int ABA_BHEAP< Type, Key >::rightSon (int i) const
[private]

Returns the index of the right son of nodei.

6.62.3.14 template<class Type, class Key> int ABA_BHEAP< Type, Key >::size () const

Returns:
The maximal number of elements which can be stored in the heap.

6.62.4 Friends And Related Function Documentation

6.62.4.1 template<class Type, class Key> ostream& operator<< (ostream & out, constABA_BHEAP<

Type, Key > & rhs) [friend]

The output operator writes the elements of the heap togetherwith their keys on an output stream.

Returns:
A reference to the output stream.

Parameters:
out The output stream.

rhs The heap being output.

6.62.5 Member Data Documentation

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

476 Reference Manual

6.62.5.1 template<class Type, class Key> ABA_GLOBAL ∗ ABA_BHEAP< Type, Key >::glob_
[private]

Definition at line 216 of file bheap.h.

6.62.5.2 template<class Type, class Key> ABA_ARRAY <Type> ABA_BHEAP< Type, Key >::heap_
[private]

Definition at line 217 of file bheap.h.

6.62.5.3 template<class Type, class Key> ABA_ARRAY <Key> ABA_BHEAP< Type, Key >::keys_
[private]

Definition at line 218 of file bheap.h.

6.62.5.4 template<class Type, class Key> int ABA_BHEAP< Type, Key >::n_ [private]

Definition at line 219 of file bheap.h.

The documentation for this class was generated from the following file:

• Include/abacus/bheap.h

6.63 ABA_BPRIOQUEUE< Type, Key > Class Template Reference

Since the priority queue is implemented by a heap (classABA_BHEAP) the insertion of a new element and the
deletion of the minimal element require O(log n) time if n elements are stored in the priority queue.

#include <bprioqueue.h>

Inheritance diagram for ABA_BPRIOQUEUE< Type, Key>::

ABA_BPRIOQUEUE< Type, Key >

ABA_ABACUSROOT

Public Member Functions

• ABA_BPRIOQUEUE(ABA_GLOBAL ∗glob, int size)
• void insert(Type elem, Key key)
• int getMin (Type &min) const
• int getMinKey(Key &minKey) const
• int extractMin(Type &min)

Extends the functiongetMin(min) in the way that the minimal element is also removed from the priority queue.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.63 ABA_BPRIOQUEUE< Type, Key > Class Template Reference 477

• void clear()
• int size() const
• int number() const
• void realloc(int newSize)

Private Attributes

• ABA_GLOBAL ∗ glob_
• ABA_BHEAP< Type, Key> heap_

6.63.1 Detailed Description

template<class Type, class Key> class ABA_BPRIOQUEUE< Type, Key >

Since the priority queue is implemented by a heap (classABA_BHEAP) the insertion of a new element and the
deletion of the minimal element require O(log n) time if n elements are stored in the priority queue.

Definition at line 57 of file bprioqueue.h.

6.63.2 Constructor & Destructor Documentation

6.63.2.1 template<class Type, class Key> ABA_BPRIOQUEUE< Type, Key >::ABA_BPRIOQUEUE
(ABA_GLOBAL ∗ glob, int size)

The constructor of an empty priority queue.

Parameters:
glob A pointer to the corresponding object.

size The maximal number of elements the priority queue can hold without reallocation.

6.63.3 Member Function Documentation

6.63.3.1 template<class Type, class Key> void ABA_BPRIOQUEUE< Type, Key >::clear ()

Makes the priority queue empty.

6.63.3.2 template<class Type, class Key> int ABA_BPRIOQUEUE< Type, Key >::extractMin (Type &
min)

Extends the functiongetMin(min)in the way that the minimal element is also removed from the priority queue.

Returns:
0 If the priority queue is non-empty,
1 otherwise.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

478 Reference Manual

Parameters:
min If the priority queue is non-empty the minimal element is assigned tomin.

6.63.3.3 template<class Type, class Key> int ABA_BPRIOQUEUE< Type, Key >::getMin (Type & min)
const

Retrieves the element with minimal key from the priority queue.

Returns:
0 If the priority queue is non-empty,
1 otherwise.

Parameters:
min If the priority queue is non-empty the minimal element is assigned tomin.

6.63.3.4 template<class Type, class Key> int ABA_BPRIOQUEUE< Type, Key >::getMinKey (Key &
minKey) const

Retrieves the key of the minimal element in the priority queue.

Returns:
0 If the priority queue is non-empty,
1 otherwise.

Parameters:
minKey Holds after the call the key of the minimal element in the priority queue, if the queue is non-emtpy.

6.63.3.5 template<class Type, class Key> void ABA_BPRIOQUEUE< Type, Key >::insert (Type elem,
Key key)

Inserts an element in the priority queue.

Parameters:
elem The element being inserted.

key The key of the element.

6.63.3.6 template<class Type, class Key> int ABA_BPRIOQUEUE< Type, Key >::number () const

Returns:
The number of elements stored in the priority queue.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.64 ABA_HASH< KeyType, ItemType > Class Template Reference 479

6.63.3.7 template<class Type, class Key> void ABA_BPRIOQUEUE< Type, Key >::realloc (int newSize)

Increases the size of the priority queue.

It is not allowed to decrease the size of the priority queue. In this case an error message is output and the program
stops.

Parameters:
newSizeThe new size of the priority queue.

6.63.3.8 template<class Type, class Key> int ABA_BPRIOQUEUE< Type, Key >::size () const

Returns:
The maximal number of elements which can be stored in the priority queue.

6.63.4 Member Data Documentation

6.63.4.1 template<class Type, class Key> ABA_GLOBAL ∗ ABA_BPRIOQUEUE< Type, Key >::glob_
[private]

A pointer to the corresponding global object.

Definition at line 131 of file bprioqueue.h.

6.63.4.2 template<class Type, class Key> ABA_BHEAP<Type, Key> ABA_BPRIOQUEUE< Type, Key
>::heap_ [private]

The heap implementing the priority queue.

Definition at line 135 of file bprioqueue.h.

The documentation for this class was generated from the following file:

• Include/abacus/bprioqueue.h

6.64 ABA_HASH< KeyType, ItemType > Class Template Reference

data structure stores a set of items and provides as central functions the insertion of a new item, the search for an
item, and the deletion of an item.

#include <hash.h>

Inheritance diagram for ABA_HASH< KeyType, ItemType>::

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

480 Reference Manual

ABA_HASH< KeyType, ItemType >

ABA_ABACUSROOT

Public Member Functions

• ABA_HASH (ABA_GLOBAL ∗glob, int size)

Initializes each slot with a 0-pointer to indicate that the linked list of hash items ofthis slot is empty.

• ∼ABA_HASH ()

The destructor deletes for each hash item by going through all non-empty lists of hash items.

• void insert(const KeyType &newKey, const ItemType &newItem)
• void overWrite(const KeyType &newKey, const ItemType &newItem)

Performs a regularinsert()if there is no item with the same key in the hash table, otherwise the item is replacedby
the new item.

• ItemType∗ find (const KeyType &key)
• bool find (const KeyType &key, const ItemType &item)

This version of the functionfind() checks if a prespecified item with a prespecified key is contained in the hashtable.

• int remove(const KeyType &key)
• int remove(const KeyType &key, const ItemType &item)

This version of the functionremove()removes the first item with a given key and a prespecified element from the
hash table.

• int size() const
• int nCollisions() const
• void resize(int newSize)

The functionsinitializeIteration()and next() can be used to iterate through all items stored in the hash table
having the same key.

• ItemType∗ initializeIteration(const KeyType &key)
• ItemType∗ next(const KeyType &key)

The functionnext()can be used to go to the next item in the hash table with keykey.

Private Member Functions

• int hf (int key)
• int hf (unsigned key)

This version ofhf() implements a Fibonacci hash function for keys of typeunsigned.

• int hf (constABA_STRING&string)
• ABA_HASH (constABA_HASH &rhs)
• ABA_HASH & operator=(constABA_HASH &rhs)

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.64 ABA_HASH< KeyType, ItemType > Class Template Reference 481

Private Attributes

• ABA_GLOBAL ∗ glob_

• ABA_HASHITEM< KeyType, ItemType> ∗∗ table_

• int size_

• int nCollisions_

• ABA_HASHITEM< KeyType, ItemType> ∗ iter_

Friends

• ostream &operator<< (ostream &out, constABA_HASH< KeyType, ItemType> &hash)

The output operator writes row by row all elements stored in the list associated with a slot on an output stream.

6.64.1 Detailed Description

template<class KeyType, class ItemType> class ABA_HASH< KeyType, ItemType >

data structure stores a set of items and provides as central functions the insertion of a new item, the search for an
item, and the deletion of an item.

Definition at line 137 of file hash.h.

6.64.2 Constructor & Destructor Documentation

6.64.2.1 template<class KeyType, class ItemType> ABA_HASH< KeyType, ItemType >::ABA_HASH
(ABA_GLOBAL ∗ glob, int size)

Initializes each slot with a 0-pointer to indicate that the linked list of hash items of this slot is empty.

Parameters:
glob A pointer to the corresponding global object.

size The size of the hash table.

6.64.2.2 template<class KeyType, class ItemType> ABA_HASH< KeyType, ItemType >::∼ABA_HASH
()

The destructor deletes for each hash item by going through all non-empty lists of hash items.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

482 Reference Manual

6.64.2.3 template<class KeyType, class ItemType> ABA_HASH< KeyType, ItemType >::ABA_HASH
(constABA_HASH< KeyType, ItemType > & rhs) [private]

6.64.3 Member Function Documentation

6.64.3.1 template<class KeyType, class ItemType> bool ABA_HASH< KeyType, ItemType >::find
(const KeyType & key, const ItemType & item)

This version of the functionfind() checks if a prespecified item with a prespecified key is contained in the hash
table.

Returns:
true If there is an element (key, item) in the hash table,
false otherwise.

Parameters:
key The key of the item.

item The searched item.

6.64.3.2 template<class KeyType, class ItemType> ItemType∗ ABA_HASH< KeyType, ItemType
>::find (const KeyType & key)

Looks for an item in the hash table with a given key.

Returns:
A pointer to an item with the given key, or a 0-pointer if thereis no item with this key in the hash table. If
there is more than one item in the hash table with this key, a pointer to the first item found is returned.

Parameters:
key The key of the searched item.

6.64.3.3 template<class KeyType, class ItemType> int ABA_HASH< KeyType, ItemType >::hf (const
ABA_STRING & string) [private]

This is a hash function for character strings.

It is taken from Knu93a}, page 300.

6.64.3.4 template<class KeyType, class ItemType> int ABA_HASH< KeyType, ItemType >::hf
(unsignedkey) [private]

This version ofhf() implements a Fibonacci hash function for keys of typeunsigned.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.64 ABA_HASH< KeyType, ItemType > Class Template Reference 483

6.64.3.5 template<class KeyType, class ItemType> int ABA_HASH< KeyType, ItemType >::hf (int key)
[private]

Computes the hash value ofkey.

It must be overloaded for all key types, which are used together with this template.

This following version ofhf() implements a Fibonacci hash function for keys of typeint.

6.64.3.6 template<class KeyType, class ItemType> ItemType∗ ABA_HASH< KeyType, ItemType
>::initializeIteration (const KeyType & key)

The functioninitializeIteration()retrieves the first item.

Returns:
A pointer to the first item found in the hash table having keykey, or 0 if there is no such item.

Parameters:
key The key of the items through which we want to iterate.

6.64.3.7 template<class KeyType, class ItemType> void ABA_HASH< KeyType, ItemType >::insert
(const KeyType & newKey, const ItemType & newItem)

Adds an item to the hash table.

The new item is inserted at the head of the list in the corresponding slot. It is possible to insert several items with
the same key into the hash table.

Parameters:
key The key of the new item.

item The item being inserted.

6.64.3.8 template<class KeyType, class ItemType> int ABA_HASH< KeyType, ItemType >::nCollisions
() const

Returns:
The number of collisions which occurred during all previouscalls of the functionsinsert()andoverWrite().

6.64.3.9 template<class KeyType, class ItemType> ItemType∗ ABA_HASH< KeyType, ItemType
>::next (const KeyType & key)

The functionnext()can be used to go to the next item in the hash table with keykey.

Before the first call ofnext()for a certain can the iteration has to be initialized by calling initializeItaration().

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

484 Reference Manual

Note:
The functionnext()gives you the next item havingkeykey but not the next item in the linked list starting in a
slot of the hash table.

Returns:
A pointer to the next item having keykey, or 0 if there is no more item with this key in the hash table.

Parameters:
key The key of the items through which we want to iterate.

6.64.3.10 template<class KeyType, class ItemType> ABA_HASH& ABA_HASH< KeyType, ItemType
>::operator= (const ABA_HASH< KeyType, ItemType > & rhs) [private]

6.64.3.11 template<class KeyType, class ItemType> void ABA_HASH< KeyType, ItemType
>::overWrite (const KeyType & newKey, const ItemType & newItem)

Performs a regularinsert()if there is no item with the same key in the hash table, otherwise the item is replaced by
the new item.

Parameters:
key The key of the new item.

item The item being inserted.

6.64.3.12 template<class KeyType, class ItemType> int ABA_HASH< KeyType, ItemType >::remove
(const KeyType & key, const ItemType & item)

This version of the functionremove()removes the first item with a given key and a prespecified element from the
hash table.

Returns:
0 If an item with the key is found.
1 If there is no item with this key.

Parameters:
key The key of the item that should be removed.

item The item which is searched.

6.64.3.13 template<class KeyType, class ItemType> int ABA_HASH< KeyType, ItemType >::remove
(const KeyType & key)

Removes the first item with a given key from the hash table.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.64 ABA_HASH< KeyType, ItemType > Class Template Reference 485

Returns:
0 If an item with the key is found.
1 If there is no item with this key.

Parameters:
key The key of the item that should be removed.

6.64.3.14 template<class KeyType, class ItemType> void ABA_HASH< KeyType, ItemType >::resize
(int newSize)

Can be used to change the size of the hash table.

Parameters:
newSizeThe new size of the hash table (must be positive).

6.64.3.15 template<class KeyType, class ItemType> int ABA_HASH< KeyType, ItemType >::size ()
const

Returns:
The length of the hash table.

6.64.4 Friends And Related Function Documentation

6.64.4.1 template<class KeyType, class ItemType> ostream& operator<< (ostream & out, const
ABA_HASH< KeyType, ItemType > & hash) [friend]

The output operator writes row by row all elements stored in the list associated with a slot on an output stream.

The output of an empty slot is suppressed.

Returns:
A reference to the output stream.

Parameters:
out The output stream.

rhs The hash table being output.

6.64.5 Member Data Documentation

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

486 Reference Manual

6.64.5.1 template<class KeyType, class ItemType> ABA_GLOBAL ∗ ABA_HASH< KeyType, ItemType
>::glob_ [private]

A pointer to the corresponding global object.

Definition at line 331 of file hash.h.

6.64.5.2 template<class KeyType, class ItemType> ABA_HASHITEM <KeyType, ItemType>∗
ABA_HASH< KeyType, ItemType >:: iter_ [private]

An iterator for all items stored in a slot.

This variable is initialized by callinginitializeIteration()and incremented by the functionnext().

Definition at line 355 of file hash.h.

6.64.5.3 template<class KeyType, class ItemType> int ABA_HASH< KeyType, ItemType
>::nCollisions_ [private]

The number of collisions on calls ofinsert()andoverWrite().

Definition at line 347 of file hash.h.

6.64.5.4 template<class KeyType, class ItemType> int ABA_HASH< KeyType, ItemType >::size_
[private]

The length of the hash table.

Definition at line 343 of file hash.h.

6.64.5.5 template<class KeyType, class ItemType> ABA_HASHITEM <KeyType, ItemType>∗∗
ABA_HASH< KeyType, ItemType >:: table_ [private]

The hash table storing a linked list of hash items in each slot.

table_[i] is initialized with a 0-pointer in order to indicate thatit is empty. The linked lists of each slot are
terminated with a 0-pointer, too.

Definition at line 339 of file hash.h.

The documentation for this class was generated from the following file:

• Include/abacus/hash.h

6.65 ABA_DICTIONARY < KeyType, ItemType > Class Template Ref-
erence

data structure dictionary is a collection of items with keys. It provides the operations to insert pairs of keys and
items and to look up an item given some key.

#include <dictionary.h>

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.65 ABA_DICTIONARY < KeyType, ItemType > Class Template Reference 487

Inheritance diagram for ABA_DICTIONARY< KeyType, ItemType>::

ABA_DICTIONARY< KeyType, ItemType >

ABA_ABACUSROOT

Public Member Functions

• void insert(const KeyType &key, const ItemType &item)
• ItemType∗ lookUp (const KeyType &key)

Public Attributes

• ABA_DICTIONARYABA_GLOBAL ∗ glob
• ABA_DICTIONARYABA_GLOBAL int size

Private Member Functions

• ABA_DICTIONARY (constABA_DICTIONARY< KeyType, ItemType> &rhs)
• constABA_DICTIONARY & operator=(constABA_DICTIONARY< KeyType, ItemType> &rhs)

Private Attributes

• ABA_GLOBAL ∗ glob_
• ABA_HASH< KeyType, ItemType> hash_

Friends

• ostream &operator<< (ostream &out, constABA_DICTIONARY< KeyType, ItemType> &rhs)

The output operator writes the hash table implementing the dictionary on an output stream.

6.65.1 Detailed Description

template<class KeyType, class ItemType> class ABA_DICTIONARY < KeyType, ItemType >

data structure dictionary is a collection of items with keys. It provides the operations to insert pairs of keys and
items and to look up an item given some key.

Definition at line 47 of file dictionary.h.

6.65.2 Constructor & Destructor Documentation

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

488 Reference Manual

6.65.2.1 template<class KeyType, class ItemType> ABA_DICTIONARY < KeyType, ItemType
>::ABA_DICTIONARY (constABA_DICTIONARY < KeyType, ItemType > & rhs)
[private]

6.65.3 Member Function Documentation

6.65.3.1 template<class KeyType, class ItemType> void ABA_DICTIONARY < KeyType, ItemType
>::insert (const KeyType & key, const ItemType & item)

Adds the item together with a key to the dictionary.

Parameters:
key The key of the new item.

item The new item.

6.65.3.2 template<class KeyType, class ItemType> ItemType∗ ABA_DICTIONARY < KeyType,
ItemType >::lookUp (const KeyType & key)

Returns:
A pointer to the item associated withkeyin the ABA_DICTIONARY, or 0 if there is no such item.

Parameters:
key The key of the searched item.

6.65.3.3 template<class KeyType, class ItemType> constABA_DICTIONARY & ABA_DICTIONARY <

KeyType, ItemType >::operator= (const ABA_DICTIONARY < KeyType, ItemType > & rhs)
[private]

6.65.4 Friends And Related Function Documentation

6.65.4.1 template<class KeyType, class ItemType> ostream& operator<< (ostream & out, const
ABA_DICTIONARY < KeyType, ItemType > & rhs) [friend]

The output operator writes the hash table implementing the dictionary on an output stream.

Returns:
A reference to the output stream.

Parameters:
out The output stream.

rhs The hash table being output.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.66 Tools 489

6.65.5 Member Data Documentation

6.65.5.1 template<class KeyType, class ItemType> ABA_DICTIONARYABA_GLOBAL ∗
ABA_DICTIONARY < KeyType, ItemType >::glob

The constructor.

Parameters:
glob A pointer to the corresponding global object.

size The size of the hash table implementing the dictionary.

Definition at line 55 of file dictionary.h.

6.65.5.2 template<class KeyType, class ItemType> ABA_GLOBAL ∗ ABA_DICTIONARY < KeyType,
ItemType >::glob_ [private]

A pointer to the corresponding global object.

Definition at line 86 of file dictionary.h.

6.65.5.3 template<class KeyType, class ItemType> ABA_HASH<KeyType, ItemType>
ABA_DICTIONARY < KeyType, ItemType >::hash_ [private]

The hash table implementing the dictionary.

Definition at line 90 of file dictionary.h.

6.65.5.4 template<class KeyType, class ItemType> ABA_DICTIONARYABA_GLOBAL int
ABA_DICTIONARY < KeyType, ItemType >::size

The constructor.

Parameters:
glob A pointer to the corresponding global object.

size The size of the hash table implementing the dictionary.

Definition at line 55 of file dictionary.h.

The documentation for this class was generated from the following file:

• Include/abacus/dictionary.h

6.66 Tools

This section documents some tools for sorting objects, measuring time, and generating output.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

490 Reference Manual

6.67 ABA_SORTER< ItemType, KeyType > Class Template Reference

This class implements several functions for sorting arraysaccording to increasing keys.

#include <sorter.h>

Inheritance diagram for ABA_SORTER< ItemType, KeyType>::

ABA_SORTER< ItemType, KeyType >

ABA_ABACUSROOT

Public Member Functions

• ABA_SORTER(ABA_GLOBAL ∗glob)
• void quickSort(int n, ABA_ARRAY< ItemType> &items,ABA_ARRAY< KeyType> &keys)

Sorts the elements of an array ofn items according to their keys.

• void quickSort(ABA_ARRAY< ItemType> &items,ABA_ARRAY< KeyType> &keys, int left, int right)
• void heapSort(int n, ABA_ARRAY< ItemType> &items,ABA_ARRAY< KeyType> &keys)

Private Member Functions

• int partition(ABA_ARRAY< ItemType> &items,ABA_ARRAY< KeyType> &keys, int left, int right)

Returns a numberq ({{left <= q <= right)} and guarantees that all elementsi with {key[i] <= key[q]}} are stored
in the left part of the array, i.e., initems[left], , items[q], and all elementsj with key[j] > key[q] are stored in the
right part of the array, i.e., initems[q+1], . . . , items[right].

• void buildHeap(int n, ABA_ARRAY< ItemType> &items,ABA_ARRAY< KeyType> &keys)

Resorts the elements ifitemsandkeyssuch that the heap property holds, i.e.,keys[i] >= keys[2∗i+1] and keys[i]
>= keys[2∗i+2].

• void heapify(int n, ABA_ARRAY< ItemType> &items,ABA_ARRAY< KeyType> &keys, int root)

Assumes that the heap property holds for the subtrees rooted at the sonsof root and restores the heap property for
the subtree rooted atroot.

• void check(int n, ABA_ARRAY< ItemType> &items,ABA_ARRAY< KeyType> &keys)

Is a debugging function and terminates the program with an error messageif the elements ofitemsare not sorted by
increasing keys.

Private Attributes

• ABA_GLOBAL ∗ glob_
• ItemTypeitemSwap_
• KeyTypekeySwap_

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.67 ABA_SORTER< ItemType, KeyType > Class Template Reference 491

6.67.1 Detailed Description

template<class ItemType, class KeyType> class ABA_SORTER< ItemType, KeyType >

This class implements several functions for sorting arraysaccording to increasing keys.

Definition at line 46 of file sorter.h.

6.67.2 Constructor & Destructor Documentation

6.67.2.1 template<class ItemType, class KeyType> ABA_SORTER< ItemType, KeyType
>::ABA_SORTER (ABA_GLOBAL ∗ glob)

The constructor.

Parameters:
glob A pointer to the corresponding global object.

6.67.3 Member Function Documentation

6.67.3.1 template<class ItemType, class KeyType> void ABA_SORTER< ItemType, KeyType
>::buildHeap (int n, ABA_ARRAY < ItemType > & items, ABA_ARRAY < KeyType > & keys)
[private]

Resorts the elements ifitemsandkeyssuch that the heap property holds, i.e.,keys[i] >= keys[2∗i+1] andkeys[i]
>= keys[2∗i+2].

Parameters:
n The number of elements of the following arrays.

items The items being sorted.

keys The keys for sorting the items.

The functionheapify()is called for each node of the tree which is not necessarily a leaf. First nodes on higher
level in the tree processed.

6.67.3.2 template<class ItemType, class KeyType> void ABA_SORTER< ItemType, KeyType >::check
(int n, ABA_ARRAY < ItemType > & items, ABA_ARRAY < KeyType > & keys) [private]

Is a debugging function and terminates the program with an error message if the elements ofitemsare not sorted
by increasing keys.

Parameters:
n The number of elements of the following arrays.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

492 Reference Manual

items The items being sorted.

keys The keys for sorting the items.

6.67.3.3 template<class ItemType, class KeyType> void ABA_SORTER< ItemType, KeyType>::heapify
(int n, ABA_ARRAY < ItemType > & items, ABA_ARRAY < KeyType > & keys, int root)
[private]

Assumes that the heap property holds for the subtrees rootedat the sons ofroot and restores the heap property for
the subtree rooted atroot.

Parameters:
n The number of elements of the following arrays.

items The items being sorted.

keys The keys for sorting the items.

root The index where the heaps property has to be restored.

The functionheapify()checks if the heap property holds forroot. This is not the case if thelargestelement of
l, r, androot is notroot. In this case the elements ofroot andlargestare swapped and we iterate. Otherwise,
the heap property is restored.

6.67.3.4 template<class ItemType, class KeyType> void ABA_SORTER< ItemType, KeyType
>::heapSort (int n, ABA_ARRAY < ItemType > & items, ABA_ARRAY < KeyType > & keys)

Sorts an array ofn items according to their keys.

In many practical applications this function is inferior toquickSort(), although it has the optimal worst case running
time of O(n log n) .

The functionheapSort()generates a heap. This guarantees that the largest element is stored initems[0]. So it
is obvious that if we want to sort the items by increasing keys, this element will finally be stored initems[n-1].
Hence we swap theitemsandkeysof 0 andn-1 and restore the heap property for the elements 0„n-2. This
can be done byheapify()since the subtree rooted at 1 and 2 are still heaps (the last element is not considered
anymore). This process is iterated until the elements are sorted.

Parameters:
n The number of items being sorted.

items The items being sorted.

keys The keys of the items.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.67 ABA_SORTER< ItemType, KeyType > Class Template Reference 493

6.67.3.5 template<class ItemType, class KeyType> int ABA_SORTER< ItemType, KeyType >::partition
(ABA_ARRAY < ItemType > & items, ABA_ARRAY < KeyType > & keys, int left, int right)
[private]

Returns a numberq ({{left <= q <= right)} and guarantees that all elementsi with {key[i] <= key[q]}} are stored
in the left part of the array, i.e., initems[left], , items[q], and all elementsj with key[j] > key[q] are stored in the
right part of the array, i.e., initems[q+1], . . . , items[right].

Parameters:
items The items being sorted.

keys The keys for sorting the items.

left The left border of the partial array being considered.

right The right border ot the partial array being considered.

First, we determine a pivot elementk. The while loop stops by returningr as soon as the elements are
partitioned in two subsets such all elementsi in left <= i <= r have a smaller key than the elements i withr+1
<= right.

Thedo-loopsstop as soon as a pair of elements is found violating the partition property. This pair of elements
is the swapped together with their keys.

6.67.3.6 template<class ItemType, class KeyType> void ABA_SORTER< ItemType, KeyType
>::quickSort (ABA_ARRAY < ItemType > & items, ABA_ARRAY < KeyType > & keys, int left,
int right)

Sorts an partial array.

The functionquickSort()uses the divide-and-conquer technique. First the functionpartition() puts the small ele-
ments to the left part and all big elements to the right part ofthe array being sorted. More precisely, it holds then,
keys[i] <= keys[q] for alli in left, q andkeys[q] < keys[i] for all i in q+1, right. Hence, it is sufficient to sort these
two subarrays recursively.

Parameters:
items The items being sorted.

keys The keys of the items.

left The first item in the partial array being sorted.

right The last item in the partial array being sorted.

6.67.3.7 template<class ItemType, class KeyType> void ABA_SORTER< ItemType, KeyType
>::quickSort (int n, ABA_ARRAY < ItemType > & items, ABA_ARRAY < KeyType > & keys)

Sorts the elements of an array ofn items according to their keys.

This function is very efficient for many practical applications. Yet, has a worst case running time of O(n2) .

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

494 Reference Manual

Parameters:
n The number of elements being sorted.

items The items being sorted.

keys The keys of the sorted items.

6.67.4 Member Data Documentation

6.67.4.1 template<class ItemType, class KeyType> ABA_GLOBAL ∗ ABA_SORTER< ItemType,
KeyType >::glob_ [private]

A pointer to the corresponding global object.

Definition at line 183 of file sorter.h.

6.67.4.2 template<class ItemType, class KeyType> ItemType ABA_SORTER< ItemType, KeyType
>:: itemSwap_ [private]

An auxiliary variable for swapping items.

Definition at line 187 of file sorter.h.

6.67.4.3 template<class ItemType, class KeyType> KeyType ABA_SORTER< ItemType, KeyType
>::keySwap_ [private]

An auxiliary variable for swapping keys.

Definition at line 191 of file sorter.h.

The documentation for this class was generated from the following file:

• Include/abacus/sorter.h

6.68 ABA_TIMER Class Reference

class implements a base class for timers measuring the CPU time and the wall-clock time

#include <timer.h>

Inheritance diagram for ABA_TIMER::

ABA_TIMER

ABA_ABACUSROOT

ABA_COWTIMER ABA_CPUTIMER

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.68 ABA_TIMER Class Reference 495

Public Member Functions

• ABA_TIMER (ABA_GLOBAL ∗glob)

The constructor for a timer with a pointer to the global objectglob.

• ABA_TIMER (ABA_GLOBAL ∗glob, long centiSeconds)

This constructor initializes the total time of the timer withcentiSecondsand the pointer to the corresponding global
objectglob. The timer is not running, too.

• virtual∼ABA_TIMER ()

The destructor.

• void start(bool reset=false)

The timer is started with the functionstart(). For safety starting a running timer is an error.

• void stop()

Stops the timer and adds the difference between the current time and the starting time to the total time.

• void reset()
• bool running() const
• longcentiSeconds() const
• longseconds() const
• longminutes() const
• longhours() const
• boolexceeds(constABA_STRING &maxTime) const
• void addCentiSeconds(long centiSeconds)

Protected Member Functions

• virtual longtheTime() const =0

Is required for measuring the time difference between the time of the call andsome base point (e.g., the program
start).

Protected Attributes

• ABA_GLOBAL ∗ glob_

Private Attributes

• longstartTime_
• long totalTime_
• bool running_

Friends

• ostream &operator<< (ostream &out, constABA_TIMER &rhs)

The output operator writes the time in the format { hours:minutes:seconds.seconds/100} on an output stream.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

496 Reference Manual

6.68.1 Detailed Description

class implements a base class for timers measuring the CPU time and the wall-clock time

Definition at line 47 of file timer.h.

6.68.2 Constructor & Destructor Documentation

6.68.2.1 ABA_TIMER::ABA_TIMER (ABA_GLOBAL ∗ glob)

The constructor for a timer with a pointer to the global object glob.

After the application of the constructor the timer is not running, i.e., to measure time it has to be started explicitly.

6.68.2.2 ABA_TIMER::ABA_TIMER (ABA_GLOBAL ∗ glob, long centiSeconds)

This constructor initializes the total time of the timer with centiSecondsand the pointer to the corresponding global
objectglob. The timer is not running, too.

6.68.2.3 virtual ABA_TIMER:: ∼ABA_TIMER () [virtual]

The destructor.

6.68.3 Member Function Documentation

6.68.3.1 void ABA_TIMER::addCentiSeconds (longcentiSeconds)

Parameters:
centiSecondsThe number of centiseconds to be added.

6.68.3.2 long ABA_TIMER::centiSeconds () const

Returns:
The currently spent time in1

100
-seconds. It is not necessary to stop the timer to get the correct time.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.68 ABA_TIMER Class Reference 497

6.68.3.3 bool ABA_TIMER::exceeds (constABA_STRING & maxTime) const

Returns:
true If the currently spent time exceedsmaxTime,
false otherwise.

Parameters:
maxTime A string of the form [[h:]m:]s, whereh are the hours,m the minutes, ands the seconds. Hours and

minutes are optional.h can be an arbitrary nonnegative integer,sandmhave to be integers in{0, . . . , 59}
. If m or sare less than 10, then a leading 0 is allowed (e.g. 3:05:09).

6.68.3.4 long ABA_TIMER::hours () const

Returns:
The currently spent time in hours. It is not necessary to stopthe timer to get the correct time. The result is
rounded down to the next integer value.

6.68.3.5 long ABA_TIMER::minutes () const

Returns:
The currently spent time in minutes. It is not necessary to stop the timer to get the correct time. The result is
rounded down to the next integer value.

6.68.3.6 void ABA_TIMER::reset ()

Stops the timer and sets thetotalTimeto 0.

6.68.3.7 bool ABA_TIMER::running () const

Returns:
true If the timer is running,
false otherwise.

6.68.3.8 long ABA_TIMER::seconds () const

Returns:
The currently spent time in seconds. It is not necessary to stop the timer to get the correct time. The result is
rounded down to the next integer value.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

498 Reference Manual

6.68.3.9 void ABA_TIMER::start (bool reset= false)

The timer is started with the functionstart(). For safety starting a running timer is an error.

Parameters:
reset If this flag is set to true, the timer is reset before it is started (default=false)}

6.68.3.10 void ABA_TIMER::stop ()

Stops the timer and adds the difference between the current time and the starting time to the total time.

Stopping a non-running timer is an error.

6.68.3.11 virtual long ABA_TIMER::theTime () const [protected, pure virtual]

Is required for measuring the time difference between the time of the call and some base point (e.g., the program
start).

We measure time according to the following principle.

The pure virtual functiontheTime()returns the CPU time since the start of the program for the class CPUABA_-
TIMER or the elapsed time since some point in the past for the classABA_COWTIMER. When the timer is started
startTime_is initialized with the a value returned bytheTime()and when it is stopped the difference between
theTime()andstartTime_is added to the total time.

Implemented inABA_COWTIMER, andABA_CPUTIMER.

6.68.4 Friends And Related Function Documentation

6.68.4.1 ostream& operator<< (ostream & out, constABA_TIMER & rhs) [friend]

The output operator writes the time in the format { hours:minutes:seconds.seconds/100} on an output stream.

After the time has been divided in hours, minutes and secondswe have to take care that an additional leading zero
is output if minutes or seconds have a value less than ten.

Returns:
A reference to the output stream.

Parameters:
out The output stream.

rhs The timer being output.

6.68.5 Member Data Documentation

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.69 ABA_CPUTIMER Class Reference 499

6.68.5.1 ABA_GLOBAL ∗ ABA_TIMER::glob_ [protected]

A pointer to the corresponding global object.

Definition at line 176 of file timer.h.

6.68.5.2 boolABA_TIMER::running_ [private]

true, if the timer is running.

Definition at line 190 of file timer.h.

6.68.5.3 longABA_TIMER::startTime_ [private]

The start time of the timer in1

100
-seconds.

Definition at line 182 of file timer.h.

6.68.5.4 longABA_TIMER::totalTime_ [private]

The total time in 1

100
-seconds.

Definition at line 186 of file timer.h.

The documentation for this class was generated from the following file:

• Include/abacus/timer.h

6.69 ABA_CPUTIMER Class Reference

This class derived fromABA_TIMER implements a timer measuring the cpu time of parts of a program.

#include <cputimer.h>

Inheritance diagram for ABA_CPUTIMER::

ABA_CPUTIMER

ABA_TIMER

ABA_ABACUSROOT

Public Member Functions

• ABA_CPUTIMER (ABA_GLOBAL ∗glob)

After the application of the constructor the timer is not running, i.e., to measure time it has to be started explicitly.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

500 Reference Manual

• ABA_CPUTIMER (ABA_GLOBAL ∗glob, long centiSeconds)
• virtual∼ABA_CPUTIMER ()

The destructor.

Private Member Functions

• virtual longtheTime() const

Static Private Attributes

• static longclk_tck_

6.69.1 Detailed Description

This class derived fromABA_TIMER implements a timer measuring the cpu time of parts of a program.

Definition at line 38 of file cputimer.h.

6.69.2 Constructor & Destructor Documentation

6.69.2.1 ABA_CPUTIMER::ABA_CPUTIMER (ABA_GLOBAL ∗ glob)

After the application of the constructor the timer is not running, i.e., to measure time it has to be started explicitly.

Parameters:
glob A pointer to a global object.

6.69.2.2 ABA_CPUTIMER::ABA_CPUTIMER (ABA_GLOBAL ∗ glob, long centiSeconds)

This constructor initializes the total time of the timer.

The timer is not running, too.

Parameters:
glob A pointer to a global object.

centiSecondsThe intial value of the total time in1

100
seconds.

6.69.2.3 virtual ABA_CPUTIMER:: ∼ABA_CPUTIMER () [virtual]

The destructor.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.70 ABA_COWTIMER Class Reference 501

6.69.3 Member Function Documentation

6.69.3.1 virtual long ABA_CPUTIMER::theTime () const [private, virtual]

Returns the used cpu time in1
100

seconds since the start of the program.

This function redefines the pure virtual function of the baseclassABA_TIMER.

SinceCLOCKS_PER_SECcan be 1000000 the standard library functionclock()returns negative values after
about than 35 minutes. Hence we measure the cpu time with the functiontimeswhich is common on / systems,
although not defined in the /-ANSI-standard.

ImplementsABA_TIMER.

6.69.4 Member Data Documentation

6.69.4.1 longABA_CPUTIMER::clk_tck_ [static, private]

Definition at line 62 of file cputimer.h.

The documentation for this class was generated from the following file:

• Include/abacus/cputimer.h

6.70 ABA_COWTIMER Class Reference

class derived fromABA_TIMER implements a timer measuring the elpased time (clock-of-the-wall time) of parts
of the program.

#include <cowtimer.h>

Inheritance diagram for ABA_COWTIMER::

ABA_COWTIMER

ABA_TIMER

ABA_ABACUSROOT

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

502 Reference Manual

Public Member Functions

• ABA_COWTIMER (ABA_GLOBAL ∗glob)

After the application of the constructor the timer is not running, i.e., to measure time it has to be started explicitly.

• ABA_COWTIMER (ABA_GLOBAL ∗glob, long secs)
• virtual∼ABA_COWTIMER ()

Private Member Functions

• virtual longtheTime() const

Returns the wall clock time since the initialization of the timer in1
100

seconds.

Private Attributes

• longbaseTime_

Stores the result of a call to the functiontime(NULL) at construction time.

6.70.1 Detailed Description

class derived fromABA_TIMER implements a timer measuring the elpased time (clock-of-the-wall time) of parts
of the program.

Definition at line 37 of file cowtimer.h.

6.70.2 Constructor & Destructor Documentation

6.70.2.1 ABA_COWTIMER::ABA_COWTIMER (ABA_GLOBAL ∗ glob)

After the application of the constructor the timer is not running, i.e., to measure time it has to be started explicitly.

We initialize base time with the current time, such that later we can convert the time to1

100
seconds without

arithmetic overflow. The functiontime() is defined in the standard /-library.

Parameters:
glob A pointer to a global object.

6.70.2.2 ABA_COWTIMER::ABA_COWTIMER (ABA_GLOBAL ∗ glob, long secs)

This constructor initializes the total time of the timer.

The timer is not running, too.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.71 ABA_OSTREAM Class Reference 503

Parameters:
glob A pointer to a global object.

centiSecondsThe initial value of the timer in 1

100
seconds.

6.70.2.3 virtual ABA_COWTIMER:: ∼ABA_COWTIMER () [virtual]

The destructor.

6.70.3 Member Function Documentation

6.70.3.1 virtual long ABA_COWTIMER::theTime () const [private, virtual]

Returns the wall clock time since the initialization of the timer in 1

100
seconds.

This function redefines the pure virtual function of the baseclassABA_TIMER.

The functiontheTime()uses the functiontimes(), which returns the elapsed real time in clock ticks.

ImplementsABA_TIMER.

6.70.4 Member Data Documentation

6.70.4.1 longABA_COWTIMER::baseTime_ [private]

Stores the result of a call to the functiontime(NULL)at construction time.

We require this member such that we can return the time in centiseconds correctly in the functiontheTime().
Otherwise, an arithmetic overflow can occur.

Definition at line 85 of file cowtimer.h.

The documentation for this class was generated from the following file:

• Include/abacus/cowtimer.h

6.71 ABA_OSTREAM Class Reference

Class implements an output stream which can be turned on and off at run time, i.e., if the output stream is turned
off, then no messages written by the operator<< reach the associated “real” output stream.

#include <ostream.h>

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

504 Reference Manual

Inheritance diagram for ABA_OSTREAM::

ABA_OSTREAM

ABA_ABACUSROOT

Public Member Functions

• ABA_OSTREAM (ostream &out, const char∗logStreamName=0)
• ∼ABA_OSTREAM ()

The destructor.

• ABA_OSTREAM & operator<< (char o)

Reimplementation for all fundamental types, forconstchar∗, and for some other classes listed below.

• ABA_OSTREAM & operator<< (unsigned char o)
• ABA_OSTREAM & operator<< (signed char o)
• ABA_OSTREAM & operator<< (short o)
• ABA_OSTREAM & operator<< (unsigned short o)
• ABA_OSTREAM & operator<< (int o)
• ABA_OSTREAM & operator<< (unsigned int o)
• ABA_OSTREAM & operator<< (long o)
• ABA_OSTREAM & operator<< (unsigned long o)
• ABA_OSTREAM & operator<< (float o)
• ABA_OSTREAM & operator<< (double o)
• ABA_OSTREAM & operator<< (const char∗o)
• ABA_OSTREAM & operator<< (ABA_OSTREAM &(∗pf)(ABA_OSTREAM &))
• ABA_OSTREAM & operator<< (constABA_STRING&o)

A manipulator is a function having as argument a reference to an ABA_OSTREAM and returning an ABA_-
OSTREAM.

• ABA_OSTREAM & operator<< (constABA_TIMER &o)
• ABA_OSTREAM & operator<< (constABA_HISTORY &o)
• ABA_OSTREAM & operator<< (constABA_LPVARSTAT &o)
• ABA_OSTREAM & operator<< (constABA_CSENSE&o)
• ABA_OSTREAM & operator<< (constABA_LP &o)
• void off ()
• void on ()
• void logOn()
• void logOn(const char∗logStreamName)

This version oflogOn()turns the output to the logfile on and sets the log-file tologStreamName.

• void logOff ()
• bool isOn() const
• bool isLogOn() const
• ofstream∗ log () const
• void setFormatFlag(fmtflags flag)

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.71 ABA_OSTREAM Class Reference 505

Can be used to set the format flags of the output stream and the log file similarto the functionios::set()of the
iostream library.

Private Attributes

• ostream &out_

The “real” stream associated with our output stream (usuallycoutor cerr).

• boolon_

If true, then output is written to the streamout_, otherwise it is suppressed.

• bool logOn_

If true_, then output is also written to the log stream∗log.

• ofstream∗ log_

Friends

• ABA_OSTREAM & flush(ABA_OSTREAM &o)

Flushes the output and the log stream buffers of the streamo. This function can be called via the manipulatoro <<

flush;.

• ABA_OSTREAM & endl(ABA_OSTREAM &o)
• ABA_OSTREAM & _setWidth(ABA_OSTREAM &o, int w)
• ABA_OSTREAM & _setPrecision(ABA_OSTREAM &o, int p)

6.71.1 Detailed Description

Class implements an output stream which can be turned on and off at run time, i.e., if the output stream is turned
off, then no messages written by the operator<< reach the associated “real” output stream.

Definition at line 64 of file ostream.h.

6.71.2 Constructor & Destructor Documentation

6.71.2.1 ABA_OSTREAM::ABA_OSTREAM (ostream & out, const char∗ logStreamName= 0)

The constructor turns the output on and associates it with a “real” stream.

Parameters:
out The “real” stream (usuallycoutor cerr.)}

logStreamNameIf logStreamNameis not 0, then the output also directed to a log-file with this name. The
default value oflogStreamNameis 0.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

506 Reference Manual

6.71.2.2 ABA_OSTREAM::∼ABA_OSTREAM ()

The destructor.

6.71.3 Member Function Documentation

6.71.3.1 bool ABA_OSTREAM::isLogOn () const

Returns:
true If the output to the logfile is turned on,
false otherwise.

6.71.3.2 bool ABA_OSTREAM::isOn () const

Returns:
true If the output is turned on,
false otherwise.

6.71.3.3 ofstream∗ ABA_OSTREAM::log () const

Returns:
A pointer to the stream associated with the log-file.

6.71.3.4 void ABA_OSTREAM::logOff ()

Turns the output to the logfile off.

6.71.3.5 void ABA_OSTREAM::logOn (const char∗ logStreamName)

This version oflogOn()turns the output to the logfile on and sets the log-file tologStreamName.

Parameters:
logStreamNameThe name of the log-file.

6.71.3.6 void ABA_OSTREAM::logOn ()

Turns the output to the logfile on.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.71 ABA_OSTREAM Class Reference 507

6.71.3.7 void ABA_OSTREAM::off ()

Turns the output off.

6.71.3.8 void ABA_OSTREAM::on ()

Turns the output on.

6.71.3.9 ABA_OSTREAM & ABA_OSTREAM::operator << (constABA_LP & o)

6.71.3.10 ABA_OSTREAM & ABA_OSTREAM::operator << (constABA_CSENSE& o)

6.71.3.11 ABA_OSTREAM & ABA_OSTREAM::operator << (constABA_LPVARSTAT & o)

6.71.3.12 ABA_OSTREAM & ABA_OSTREAM::operator << (constABA_HISTORY & o)

6.71.3.13 ABA_OSTREAM & ABA_OSTREAM::operator << (constABA_TIMER & o)

6.71.3.14 ABA_OSTREAM & ABA_OSTREAM::operator << (constABA_STRING & o)

A manipulator is a function having as argument a reference toan ABA_OSTREAM and returning an ABA_-
OSTREAM.

Manipulators are used that we can call, e.g., the functionendl(o)by just writing its name omitting brackets and the
function argument.

Returns:
A reference to the output stream.

Parameters:
m An output stream manipulator.

6.71.3.15 ABA_OSTREAM & ABA_OSTREAM::operator << (ABA_OSTREAM &(∗)(ABA_OSTREAM
&) pf) [inline]

Definition at line 105 of file ostream.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

508 Reference Manual

6.71.3.16 ABA_OSTREAM & ABA_OSTREAM::operator << (const char∗ o)

6.71.3.17 ABA_OSTREAM & ABA_OSTREAM::operator << (doubleo)

6.71.3.18 ABA_OSTREAM & ABA_OSTREAM::operator << (float o)

6.71.3.19 ABA_OSTREAM & ABA_OSTREAM::operator << (unsigned longo)

6.71.3.20 ABA_OSTREAM & ABA_OSTREAM::operator << (long o)

6.71.3.21 ABA_OSTREAM & ABA_OSTREAM::operator << (unsigned into)

6.71.3.22 ABA_OSTREAM & ABA_OSTREAM::operator << (int o)

6.71.3.23 ABA_OSTREAM & ABA_OSTREAM::operator << (unsigned shorto)

6.71.3.24 ABA_OSTREAM & ABA_OSTREAM::operator << (short o)

6.71.3.25 ABA_OSTREAM & ABA_OSTREAM::operator << (signed charo)

6.71.3.26 ABA_OSTREAM & ABA_OSTREAM::operator << (unsigned charo)

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.71 ABA_OSTREAM Class Reference 509

6.71.3.27 ABA_OSTREAM & ABA_OSTREAM::operator << (char o)

Reimplementation for all fundamental types, forconstchar∗, and for some other classes listed below.

output operator<< If the output is turned on the operator of the base classostreamis called. If also the output to
the logfile is turned on, we write the same message also to the log-file.

return A reference to the output stream.

Parameters:
o The item being output.

6.71.3.28 void ABA_OSTREAM::setFormatFlag (fmtflagsflag)

Can be used to set the format flags of the output stream and the log file similar to the functionios::set()of the
iostream library.

For a documentation of all possible flags we refer to the documentation of the GNU / iostream Library.

Parameters:
flag The flag being set.

6.71.4 Friends And Related Function Documentation

6.71.4.1 ABA_OSTREAM & _setPrecision (ABA_OSTREAM & o, int p) [friend]

Sets the precision for the output stream.

In most cases the manipulatorsetPrecisionis more convenient to use.

Returns:
A reference to the output stream.

Parameters:
o An output stream.

p The precision.

6.71.4.2 ABA_OSTREAM & _setWidth (ABA_OSTREAM & o, int w) [friend]

Sets the width of the field for the next output operation on thelog and the output stream.

In most cases the manipulatorsetWithis more convenient to use.

Returns:
A reference to the output stream.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

510 Reference Manual

Parameters:
o An output stream.

w The width of the field.

6.71.4.3 ABA_OSTREAM & endl (ABA_OSTREAM & o) [friend]

Writes an end of line to the output and log-file of the streamo and flushes both stream buffers.

This function can be called via the manipulatoro << endl;.

Returns:
A reference to the output stream.

Parameters:
o An output stream.

6.71.4.4 ABA_OSTREAM & flush (ABA_OSTREAM & o) [friend]

Flushes the output and the log stream buffers of the streamo. This function can be called via the manipulatoro
<< flush;.

Returns:
A reference to the output stream.

Parameters:
o An output stream.

6.71.5 Member Data Documentation

6.71.5.1 ofstream∗ ABA_OSTREAM::log_ [private]

A pointer to a stream associated with the log file.

Definition at line 262 of file ostream.h.

6.71.5.2 boolABA_OSTREAM::logOn_ [private]

If true_, then output is also written to the log stream∗log.

Definition at line 258 of file ostream.h.

6.71.5.3 boolABA_OSTREAM::on_ [private]

If true, then output is written to the streamout_, otherwise it is suppressed.

Definition at line 253 of file ostream.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.72 Preprocessor Flags 511

6.71.5.4 ostream&ABA_OSTREAM::out_ [private]

The “real” stream associated with our output stream (usually coutor cerr).

Definition at line 248 of file ostream.h.

The documentation for this class was generated from the following file:

• Include/abacus/ostream.h

6.72 Preprocessor Flags

Table6.1summarizes all preprocessors flags that are relevant forABACUS-users.

Flag Description See Section
ABACUS_COMPILER_GCC41 GNU C++ compiler 4.1.x 2.4
ABACUS_COMPILER_GCC34 GNU C++ compiler 3.4.x 2.4
ABACUS_COMPILER_GCC33 GNU C++ compiler 3.3.x 2.4
ABACUS_COMPILER_SUN SUN C++ compiler 2.4

Table 6.1: Preprocessor Flags.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

512 Reference Manual

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

Chapter 7

Warranty and Copyright

7.1 Warranty

All parts of ABACUS, including the software, the example, and the user’s guide and reference manual, are
distributed without any warranty. The entire risk ofABACUS is with its user.

7.2 Copyright

This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option)
any later version.

This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser
General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with this library; if not, write
to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

seehtp://www.gnu.org/copyleft/gpl.html

514 Warranty and Copyright

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

Bibliography

[ASC95] INFORMATION PROCESSING SYSTEM Accredited Standards Committee, X3.The ISO/ANSI C++
Draft, 1995. http://www.cygnus.com/misc/wp/.3

[Bay72] R. Bayer. Symmetric binaryb-trees: Data structure and maintenance algorithms.Acta Informatica,
1:290–306, 1972.38

[BCC93a] Egon Balas, Sebastian Ceria, and Gerard Cornuéjols. A lift-and-project cutting plane algorithm for
mixed 0-1 programs.Mathematical Programming, 58:295–324, 1993.36

[BCC93b] Egon Balas, Sebastian Ceria, and Gerard Cornuéjols. Solving mixed 0-1 programs by a lift-and-project
method. InProceedings of the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
232–242, 1993.36

[BJN+97] Cynthia Barnhart, Ellis L. Johnson, George L. Nemhauser, Martin W. P. Savelsbergh, and Pamela H.
Vance. Branch-and-price: Column generation for huge integer programs.Operations Research, 1997.
to appear.3

[Boo94] G. Booch.Object-oriented analysis and design with applications. The Benjamin Cummings Publishing
Company, Redwood City, California, 1994.3

[CLR90] T.H. Cormen, C.E. Leiserson, and R.L. Rivest.Introduction to algorithms. MIT Press, Cambridge,
1990. 40

[ES92] M.A. Ellis and B. Stroustrup.The annotated C++ reference manual. Addison Wesley, Reading,
Massachusetts, 1992.3

[GS78] L.J. Guibas and R. Sedgewick. A diochromatic framework for balanced trees. InProceedings of the
19th annual symposium on foundations of computer science, pages 8–21. IEEE Computer Society,
1978. 38

[HP93] Karla Hoffman and Manfred W. Padberg. Solving airline crew scheduling problems by branch-and-cut.
Management Science, 39:657–682, 1993.36

[JRT94] Michael Jünger, Gerhard Reinelt, and Stefan Thienel. Provably good solutions for the traveling sales-
man problem.Zeitschrift für Operations Research, 40:183–217, 1994.32

[JRT95] Michael Jünger, Gerhard Reinelt, and Stefan Thienel. Practical problem solving with cutting plane
algorithms in combinatorial optimization. In Willian Cook, Lázló Lovász, and Paul Seymour, edi-
tors,Combinatorial Optimization, DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, pages 111–152. American Mathematical Society, 1995. 3

[KM90] T. Korson and J.D. McGregor. Understanding object-oriented: A unifying paradigm.Communications
of the ACM, 33(9):40–60, 1990.3

[Knu93] Donald E. Knuth.The Stanford GraphBase: a platform for combinatorial computing. Addison-Wesley,
Reading, Massachusetts, 1993.42

516 BIBLIOGRAPHY

[Lei95] Sebastian Leipert. Vbctool—a graphical interface for visualization of branch-and-cut algorithms.
Technical report, Institut für Informatik, Universität zuKöln, 1995. http://www.informatik.uni-
koeln.de/ls_juenger/projects/vbctool.html.83

[PR91] Manfred W. Padberg and Giovanni Rinaldi. A branch-and-cut algorithm for the resolution of large-scale
symmetric traveling salesman problems.SIAM Review, 33:60–100, 1991.31

[RF81] David M. Ryan and B.A. Foster. An integer programmingapproach to scheduling. In A. Wren, editor,
Computer scheduling of public transport urban passenger vehicle and crew scheduling, pages 269–280.
North Holland, Amsterdam, 1981.39

[Sav94] Martin W.P. Savelsbergh. Preprocessing and probing for mixed integer programming problems.ORSA
Journal on Computing, 6:445–454, 1994.36

[Str93] B. Stroustrup. The C++ programming language—2nd edition. Addison-Wesley, Reading, Mas-
sachusetts, 1993.3

[Thi95] Stefan Thienel.ABACUS—A Branch-And-CUt System. PhD thesis, Universität zu Köln, 1995.3, 27,
59

[VBJN94] Pamela H. Vance, Cynthia Barnhart, Ellis J. Johnson, and George L. Nemhauser. Solving binary
cutting stock problems by column generation and branch-and-bound.Computational Optimization and
Applications, 3:111–130, 1994.67

[Wun97] Roland Wunderling. SoPlex, The Sequential object-oriented simplex class library, 1997.
http://www.zib.de/Optimization/Software/Soplex/.16

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

Index

All names set in typewriter style refer to C++
names, file names, or names in the configuration file.
In particular, all names of the reference manual are
written in typewriter style. Members of classes are
sub entries of their classes.

≥-inequalities,31
≤-inequalities,31
-fno-implicit-templates, 87
.abacus, 74, 84
∼ABA_ABACUSROOT

ABA_ABACUSROOT,91
∼ABA_ACTIVE

ABA_ACTIVE, 393
∼ABA_ARRAY

ABA_ARRAY, 439
∼ABA_BOUNDBRANCHRULE

ABA_BOUNDBRANCHRULE,335
∼ABA_BRANCHRULE

ABA_BRANCHRULE, 328
∼ABA_BUFFER

ABA_BUFFER,445
∼ABA_COLUMN

ABA_COLUMN, 374
∼ABA_COLVAR

ABA_COLVAR, 389
∼ABA_CONBRANCHRULE

ABA_CONBRANCHRULE,342
∼ABA_CONSTRAINT

ABA_CONSTRAINT,223
∼ABA_CONVAR

ABA_CONVAR, 213
∼ABA_COWTIMER

ABA_COWTIMER, 503
∼ABA_CPUTIMER

ABA_CPUTIMER,500
∼ABA_CUTBUFFER

ABA_CUTBUFFER,398
∼ABA_DLIST

ABA_DLIST, 459
∼ABA_FIXCAND

ABA_FIXCAND, 410
∼ABA_GLOBAL

ABA_GLOBAL, 95
∼ABA_HASH

ABA_HASH, 481
∼ABA_HISTORY

ABA_HISTORY, 417
∼ABA_LIST

ABA_LIST, 452
∼ABA_LP

ABA_LP, 277
∼ABA_LPMASTER

ABA_LPMASTER,324
∼ABA_LPMASTEROSI

ABA_LPMASTEROSI,326
∼ABA_LPSOLUTION

ABA_LPSOLUTION,237
∼ABA_LPSUB

ABA_LPSUB,314
∼ABA_LPSUBOSI

ABA_LPSUBOSI,323
∼ABA_MASTER

ABA_MASTER, 120
∼ABA_NONDUPLPOOL

ABA_NONDUPLPOOL,355
∼ABA_NUMCON

ABA_NUMCON, 378
∼ABA_NUMVAR

ABA_NUMVAR, 384
∼ABA_OSIIF

ABA_OSIIF, 299
∼ABA_OSTREAM

ABA_OSTREAM,505
∼ABA_POOL

ABA_POOL,346
∼ABA_POOLSLOT

ABA_POOLSLOT,359
∼ABA_POOLSLOTREF

ABA_POOLSLOTREF,365
∼ABA_RING

ABA_RING, 464
∼ABA_ROW

ABA_ROW, 370
∼ABA_ROWCON

ABA_ROWCON,381
∼ABA_SEPARATOR

518 INDEX

ABA_SEPARATOR,241
∼ABA_SET

ABA_SET,427
∼ABA_SETBRANCHRULE

ABA_SETBRANCHRULE,332
∼ABA_SPARVEC

ABA_SPARVEC,421
∼ABA_SROWCON

ABA_SROWCON,386
∼ABA_STANDARDPOOL

ABA_STANDARDPOOL,350
∼ABA_STRING

ABA_STRING,433
∼ABA_SUB

ABA_SUB, 169
∼ABA_TAILOFF

ABA_TAILOFF, 414
∼ABA_TIMER

ABA_TIMER, 496
∼ABA_VALBRANCHRULE

ABA_VALBRANCHRULE, 339
∼ABA_VARIABLE

ABA_VARIABLE, 230
_activate

ABA_SUB, 169
_addCols

ABA_LP, 277
ABA_OSIIF, 299

_addRows
ABA_LP, 277
ABA_OSIIF, 300

_approx
ABA_LP, 278
ABA_OSIIF, 300

_barXVal
ABA_LP, 278
ABA_OSIIF, 300

_barrier
ABA_LP, 278
ABA_OSIIF, 300

_changeLBound
ABA_LP, 278
ABA_OSIIF, 300

_changeRhs
ABA_LP, 278
ABA_OSIIF, 300

_changeUBound
ABA_LP, 278
ABA_OSIIF, 301

_colRealloc
ABA_LP, 278
ABA_OSIIF, 301

_compress

ABA_CONVAR, 214
_conEliminate

ABA_SUB, 170
_createLpMasters

ABA_MASTER, 120
_deactivate

ABA_SUB, 170
_deleteLpMasters

ABA_MASTER, 120
_dualSimplex

ABA_LP, 279
ABA_OSIIF, 301

_expand
ABA_CONVAR, 214

_fixByLogImp
ABA_SUB, 170

_getInfeas
ABA_LP, 279
ABA_OSIIF, 301

_getSimplexIterationLimit
ABA_LP, 279
ABA_OSIIF, 301

_improve
ABA_SUB, 171

_initMakeFeas
ABA_SUB, 171

_initialize
ABA_LP, 279
ABA_OSIIF, 302

_initializeLpParameters
ABA_MASTER, 120

_initializeParameters
ABA_MASTER, 120

_lBound
ABA_LP, 280
ABA_OSIIF, 302

_loadBasis
ABA_LP, 280
ABA_OSIIF, 302

_lpVarStat
ABA_LP, 280
ABA_OSIIF, 302

_makeFeasible
ABA_SUB, 171

_maxCol
ABA_LP, 280
ABA_OSIIF, 303

_maxRow
ABA_LP, 280
ABA_OSIIF, 303

_nCol
ABA_LP, 281
ABA_OSIIF, 303

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

INDEX 519

_nRow
ABA_LP, 281
ABA_OSIIF, 303

_nnz
ABA_LP, 281
ABA_OSIIF, 303

_obj
ABA_LP, 281
ABA_OSIIF, 303

_outputLpStatistics
ABA_MASTER, 121

_pivotSlackVariableIn
ABA_LP, 281
ABA_OSIIF, 303

_pricing
ABA_SUB, 171

_primalSimplex
ABA_LP, 281
ABA_OSIIF, 304

_printLpParameters
ABA_MASTER, 121

_reco
ABA_LP, 282
ABA_OSIIF, 304

_remCols
ABA_LP, 282
ABA_OSIIF, 304

_remRows
ABA_LP, 282
ABA_OSIIF, 304

_removeCons
ABA_SUB, 172

_removeVars
ABA_SUB, 172

_rhs
ABA_LP, 282
ABA_OSIIF, 304

_row
ABA_LP, 282
ABA_OSIIF, 304

_rowRealloc
ABA_LP, 282
ABA_OSIIF, 305

_selectCons
ABA_SUB, 172

_selectVars
ABA_SUB, 172

_sense
ABA_LP, 282
ABA_OSIIF, 305

_separate
ABA_SUB, 172

_setByLogImp

ABA_SUB, 172
_setDefaultLpParameters

ABA_MASTER, 121
_setPrecision

ABA_OSTREAM,509
_setSimplexIterationLimit

ABA_LP, 283
ABA_OSIIF, 305

_setWidth
ABA_OSTREAM,509

_slack
ABA_LP, 283
ABA_OSIIF, 305

_slackStat
ABA_LP, 283
ABA_OSIIF, 306

_uBound
ABA_LP, 283
ABA_OSIIF, 306

_value
ABA_LP, 283
ABA_OSIIF, 306

_varEliminate
ABA_SUB, 173

_xVal
ABA_LP, 283
ABA_OSIIF, 306

_yVal
ABA_LP, 284
ABA_OSIIF, 306

a_
ABA_ARRAY, 443

ABA_ABACUSROOT, 22, 24
ABA_ACTIVE, 28
ABA_ARRAY, 40
ABA_BHEAP, 41
ABA_BOUNDBRANCHRULE, 40, 61
ABA_BPRIOQUEUE, 41
ABA_BRANCHRULE, 40, 61, 63

extract, 66
ABA_BUFFER, 41
ABA_COLUMN, 30
ABA_COLVAR, 32, 47
ABA_CONBRANCHRULE, 40, 61
ABA_CONSTRAINT, 22, 30, 46

genRow, 58
slack, 58
violated, 59

ABA_CONVAR
compress, 57
expand, 57

ABA_COWTIMER, 44

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

520 INDEX

ABA_CPUTIMER, 44
ABA_CUTBUFFER, 39
ABA_DICTIONARY, 42
ABA_DLIST, 41
ABA_FASTSET, 42
ABA_FIXCAND, 25, 40
ABA_FSVARSTAT, 68
ABA_GLOBAL, 24

assignParameter, 85
err, 67
findParameter, 85
getParameter, 85
out, 67

ABA_HASH, 42
ABA_HISTORY, 40
ABA_LIST, 41
ABA_LP, 36
ABA_LPSUB, 36
ABA_LPSUBOSI, 37
ABA_MASTER, 22, 24, 25, 47

betterPrimal, 54
constraintPoolSeparation, 56
Constructor, 47
enumerationStrategy, 60
equalSubCompare, 60
initializeOptimization, 56
initializeOptimization, 48, 72
initializeParameters, 85
initializePools, 49, 56
objInteger, 72
optimize, 55
output, 73
primalBound, 54
separateseparate, 56
terminateOptimization, 72

ABA_NONDUPLPOOL, 17, 57
ABA_NUMCON, 47
ABA_NUMVAR, 47
ABA_OPENSUB, 25, 38
ABA_OSIIF, 36

osiLPosiLP, 73
ABA_OSTREAM, 43
ABA_POOLSLOT, 33
ABA_POOLSLOTREF, 34
ABA_RING, 41
ABA_ROW, 30
ABA_ROWCON, 31, 47
ABA_SET, 42
ABA_SETBRANCHRULE, 40, 61
ABA_SORTER, 44
ABA_SPARVEC, 42
ABA_SROWOCN, 31
ABA_STANDARDPOOL, 34

ABA_STRING, 42
ABA_SUB, 22, 25, 26, 49

activate, 66, 70
addConBufferSpace, 52
addCons, 52, 68, 70
addVars, 68, 70
chooseLpMethod, 67
compareBranchingSampleRanks, 65
conEliminate, 68
constraintPoolSeparation, 52
Constructor, 50
deactivate, 66
deactive, 70
exceptionBranch, 17, 73
exceptionFathom, 17, 73
feasible, 51, 53
firstSub, 49
fixByLogImp, 71
generateBranchRules, 61, 66
generateSon, 51
ignoreInTailingOff, 17, 74
improve, 54
initMakeFeas, 59
makeFeasible, 59
objAllInteger, 72
pricing, 53
rankBranchingRulerankBranchingRule,

65
removeCon, 69
removeCons, 69
removeVar, 69
removeVars, 69
selectBestBranchingSample, 66
selectBranchingVariable, 60, 61
selectBranchingVariableCandidates,

65
separate, 52
setByLogImp, 71
varEliminate, 69
variablePoolSeparation, 53

ABA_TAILOFF, 40
ABA_TIMER, 44
ABA_VALBRANCHRULE, 40, 61
ABA_VARIABLE, 22, 30, 46

genColumn, 58
redCost, 58
violated, 59

ABA_ABACUSROOT
Fatal,91
Ok, 91

ABA_ABACUSROOT,90
∼ABA_ABACUSROOT,91
exit, 91

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

INDEX 521

EXITCODES,91
fracPart,92
onOff, 92

ABA_ACTIVE, 391
∼ABA_ACTIVE, 393
ABA_ACTIVE, 392, 393
active_,396
incrementRedundantAge,393
insert,393
master_,396
max,394
n_,396
number,394
operator<<, 395
operator=,394
operator[],394
poolSlotRef,394
realloc,395
redundantAge,395
redundantAge_,396
remove,395
resetRedundantAge,395

ABA_ARRAY, 437
∼ABA_ARRAY, 439
a_,443
ABA_ARRAY, 438, 439
copy,440
glob_,443
leftShift, 440
n_,443
operator<<, 443
operator=,440, 441
operator[],441
rangeCheck,441
realloc,441, 442
set,442
size,442

ABA_BHEAP, 471
ABA_BHEAP, 472, 473
check,473
clear,473
empty,473
extractMin,473
father,474
getMin,474
getMinKey,474
glob_,475
heap_,476
heapify,474
insert,474
keys_,476
leftSon,474
n_,476

number,474
operator<<, 475
realloc,475
rightSon,475
size,475

ABA_BOUNDBRANCHRULE,334
∼ABA_BOUNDBRANCHRULE,335
ABA_BOUNDBRANCHRULE,335
ABA_LPSUB,321
ABA_SUB, 204
extract,335
lBound,336
lBound_,337
oldLpLBound_,337
oldLpUBound_,337
operator<<, 336
uBound,336
uBound_,337
unExtract,336
variable,336
variable_,337

ABA_BPRIOQUEUE,476
ABA_BPRIOQUEUE,477
clear,477
extractMin,477
getMin,478
getMinKey,478
glob_,479
heap_,479
insert,478
number,478
realloc,478
size,479

ABA_BRANCHRULE, 327
∼ABA_BRANCHRULE, 328
ABA_BRANCHRULE, 328
branchOnSetVar,328
extract,329
initialize, 329
master_,330
unExtract,329

ABA_BSTACK, 467
ABA_BSTACK, 468
empty,469
full, 469
glob_,471
operator<<, 470
pop,469
push,469
realloc,469
size,470
stack_,471
top,470

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

522 INDEX

tos,470
tos_,471

ABA_BUFFER,443
∼ABA_BUFFER,445
ABA_BUFFER,445
buf_,448
clear,445
empty,445
full, 446
glob_,448
leftShift, 446
n_,448
number,446
operator<<, 448
operator=,446
operator[],446, 447
pop,447
push,447
realloc,447
size,448
size_,448

ABA_COLUMN, 372
∼ABA_COLUMN, 374
ABA_COLUMN, 373, 374
copy,374
lBound,375
lBound_,376
obj, 375
obj_,376
operator<<, 376
uBound,375
uBound_,376

ABA_COLVAR, 387
∼ABA_COLVAR, 389
ABA_COLVAR, 388, 389
coeff,389, 390
column,390
column_,391
operator<<, 390
print, 390

ABA_CONBRANCHRULE,341
∼ABA_CONBRANCHRULE,342
ABA_CONBRANCHRULE,342
ABA_LPSUB,321
constraint,342
extract,342, 343
initialize, 343
operator<<, 343
operator=,343
poolSlotRef_,344
unExtract,343

ABA_CONSTRAINT,221
∼ABA_CONSTRAINT,223

ABA_CONSTRAINT,222, 223
ABA_LPSUB,227
classification,223
classify,223
coeff,224
conClass_,227
distance,224
duplicate,224
genRow,224
liftable, 225
liftable_,227
operator=,225
printRow,225
rhs,225
rhs_,227
sense,225
sense_,227
slack,225
valid, 226
violated,226
voidLhsViolated,227

ABA_CONVAR, 210
∼ABA_CONVAR, 213
_compress,214
_expand,214
ABA_CONVAR, 213
ABA_CUTBUFFER< ABA_CONSTRAINT,

ABA_VARIABLE >, 218
ABA_CUTBUFFER< ABA_VARIABLE,

ABA_CONSTRAINT>, 218
ABA_POOLSLOT< ABA_CONSTRAINT,

ABA_VARIABLE >, 219
ABA_POOLSLOT< ABA_VARIABLE,

ABA_CONSTRAINT>, 219
ABA_POOLSLOTREF< ABA_-

CONSTRAINT, ABA_VARIABLE
>, 219

ABA_POOLSLOTREF< ABA_VARIABLE,
ABA_CONSTRAINT>, 219

ABA_STANDARDPOOL< ABA_-
CONSTRAINT, ABA_VARIABLE
>, 219

ABA_STANDARDPOOL< ABA_-
VARIABLE, ABA_CONSTRAINT
>, 219

ABA_SUB, 219
activate,214
active,214
addReference,214
compress,214
deactivate,214
deletable,215
dynamic,215

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

INDEX 523

dynamic_,219
equal,215
expand,215
expanded,215
expanded_,219
global,216
hashKey,216
local,216
local_,220
lock, 216
locked,216
master_,220
nActive_,220
name,217
nLocks_,220
nReferences,217
nReferences_,220
print, 217
rank,218
removeReference,218
sub,218
sub_,220
unlock,218

ABA_COWTIMER, 501
∼ABA_COWTIMER, 503
ABA_COWTIMER, 502
baseTime_,503
theTime,503

ABA_CPUTIMER,499
∼ABA_CPUTIMER,500
ABA_CPUTIMER,500
clk_tck_,501
theTime,501

ABA_CSENSE
Equal,250
Greater,250
Less,250

ABA_CSENSE,249
ABA_CSENSE,250, 251
glob_,252
operator<<, 252
operator=,251
SENSE,250
sense,251, 252
sense_,252

ABA_CUTBUFFER,397
∼ABA_CUTBUFFER,398
ABA_CUTBUFFER,398
ABA_SUB, 401
extract,398
insert,399
keepInPool_,401
master_,401

n_,401
number,399
operator=,400
psRef_,401
rank_,401
ranking_,402
remove,400
size,400
slot,400
sort,400
space,400

ABA_CUTBUFFER< ABA_CONSTRAINT,
ABA_VARIABLE >

ABA_CONVAR, 218
ABA_POOLSLOT,361

ABA_CUTBUFFER< ABA_VARIABLE, ABA_-
CONSTRAINT>

ABA_CONVAR, 218
ABA_POOLSLOT,361

ABA_CUTBUFFER< BaseType, CoType>
ABA_POOLSLOT,361

ABA_DICTIONARY, 486
ABA_DICTIONARY, 487
glob,489
glob_,489
hash_,489
insert,488
lookUp,488
operator<<, 488
operator=,488
size,489

ABA_DLIST, 458
∼ABA_DLIST, 459
ABA_DLIST, 459
append,460
empty,460
extractHead,460
first, 460
first_,462
firstElem,460
glob_,462
last,461
last_,462
operator<<, 461
operator=,461
remove,461
removeHead,461

ABA_DLIST< Type>

ABA_DLISTITEM, 457
ABA_DLISTITEM, 455

ABA_DLIST< Type>, 457
ABA_DLISTITEM, 456
elem,457

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

524 INDEX

elem_,457
operator<<, 457
pred,457
pred_,458
succ,457
succ_,458

ABA_FASTSET,429
ABA_FASTSET,429
rank_,430
unionSets,430

ABA_FIXCAND, 409
∼ABA_FIXCAND, 410
ABA_FIXCAND, 410
ABA_MASTER, 148, 411
ABA_SUB, 411
allocate,410
candidates_,411
deleteAll,410
fixByRedCost,410
fsVarStat_,411
lhs_,412
master_,412
operator=,411
saveCandidates,411

ABA_FSVARSTAT
Fixed,258
FixedToLowerBound,258
FixedToUpperBound,258
Free,258
Set,258
SetToLowerBound,258
SetToUpperBound,258

ABA_FSVARSTAT,256
ABA_FSVARSTAT,258, 259
contradiction,259
fixed,259
fixedOrSet,260
glob_,261
operator<<, 261
set,260
STATUS,257
status,260, 261
status_,262
value,261
value_,262

ABA_GLOBAL, 92
∼ABA_GLOBAL, 95
ABA_GLOBAL, 95
assignParameter,96–98
enter,98
eps,98, 99
eps_,103
equal,99

err,99
err_,103
findParameter,99
getParameter,100
infinity, 101
infinity_, 104
insertParameter,101
isInfinity, 101
isInteger,101, 102
isMinusInfinity,102
machineEps,102
machineEps_,104
operator<<, 103
operator=,102
out,102
out_,104
paramTable_,104
readParameters,103
tab_,104

ABA_HASH, 479
∼ABA_HASH, 481
ABA_HASH, 481
find, 482
glob_,485
hf, 482
initializeIteration,483
insert,483
iter_,486
nCollisions,483
nCollisions_,486
next,483
operator<<, 485
operator=,484
overWrite,484
remove,484
resize,485
size,485
size_,486
table_,486

ABA_HISTORY, 416
∼ABA_HISTORY, 417
ABA_HISTORY, 417
dualBound_,418
master_,418
n_,418
operator<<, 417
primalBound_,418
realloc,417
size,417
time_,418
update,417

ABA_INFEASCON
Feasible,403

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

INDEX 525

TooLarge,403
TooSmall,403

ABA_INFEASCON,402
ABA_INFEASCON,403
constraint,404
constraint_,404
goodVar,404
INFEAS,403
infeas,404
infeas_,404
master_,404

ABA_LIST, 451
∼ABA_LIST, 452
ABA_LIST, 452, 453
ABA_LISTITEM< Type>, 454
appendHead,453
appendTail,453
empty,453
extractHead,453
first, 454
first_,455
firstElem,454
glob_,455
last,454
last_,455
operator<<, 454
operator=,454

ABA_LIST< Type>

ABA_LISTITEM, 450
ABA_LISTITEM, 449

ABA_LIST< Type>, 450
ABA_LISTITEM, 450
elem,450
elem_,451
operator<<, 450
succ,450
succ_,451

ABA_LISTITEM< Type>

ABA_LIST, 454
ABA_LP

Approximate,276
Available,277
BarrierAndCrossover,276
BarrierNoCrossover,276
Dual,276
Error,276
Feasible,276
Infeasible,276
Missing,277
Optimal,276
Primal,276
Unbounded,276
Unoptimized,276

ABA_LP, 270
∼ABA_LP, 277
_addCols,277
_addRows,277
_approx,278
_barXVal,278
_barrier,278
_changeLBound,278
_changeRhs,278
_changeUBound,278
_colRealloc,278
_dualSimplex,279
_getInfeas,279
_getSimplexIterationLimit,279
_initialize,279
_lBound,280
_loadBasis,280
_lpVarStat,280
_maxCol,280
_maxRow,280
_nCol,281
_nRow,281
_nnz,281
_obj,281
_pivotSlackVariableIn,281
_primalSimplex,281
_reco,282
_remCols,282
_remRows,282
_rhs,282
_row,282
_rowRealloc,282
_sense,282
_setSimplexIterationLimit,283
_slack,283
_slackStat,283
_uBound,283
_value,283
_xVal, 283
_yVal, 284
ABA_LP, 277
addCols,284
addRows,284
barXVal,284
barXValStatus,284
barXValStatus_,293
basisStatus,284
basisStatus_,293
changeLBound,284
changeRhs,285
changeUBound,285
colRangeCheck,285
colRealloc,285

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

526 INDEX

colsNnz,285
getInfeas,286
getSimplexIterationLimit,286
infeasible,286
initialize, 286, 287
initPostOpt,287
lBound,287
loadBasis,288
lpSolverTime,288
lpSolverTime_,293
lpVarStat,288
master_,293
maxCol,288
maxRow,288
METHOD, 276
nCol,288
nnz,288
nOpt,288
nOpt_,293
nRow,289
obj, 289
operator<<, 292
operator=,289
optimize,289
OPTSTAT,276
optStat_,293
pivotSlackVariableIn,289
reco,289
recoStatus,289
recoStatus_,294
remCols,290
remRows,290
rhs,290
row, 290
rowRangeCheck,290
rowRealloc,290
rows2cols,290
sense,291
setSimplexIterationLimit,291
slack,291
slackStat,291
slackStatus,291
slackStatus_,294
SOLSTAT,276
uBound,291
value,292
writeBasisMatrix,292
xVal, 292
xValStatus,292
xValStatus_,294
yVal, 292
yValStatus,292
yValStatus_,294

ABA_LPMASTER,324
∼ABA_LPMASTER,324
ABA_LPMASTER,324
initializeLpParameters,325
master_,325
outputLpStatistics,325
printLpParameters,325
setDefaultLpParameters,325

ABA_LPMASTEROSI,325
∼ABA_LPMASTEROSI,326
ABA_LPMASTEROSI,326
ABA_OSIIF, 327
initializeLpParameters,326
outputLpStatistics,326
printLpParameters,326
setDefaultLpParameters,327

ABA_LPSOLUTION,235
∼ABA_LPSOLUTION,237
ABA_LPSOLUTION,236, 237
ABA_SEPARATOR< CoType, BaseType>,

238
active,237
active_,239
idLp, 237
idLp_, 239
idSub,237
idSub_,239
master_,239
nVarCon,238
nVarCon_,239
operator<<, 238
operator=,238
zVal, 238
zVal_,239

ABA_LPSOLUTION< ABA_CONSTRAINT,
ABA_VARIABLE >

ABA_SUB, 204
ABA_LPSOLUTION< ABA_VARIABLE, ABA_-

CONSTRAINT>

ABA_SUB, 205
ABA_LPSUB,311

∼ABA_LPSUB,314
ABA_BOUNDBRANCHRULE,321
ABA_CONBRANCHRULE,321
ABA_CONSTRAINT,227
ABA_LPSUB,313, 314
ABA_SETBRANCHRULE,321
ABA_SUB, 321
ABA_VALBRANCHRULE, 321
addCons,314
addVars,314
barXVal,314
changeLBound,314

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

INDEX 527

changeUBound,315
colRealloc,315
conRealloc,315
constraint2row,315
COPBRANCHRULE,321
eliminable,315
eliminated,315
elimVal, 315, 316
getInfeas,316
infeasCon,316
infeasCons_,321
infeasible,316
initialize, 316, 317
lBound,317
loadBasis,318
lp2orig_,321
lpVarStat,318
maxCol,318
nCol,318
nnz,318
nOrigVar_,321
obj, 318
operator=,318
optimize,319
orig2lp_,322
reco,319
removeCons,319
removeVars,319
rowRealloc,319
sub,319
sub_,322
trueNCol,319
trueNnz,320
uBound,320
value,320
valueAdd_,322
varRealloc,320
xVal, 320

ABA_LPSUBOSI,322
∼ABA_LPSUBOSI,323
ABA_LPSUBOSI,323
operator=,323

ABA_LPVARSTAT
AtLowerBound,264
AtUpperBound,264
Basic,264
Eliminated,264
NonBasicFree,264
Unknown,264

ABA_LPVARSTAT, 262
ABA_LPVARSTAT, 264
atBound,265
basic,265

glob_,266
operator<<, 265
STATUS,263
status,265
status_,266

ABA_MASTER
Basic,116
BestFirst,116
BreadthFirst,116
Cbc,116
CloseHalf,115
CloseHalfExpensive,115
Clp, 116
CPLEX,116
DepthFirst,116
DiveAndBest,116
DyLP, 116
Error,118
ExceptionFathom,118
File, 119
FortMP,116
Full, 117
GLPK, 116
Guaranteed,118
LinearProgram,117
MaxCowTime,118
MaxCpuTime,118
MaxLevel,118
MOSEK,116
NoConElim,116
NonBinding,116
NoPrimalBound,117
NoVarElim,119
NoVbc,119
Optimal,118
Optimum,117
OptimumOne,117
OSL,116
OutOfMemory,118
Pipe,119
Processing,118
ReducedCost,119
Silent,117
SkipByLevel,118
SkipByNode,118
SoPlex,116
Statistics,117
Subproblem,117
SYMPHONY,116
Unprocessed,118
Vol, 116
XPRESS_MP,116

ABA_MASTER, 104

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

528 INDEX

∼ABA_MASTER, 120
_createLpMasters,120
_deleteLpMasters,120
_initializeLpParameters,120
_initializeParameters,120
_outputLpStatistics,121
_printLpParameters,121
_setDefaultLpParameters,121
ABA_FIXCAND, 148, 411
ABA_MASTER, 119, 120
ABA_OPENSUB,408
ABA_SUB, 148, 205
addCons,121
addVars,121
bestFirstSearch,121
betterDual,121
betterPrimal,122
BRANCHINGSTRAT,115
BRANCHINGSTRAT_,148
branchingStrategy,122
branchingStrategy_,148
branchingTime,122
branchingTime_,149
breadthFirstSearch,122
check,123
conElimAge,123
conElimAge_,149
conElimEps,123, 124
conElimEps_,149
CONELIMMODE, 115
conElimMode,124
CONELIMMODE_,149
conElimMode_,149
conPool,124
conPool_,149
countLp,124
cutPool,124
cutPool_,149
cutting,125
cutting_,149
dbThreshold,125
dbThreshold_,150
defaultLpSolver,125
defaultLpSolver_,150
delayedBranching,126
depthFirstSearch,126
diveAndBestFirstSearch,126
dualBound,126, 127
dualBound_,150
eliminateFixedSet,127
eliminateFixedSet_,150
enumerationStrategy,127, 128
enumerationStrategy_,150

ENUMSTRAT,116
ENUMSTRAT_,150
equalSubCompare,128
feasibleFound,128
firstSub,128
fixCand,129
fixCand_,150
fixSetByRedCost,129
fixSetByRedCost_,150
guarantee,129
guaranteed,129
highestLevel,130
highestLevel_,151
history,130
history_,151
improveTime,130
improveTime_,151
initializeOptimization,130
initializeOptSense,130
initializeParameters,130
initializePools,131
initLP, 131
knownOptimum,132
logLevel,132
logLevel_,151
lowerBound,132
lpMasterOsi,132
lpMasterOsi_,151
lpSolverTime,132
lpSolverTime_,151
lpTime,133
lpTime_,151
maxConAdd,133
maxConAdd_,151
maxConBuffered,133
maxConBuffered_,151
maxCowTime,133, 134
maxCowTime_,152
maxCpuTime,134
maxCpuTime_,152
maxIterations,134
maxIterations_,152
maxLevel,135
maxLevel_,152
maxVarAdd,135
maxVarAdd_,152
maxVarBuffered,135
maxVarBuffered_,152
minDormantRounds,136
minDormantRounds_,152
nAddCons_,152
nAddVars_,153
nBranchingVariableCandidates,136

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

INDEX 529

nBranchingVariableCandidates_,153
newFixed,136
newRootReOptimize,136, 137
newRootReOptimize_,153
newSub,137
nFixed_,153
nLp, 137
nLp_,153
nNewRoot,137
nNewRoot_,153
nRemCons_,153
nRemVars_,153
nSub,137
nSub_,154
nSubSelected,137
nSubSelected_,154
objInteger,137, 138
objInteger_,154
openSub,138
openSub_,154
operator=,138
optimize,138
optimumFileName,138
optimumFileName_,154
optSense,138
optSense_,154
OSISOLVER,116
OSISOLVER_,154
OUTLEVEL, 116
outLevel,139
OUTLEVEL_, 154
outLevel_,154
output,139
pbMode,139
pbMode_,155
pricing,139
pricing_,155
pricingFreq,139, 140
pricingFreq_,155
pricingTime,140
pricingTime_,155
primalBound,140
primalBound_,155
PRIMALBOUNDMODE, 117
PRIMALBOUNDMODE_,155
primalViolated,140
printGuarantee,141
printLP,141
printLP_,155
printParameters,141
problemName,141
problemName_,155
readParamFromFile_,156

removeCons,141
removeVars,141
requiredGuarantee,142
requiredGuarantee_,156
root,142
root_,156
rootDualBound,142
rootDualBound_,156
rRoot,142
rRoot_,156
select,143
separationTime,143
separationTime_,156
setSolverParameters,143
showAverageCutDistance,143
showAverageCutDistance_,156
skipFactor,143, 144
skipFactor_,156
SKIPPINGMODE,117
skippingMode,144
SKIPPINGMODE_,157
skippingMode_,157
solveApprox,144
solveApprox_,157
STATUS,118
status,144
STATUS_,157
status_,157
tailOffNLp, 144, 145
tailOffNLp_, 157
tailOffPercent,145
tailOffPercent_,157
terminateOptimization,145
theFuture,145
totalCowTime,145
totalCowTime_,157
totalTime,145
totalTime_,157
treeInterfaceLowerBound,146
treeInterfaceNewNode,146
treeInterfaceNodeBounds,146
treeInterfacePaintNode,146
treeInterfaceUpperBound,146
treeStream_,158
upperBound,146
varElimAge,146
varElimAge_,158
varElimEps,147
varElimEps_,158
VARELIMMODE, 118
varElimMode,147
VARELIMMODE_, 158
varElimMode_,158

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

530 INDEX

varPool,147
varPool_,158
vbcLog,147, 148
VbcLog_,158
VBCMODE, 119
VBCMODE_,158
writeTreeInterface,148

ABA_NONDUPLPOOL,354
∼ABA_NONDUPLPOOL,355
ABA_NONDUPLPOOL,355
hardDeleteConVar,355
hash_,357
increase,356
insert,356
nDuplications_,357
operator=,356
present,356
softDeleteConVar,357
statistics,357

ABA_NONDUPLPOOL< ABA_CONSTRAINT,
ABA_VARIABLE >

ABA_POOLSLOT,361
ABA_NONDUPLPOOL< ABA_VARIABLE,

ABA_CONSTRAINT>

ABA_POOLSLOT,362
ABA_NUMCON, 377

∼ABA_NUMCON, 378
ABA_NUMCON, 378
coeff,378
number,378
number_,379
operator<<, 379
print, 378

ABA_NUMVAR, 382
∼ABA_NUMVAR, 384
ABA_NUMVAR, 383
number,384
number_,384
operator<<, 384

ABA_OPENSUB,405
ABA_MASTER, 408
ABA_OPENSUB,406
ABA_SUB, 205, 408
dualBound,406
dualBound_,408
empty,406
insert,407
list_, 408
master_,408
n_,408
number,407
operator=,407
prune,407

remove,407
select,407
updateDualBound,408

ABA_OPTSENSE
Max, 247
Min, 247
Unknown,247

ABA_OPTSENSE,245
ABA_OPTSENSE,247
max,247
min, 247
operator<<, 248
SENSE,246
sense,247, 248
sense_,248
unknown,248

ABA_OSIIF
Approx,298
Exact,298

ABA_OSIIF, 294
∼ABA_OSIIF, 299
_addCols,299
_addRows,300
_approx,300
_barXVal,300
_barrier,300
_changeLBound,300
_changeRhs,300
_changeUBound,301
_colRealloc,301
_dualSimplex,301
_getInfeas,301
_getSimplexIterationLimit,301
_initialize,302
_lBound,302
_loadBasis,302
_lpVarStat,302
_maxCol,303
_maxRow,303
_nCol,303
_nRow,303
_nnz,303
_obj,303
_pivotSlackVariableIn,303
_primalSimplex,304
_reco,304
_remCols,304
_remRows,304
_rhs,304
_row,304
_rowRealloc,305
_sense,305
_setSimplexIterationLimit,305

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

INDEX 531

_slack,305
_slackStat,306
_uBound,306
_value,306
_xVal, 306
_yVal, 306
ABA_LPMASTEROSI,327
ABA_OSIIF, 299
barXVal_,308
collower_,309
colupper_,309
convertSenseToBound,306
csense2osi,306
cStat_,309
currentSolverType,306
currentSolverType_,309
freeChar,307
freeDouble,307
freeInt,307
freeStatus,307
getDefaultInterface,307
getSol,307
loadDummyRow,307
lpMasterOsi_,309
lpVarStat2osi,307
numCols_,309
numRows_,309
objcoeff_,309
operator=,308
osi2csense,308
osi2lpVarStat,308
osi2slackStat,308
osiLP,308
osiLP_,309
reco_,310
rhs_,310
rowactivity_,310
rowsense_,310
rStat_,310
slackStat2osi,308
SOLVERTYPE,298
switchInterfaces,308
value_,310
ws_,310
xVal_, 310
yVal_, 310

ABA_OSTREAM,503
∼ABA_OSTREAM,505
_setPrecision,509
_setWidth,509
ABA_OSTREAM,505
endl,510
flush,510

isLogOn,506
isOn,506
log, 506
log_,510
logOff, 506
logOn,506
logOn_,510
off, 506
on,507
on_,510
operator<<, 507, 508
out_,510
setFormatFlag,509

ABA_POOL
ABS_RANK, 345
NO_RANK, 345
RANK, 345

ABA_POOL,344
∼ABA_POOL,346
ABA_POOL,346
getSlot,346
hardDeleteConVar,346
insert,346
master_,347
number,346
number_,348
putSlot,347
RANKING, 345
removeConVar,347
separate,347
softDeleteConVar,347

ABA_POOL< ABA_CONSTRAINT, ABA_-
VARIABLE >

ABA_POOLSLOT,362
ABA_POOL< ABA_VARIABLE, ABA_-

CONSTRAINT>

ABA_POOLSLOT,362
ABA_POOL< BaseType, CoType>

ABA_POOLSLOT,362
ABA_POOLSLOT,358

∼ABA_POOLSLOT,359
ABA_CUTBUFFER< ABA_CONSTRAINT,

ABA_VARIABLE >, 361
ABA_CUTBUFFER< ABA_VARIABLE,

ABA_CONSTRAINT>, 361
ABA_CUTBUFFER< BaseType, CoType>,

361
ABA_NONDUPLPOOL< ABA_-

CONSTRAINT, ABA_VARIABLE
>, 361

ABA_NONDUPLPOOL< ABA_VARIABLE,
ABA_CONSTRAINT>, 362

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

532 INDEX

ABA_POOL< ABA_CONSTRAINT, ABA_-
VARIABLE >, 362

ABA_POOL< ABA_VARIABLE, ABA_-
CONSTRAINT>, 362

ABA_POOL< BaseType, CoType>, 362
ABA_POOLSLOT,359, 360
ABA_POOLSLOTREF< ABA_-

CONSTRAINT, ABA_VARIABLE
>, 362

ABA_POOLSLOTREF< ABA_VARIABLE,
ABA_CONSTRAINT>, 362

ABA_POOLSLOTREF< BaseType, CoType
>, 362

ABA_STANDARDPOOL< ABA_-
CONSTRAINT, ABA_VARIABLE
>, 362

ABA_STANDARDPOOL< ABA_-
VARIABLE, ABA_CONSTRAINT
>, 362

ABA_STANDARDPOOL< BaseType, CoType
>, 363

ABA_SUB, 363
conVar,360
conVar_,363
hardDelete,360
insert,360
master,360
master_,363
operator=,360
pool_,363
removeConVarFromPool,361
softDelete,361
version,361
version_,363

ABA_POOLSLOT< ABA_CONSTRAINT, ABA_-
VARIABLE >

ABA_CONVAR, 219
ABA_POOLSLOT< ABA_VARIABLE, ABA_-

CONSTRAINT>

ABA_CONVAR, 219
ABA_POOLSLOTREF,364

∼ABA_POOLSLOTREF,365
ABA_POOLSLOTREF,365
conVar,366
master_,367
operator<<, 367
operator=,366
printDifferentVersionError,366
slot,366
slot_,367
version,367
version_,367

ABA_POOLSLOTREF< ABA_CONSTRAINT,

ABA_VARIABLE >

ABA_CONVAR, 219
ABA_POOLSLOT,362

ABA_POOLSLOTREF< ABA_VARIABLE,
ABA_CONSTRAINT>

ABA_CONVAR, 219
ABA_POOLSLOT,362

ABA_POOLSLOTREF< BaseType, CoType>
ABA_POOLSLOT,362

ABA_RING, 462
∼ABA_RING, 464
ABA_RING, 463
clear,464
empty,464
filled, 464
filled_, 467
glob_,467
head_,467
insert,464
newest,464
newestIndex,465
number,465
oldest,465
oldestIndex,465
operator<<, 466
operator[],465
previous,466
realloc,466
ring_,467
size,466

ABA_ROW, 368
∼ABA_ROW, 370
ABA_ROW, 369, 370
copy,370
delInd,370
operator<<, 371
rhs,371
rhs_,372
sense,371
sense_,372

ABA_ROWCON,379
∼ABA_ROWCON,381
ABA_ROWCON,380, 381
coeff,381
print, 382
row, 382
row_,382

ABA_SEPARATOR,239
∼ABA_SEPARATOR,241
ABA_SEPARATOR,241, 242
cutBuffer,242
cutFound,242
find, 242

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

INDEX 533

hash_,244
lpSol_,244
lpSolution,242
master_,244
maxGen,243
minAbsViolation,243
minAbsViolation_,245
nCollisions,243
nDuplications,243
nDuplications_,245
newCons_,245
nGen,243
operator=,244
pool_,245
sendConstraints_,245
separate,244
terminateSeparation,244
watchNonDuplPool,244

ABA_SEPARATOR< CoType, BaseType>
ABA_LPSOLUTION,238

ABA_SET,426
∼ABA_SET,427
ABA_SET,427
findSet,427
glob_,428
makeSet,428
parent_,428
unionSets,428

ABA_SETBRANCHRULE,330
∼ABA_SETBRANCHRULE,332
ABA_LPSUB,321
ABA_SETBRANCHRULE,331
branchOnSetVar,332
extract,332
oldLpBound_,333
operator<<, 333
setToUpperBound,332
status_,333
unExtract,333
variable,333
variable_,333

ABA_SLACKSTAT
Basic,268
NonBasicNonZero,268
NonBasicZero,268
Unknown,268

ABA_SLACKSTAT, 266
ABA_SLACKSTAT, 268
glob_,269
operator<<, 269
STATUS,267
status,268, 269
status_,269

ABA_SORTER,490
ABA_SORTER,491
buildHeap,491
check,491
glob_,494
heapify,492
heapSort,492
itemSwap_,494
keySwap_,494
partition,492
quickSort,493

ABA_SPARVEC,419
∼ABA_SPARVEC,421
ABA_SPARVEC,421
clear,422
coeff,422
coeff_,425
copy,422
glob_,425
insert,422
leftShift, 422
nnz,423
nnz_,425
norm,423
operator<<, 425
operator=,423
origCoeff,423
rangeCheck,423
realloc,424
reallocFac_,425
rename,424
size,424
size_,426
support,424
support_,426

ABA_SROWCON,385
∼ABA_SROWCON,386
ABA_SROWCON,386
genRow,386
slack,387

ABA_STANDARDPOOL,348
∼ABA_STANDARDPOOL,350
ABA_STANDARDPOOL,349, 350
autoRealloc_,353
cleanup,350
freeSlots_,353
getSlot,350
increase,350
insert,351
operator<<, 353
operator=,351
pool_,353
putSlot,351

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

534 INDEX

removeNonActive,351
separate,351
size,352
slot,352

ABA_STANDARDPOOL< ABA_CONSTRAINT,
ABA_VARIABLE >

ABA_CONVAR, 219
ABA_POOLSLOT,362

ABA_STANDARDPOOL< ABA_VARIABLE,
ABA_CONSTRAINT>

ABA_CONVAR, 219
ABA_POOLSLOT,362

ABA_STANDARDPOOL< BaseType, CoType>
ABA_POOLSLOT,363

ABA_STRING,430
∼ABA_STRING,433
ABA_STRING,432
ascii2bool,433
ascii2double,433
ascii2int,433
ascii2unsignedint,433
ending,434
glob_,436
operator!=,435
operator<<, 435
operator=,434
operator==,436
operator[],434
rangeCheck,435
size,435
string,435
string_,436

ABA_SUB
Active, 168
Branching,168
Cutting,168
Done,168
Dormant,168
Fathomed,168
Fathoming,168
Processed,168
Unprocessed,168

ABA_SUB, 159
∼ABA_SUB, 169
_activate,169
_conEliminate,170
_deactivate,170
_fixByLogImp,170
_improve,171
_initMakeFeas,171
_makeFeasible,171
_pricing,171
_removeCons,172

_removeVars,172
_selectCons,172
_selectVars,172
_separate,172
_setByLogImp,172
_varEliminate,173
ABA_BOUNDBRANCHRULE,204
ABA_CONVAR, 219
ABA_CUTBUFFER,401
ABA_FIXCAND, 411
ABA_LPSOLUTION< ABA_CONSTRAINT,

ABA_VARIABLE >, 204
ABA_LPSOLUTION< ABA_VARIABLE,

ABA_CONSTRAINT>, 205
ABA_LPSUB,321
ABA_MASTER, 148, 205
ABA_OPENSUB,205, 408
ABA_POOLSLOT,363
ABA_SUB, 168, 169
ABA_TAILOFF, 415
actCon,173
actCon_,205
activate,173
activated_,205
activateVars,173
actVar,173
actVar_,205
addBranchingConstraint,173
addConBuffer_,205
addConBufferSpace,174
addCons,174
addVarBuffer_,205
addVarBufferSpace,174
addVars,175
addVarsToLp,175
allBranchOnSetVars_,206
ancestor,176
basicConEliminate,176
betterDual,176
bInvRow_,206
boundCrash,176
branching,176
branchingOnVariable,177
branchRule,177
branchRule_,206
chooseLpMethod,177
closeHalf,178
closeHalfExpensive,178, 179
compareBranchingSampleRanks,179
conEliminate,179
conRealloc,180
conReserve_,206
constraint,180

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

INDEX 535

constraintPoolSeparation,180
cutting,180
deactivate,181
dualBound,181
dualBound_,206
dualRound,181
exceptionBranch,181
exceptionFathom,182
father,182
father_,206
fathom,182
fathoming,182
fathomTheSubTree,183
feasible,183
findNonFixedSet,183, 184
fix, 184
fixAndSet,184
fixAndSetTime,185
fixByLogImp, 185
fixByRedCost,185
fixing, 185
fixSetNewBound,186
forceExactSolver,186
forceExactSolver_,206
fsVarStat,186
fsVarStat_,206
generateBranchRules,186
generateLp,187
generateSon,187
genNonLiftCons_,207
getBase,187
goodCol,187
guarantee,188
guaranteed,188
id, 188
id_, 207
ignoreInTailingOff,188
ignoreInTailingOff_,207
improve,188
infeasCon_,207
infeasible,189
infeasibleSub,189
infeasVar_,207
initializeCons,189
initializeLp, 189
initializeVars,189
initMakeFeas,189
integerFeasible,190
lastIterConAdd_,207
lastIterVarAdd_,207
lastLP_,207
lBound,190
lBound_,208

level,191
level_,208
localTimer_,208
lowerBound,191
lp, 191
lp_, 208
lpMethod_,208
lpRankBranchingRule,191
lpVarStat,191
lpVarStat_,208
makeFeasible,192
master,192
master_,208
maxCon,192
maxIterations,192
maxIterations_,208
maxVar,192
nCon,193
nDormantRounds,193
nDormantRounds_,208
newDormantRound,193
nIter_,209
nnzReserve,193
nnzReserve_,209
nonBindingConEliminate,193
nOpt_,209
nVar,193
objAllInteger,193
operator=,194
optimize,194
pausing,194
PHASE,167
prepareBranching,194
pricing,195
primalSeparation,195
rankBranchingRule,195
rankBranchingSample,195
redCostVarEliminate,196
relativeReserve,196
relativeReserve_,209
removeCon,196
removeConBuffer_,209
removeCons,196
removeNonLiftableCons,196
removeVar,197
removeVarBuffer_,209
removeVars,197
reoptimize,197
selectBestBranchingSample,197
selectBranchingVariable,198
selectBranchingVariableCandidates,198
selectCons,199
selectVars,199

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

536 INDEX

separate,199
set,199, 200
setByLogImp,200
setByRedCost,200
setting,201
slackStat,201
slackStat_,209
solveApproxNow,201
solveLp,201
sons_,209
STATUS,168
status,202
status_,210
tailingOff, 202
tailOff_, 210
uBound,202
uBound_,210
updateBoundInLp,203
upperBound,203
varEliminate,203
variable,203
variablePoolSeparation,203
varRealloc,204
varReserve_,210
xVal, 204
xVal_, 210
yVal, 204
yVal_, 210

ABA_TAILOFF, 412
∼ABA_TAILOFF, 414
ABA_SUB, 415
ABA_TAILOFF, 413
diff, 414
lpHistory_,415
master_,415
operator<<, 415
reset,414
tailOff, 414
update,414

ABA_TIMER, 494
∼ABA_TIMER, 496
ABA_TIMER, 496
addCentiSeconds,496
centiSeconds,496
exceeds,496
glob_,498
hours,497
minutes,497
operator<<, 498
reset,497
running,497
running_,499
seconds,497

start,497
startTime_,499
stop,498
theTime,498
totalTime_,499

ABA_VALBRANCHRULE, 337
∼ABA_VALBRANCHRULE, 339
ABA_LPSUB,321
ABA_VALBRANCHRULE, 339
extract,339
oldLpLBound_,340
oldLpUBound_,340
operator<<, 340
unExtract,339
value,339
value_,340
variable,340
variable_,340

ABA_VARIABLE, 228
∼ABA_VARIABLE, 230
ABA_VARIABLE, 229
binary,230
coeff,230
discrete,230
fsVarStat,231
fsVarStat_,234
genColumn,231
integer,231
lBound,231
lBound_,234
obj, 232
obj_,234
printCol,232
redCost,232
type_,234
uBound,232
uBound_,234
useful,233
valid, 233
varType,233
violated,233, 234

ABA_VARTYPE
Binary,254
Continuous,254
Integer,254

ABA_VARTYPE, 253
ABA_VARTYPE, 254
binary,254
discrete,254
integer,255
operator<<, 255
TYPE,254
type,255

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

INDEX 537

type_,256
ABACUS_COMPILER_GCC, 6
ABACUS_COMPILER_GCC33, 511
ABACUS_COMPILER_GCC34, 511
ABACUS_COMPILER_GCC41, 511
ABACUS_COMPILER_SUN, 511
ABACUS_COMPILER_SUN, 6
ABACUS_DIR, 6
ABACUS_OLD_INCLUDE, 16
ABACUS_OLD_NAMES, 16
ABS_RANK

ABA_POOL,345
actCon

ABA_SUB, 173
actCon_

ABA_SUB, 205
activate

ABA_CONVAR, 214
ABA_SUB, 173

activated_
ABA_SUB, 205

activateVars
ABA_SUB, 173

Active
ABA_SUB, 168

active
ABA_CONVAR, 214
ABA_LPSOLUTION,237

active_
ABA_ACTIVE, 396
ABA_LPSOLUTION,239

actVar
ABA_SUB, 173

actVar_
ABA_SUB, 205

addBranchingConstraint
ABA_SUB, 173

addCentiSeconds
ABA_TIMER, 496

addCols
ABA_LP, 284

addConBuffer_
ABA_SUB, 205

addConBufferSpace
ABA_SUB, 174

addCons
ABA_LPSUB,314
ABA_MASTER, 121
ABA_SUB, 174

addReference
ABA_CONVAR, 214

addRows
ABA_LP, 284

addVarBuffer_
ABA_SUB, 205

addVarBufferSpace
ABA_SUB, 174

addVars
ABA_LPSUB,314
ABA_MASTER, 121
ABA_SUB, 175

addVarsToLp
ABA_SUB, 175

allBranchOnSetVars_
ABA_SUB, 206

allocate
ABA_FIXCAND, 410

ancestor
ABA_SUB, 176

append
ABA_DLIST, 460

appendHead
ABA_LIST, 453

appendTail
ABA_LIST, 453

application base class,21, 22
Approx

ABA_OSIIF, 298
Approximate

ABA_LP, 276
approximate solver,10, 67
array,40
ascii2bool

ABA_STRING,433
ascii2double

ABA_STRING,433
ascii2int

ABA_STRING,433
ascii2unsignedint

ABA_STRING,433
assignParameter

ABA_GLOBAL, 96–98
atBound

ABA_LPVARSTAT, 265
AtLowerBound

ABA_LPVARSTAT, 264
AtUpperBound

ABA_LPVARSTAT, 264
autoRealloc_

ABA_STANDARDPOOL,353
auxiliaries,21
Available

ABA_LP, 277
average cut distance,81

barrier method,28

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

538 INDEX

BarrierAndCrossover
ABA_LP, 276

BarrierNoCrossover
ABA_LP, 276

barXVal
ABA_LP, 284
ABA_LPSUB,314

barXVal_
ABA_OSIIF, 308

barXValStatus
ABA_LP, 284

barXValStatus_
ABA_LP, 293

baseTime_
ABA_COWTIMER, 503

Basic
ABA_LPVARSTAT, 264
ABA_MASTER, 116
ABA_SLACKSTAT, 268

basic
ABA_LPVARSTAT, 265

basicConEliminate
ABA_SUB, 176

basis
loading initial,71

basisStatus
ABA_LP, 284

basisStatus_
ABA_LP, 293

BestFirst
ABA_MASTER, 116

bestFirstSearch
ABA_MASTER, 121

betterDual
ABA_MASTER, 121
ABA_SUB, 176

betterPrimal
ABA_MASTER, 122

Binary
ABA_VARTYPE, 254

binary
ABA_VARIABLE, 230
ABA_VARTYPE, 254

bInvRow_
ABA_SUB, 206

boundCrash
ABA_SUB, 176

Branching
ABA_SUB, 168

branching,29, 39
delayed,29
enforcing,73
on a constraint,61

on a variable,61
problem specific,17
problem specific rules,63
problem specific strategies,61

branching
ABA_SUB, 176

branching rules
sample,64

branching rules,39
branching variable,60
branchingOnVariable

ABA_SUB, 177
BRANCHINGSTRAT

ABA_MASTER, 115
BRANCHINGSTRAT_

ABA_MASTER, 148
BranchingStrategy, 65
branchingStrategy

ABA_MASTER, 122
branchingStrategy_

ABA_MASTER, 148
branchingTime

ABA_MASTER, 122
branchingTime_

ABA_MASTER, 149
branchOnSetVar

ABA_BRANCHRULE, 328
ABA_SETBRANCHRULE,332

branchRule
ABA_SUB, 177

branchRule_
ABA_SUB, 206

BreadthFirst
ABA_MASTER, 116

breadthFirstSearch
ABA_MASTER, 122

buf_
ABA_BUFFER,448

buffer,41
buffering constraints and variables,38
bugs,6
build, 5
buildHeap

ABA_SORTER,491

candidates_
ABA_FIXCAND, 411

Cbc
ABA_MASTER, 116

centiSeconds
ABA_TIMER, 496

changeLBound
ABA_LP, 284

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

INDEX 539

ABA_LPSUB,314
changeRhs

ABA_LP, 285
changeUBound

ABA_LP, 285
ABA_LPSUB,315

check
ABA_BHEAP, 473
ABA_MASTER, 123
ABA_SORTER,491

chooseLpMethod
ABA_SUB, 177

classification
ABA_CONSTRAINT,223

classify
ABA_CONSTRAINT,223

cleanup
ABA_STANDARDPOOL,350

clear
ABA_BHEAP, 473
ABA_BPRIOQUEUE,477
ABA_BUFFER,445
ABA_RING, 464
ABA_SPARVEC,422

clk_tck_
ABA_CPUTIMER,501

CloseHalf
ABA_MASTER, 115

closeHalf
ABA_SUB, 178

CloseHalfExpensive
ABA_MASTER, 115

closeHalfExpensive
ABA_SUB, 178, 179

Clp
ABA_MASTER, 116

coeff
ABA_COLVAR, 389, 390
ABA_CONSTRAINT,224
ABA_NUMCON, 378
ABA_ROWCON,381
ABA_SPARVEC,422
ABA_VARIABLE, 230

coeff_
ABA_SPARVEC,425

collower_
ABA_OSIIF, 309

colRangeCheck
ABA_LP, 285

colRealloc
ABA_LP, 285
ABA_LPSUB,315

colsNnz

ABA_LP, 285
column,30
column

ABA_COLVAR, 390
column format,32
column_

ABA_COLVAR, 391
colupper_

ABA_OSIIF, 309
compareBranchingSampleRanks

ABA_SUB, 179
Compiler,5
compiler,9, 18
Compiling,6
compress

ABA_CONVAR, 214
compressed format,31
conClass_

ABA_CONSTRAINT,227
ConElimAge, 82
conElimAge

ABA_MASTER, 123
conElimAge_

ABA_MASTER, 149
ConElimEps, 81
conElimEps

ABA_MASTER, 123, 124
conElimEps_

ABA_MASTER, 149
conEliminate

ABA_SUB, 179
CONELIMMODE

ABA_MASTER, 115
conElimMode

ABA_MASTER, 124
CONELIMMODE_

ABA_MASTER, 149
conElimMode_

ABA_MASTER, 149
conPool

ABA_MASTER, 124
conPool_

ABA_MASTER, 149
conRealloc

ABA_LPSUB,315
ABA_SUB, 180

conReserve_
ABA_SUB, 206

constraint,22, 29, 31, 46, 57, 58
active,28, 30
adding,27, 69
buffering,27
compressed format,31, 57

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

540 INDEX

dynamic,31
eliminating,68
elimination mode,81
elimination tolerance,81
expanded format,31, 57
globally valid,31
liftable, 31
locally valid,30, 31
locked,30
maximal added,79
maximal buffered,79
non-liftable,28
removing,27
static,31

constraint
ABA_CONBRANCHRULE,342
ABA_INFEASCON,404
ABA_SUB, 180

constraint2row
ABA_LPSUB,315

constraint_
ABA_INFEASCON,404

ConstraintEliminationMode, 81
ConstraintEliminationMode, 68
constraintPoolSeparation

ABA_SUB, 180
contact,6
Continuous

ABA_VARTYPE, 254
contradiction

ABA_FSVARSTAT,259
conVar

ABA_POOLSLOT,360
ABA_POOLSLOTREF,366

conVar_
ABA_POOLSLOT,363

convertSenseToBound
ABA_OSIIF, 306

COPBRANCHRULE
ABA_LPSUB,321

copy
ABA_ARRAY, 440
ABA_COLUMN, 374
ABA_ROW, 370
ABA_SPARVEC,422

countLp
ABA_MASTER, 124

CPLEX
ABA_MASTER, 116

cpu time
maximal,75

csense2osi
ABA_OSIIF, 306

cStat_
ABA_OSIIF, 309

currentSolverType
ABA_OSIIF, 306

currentSolverType_
ABA_OSIIF, 309

cutBuffer
ABA_SEPARATOR,242

cutFound
ABA_SEPARATOR,242

cutPool
ABA_MASTER, 124

cutPool_
ABA_MASTER, 149

Cutting
ABA_SUB, 168

cutting
ABA_MASTER, 125
ABA_SUB, 180

cutting plane algorithm
maximal iterations,80

cutting_
ABA_MASTER, 149

dbThreshold
ABA_MASTER, 125

dbThreshold_
ABA_MASTER, 150

deactivate
ABA_CONVAR, 214
ABA_SUB, 181

DefaultLpSolver, 83
DefaultLpSolver, 18
defaultLpSolver

ABA_MASTER, 125
defaultLpSolver_

ABA_MASTER, 150
delayed branching,76
delayedBranching

ABA_MASTER, 126
DelayedBranchingThreshold, 76
deletable

ABA_CONVAR, 215
deleteAll

ABA_FIXCAND, 410
delInd

ABA_ROW, 370
DepthFirst

ABA_MASTER, 116
depthFirstSearch

ABA_MASTER, 126
diff

ABA_TAILOFF, 414

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

INDEX 541

discrete
ABA_VARIABLE, 230
ABA_VARTYPE, 254

disjoint set,42
distance

ABA_CONSTRAINT,224
DiveAndBest

ABA_MASTER, 116
diveAndBestFirstSearch

ABA_MASTER, 126
documentation,9
Done

ABA_SUB, 168
Dormant

ABA_SUB, 168
dormant rounds,77
doxygen,9
Dual

ABA_LP, 276
dual bound,25
dualBound

ABA_MASTER, 126, 127
ABA_OPENSUB,406
ABA_SUB, 181

dualBound_
ABA_HISTORY, 418
ABA_MASTER, 150
ABA_OPENSUB,408
ABA_SUB, 206

dualRound
ABA_SUB, 181

duplicate
ABA_CONSTRAINT,224

DyLP
ABA_MASTER, 116

dynamic
ABA_CONVAR, 215

dynamic_
ABA_CONVAR, 219

elem
ABA_DLISTITEM, 457
ABA_LISTITEM, 450

elem_
ABA_DLISTITEM, 457
ABA_LISTITEM, 451

eliminable
ABA_LPSUB,315

Eliminated
ABA_LPVARSTAT, 264

eliminated
ABA_LPSUB,315

EliminateFixedSet, 80

eliminateFixedSet
ABA_MASTER, 127

eliminateFixedSet_
ABA_MASTER, 150

elimVal
ABA_LPSUB,315, 316

elpased time
maximal,75

empty
ABA_BHEAP, 473
ABA_BSTACK, 469
ABA_BUFFER,445
ABA_DLIST, 460
ABA_LIST, 453
ABA_OPENSUB,406
ABA_RING, 464

ending
ABA_STRING,434

endl
ABA_OSTREAM,510

enter
ABA_GLOBAL, 98

enumeration strategies,60
enumeration strategy,38, 74
EnumerationStrategy, 74
EnumerationStrategy, 60
enumerationStrategy

ABA_MASTER, 127, 128
enumerationStrategy_

ABA_MASTER, 150
ENUMSTRAT

ABA_MASTER, 116
ENUMSTRAT_

ABA_MASTER, 150
environment variables,6
eps

ABA_GLOBAL, 98, 99
eps_

ABA_GLOBAL, 103
Equal

ABA_CSENSE,250
equal

ABA_CONVAR, 215
ABA_GLOBAL, 99

equalSubCompare
ABA_MASTER, 128

equations,31
err

ABA_GLOBAL, 99
err_

ABA_GLOBAL, 103
Error

ABA_LP, 276

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

542 INDEX

ABA_MASTER, 118
Exact

ABA_OSIIF, 298
exceeds

ABA_TIMER, 496
exceptionBranch

ABA_SUB, 181
ExceptionFathom

ABA_MASTER, 118
exceptionFathom

ABA_SUB, 182
exit

ABA_ABACUSROOT,91
EXITCODES

ABA_ABACUSROOT,91
expand

ABA_CONVAR, 215
expanded

ABA_CONVAR, 215
expanded format,31
expanded_

ABA_CONVAR, 219
extract

ABA_BOUNDBRANCHRULE,335
ABA_BRANCHRULE, 329
ABA_CONBRANCHRULE,342, 343
ABA_CUTBUFFER,398
ABA_SETBRANCHRULE,332
ABA_VALBRANCHRULE, 339

extractHead
ABA_DLIST, 460
ABA_LIST, 453

extractMin
ABA_BHEAP, 473
ABA_BPRIOQUEUE,477

Fatal
ABA_ABACUSROOT,91

father
ABA_BHEAP, 474
ABA_SUB, 182

father_
ABA_SUB, 206

fathom
ABA_SUB, 182

Fathomed
ABA_SUB, 168

Fathoming
ABA_SUB, 168

fathoming
problem specific,17, 73

fathoming
ABA_SUB, 182

fathomTheSubTree
ABA_SUB, 183

Feasible
ABA_INFEASCON,403
ABA_LP, 276

feasible
ABA_SUB, 183

feasibleFound
ABA_MASTER, 128

File
ABA_MASTER, 119

filled
ABA_RING, 464

filled_
ABA_RING, 467

find
ABA_HASH, 482
ABA_SEPARATOR,242

findNonFixedSet
ABA_SUB, 183, 184

findParameter
ABA_GLOBAL, 99

findSet
ABA_SET,427

first
ABA_DLIST, 460
ABA_LIST, 454

first_
ABA_DLIST, 462
ABA_LIST, 455

firstElem
ABA_DLIST, 460
ABA_LIST, 454

firstSub
ABA_MASTER, 128

fix
ABA_SUB, 184

fixAndSet
ABA_SUB, 184

fixAndSetTime
ABA_SUB, 185

fixByLogImp
ABA_SUB, 185

fixByRedCost
ABA_FIXCAND, 410
ABA_SUB, 185

fixCand
ABA_MASTER, 129

fixCand_
ABA_MASTER, 150

Fixed
ABA_FSVARSTAT,258

fixed

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

INDEX 543

ABA_FSVARSTAT,259
fixedOrSet

ABA_FSVARSTAT,260
FixedToLowerBound

ABA_FSVARSTAT,258
FixedToUpperBound

ABA_FSVARSTAT,258
fixing

by reduced cost,79
fixing

ABA_SUB, 185
fixing variables,40

by logical implications,71
elimination,80

FixSetByRedCost, 79
fixSetByRedCost

ABA_MASTER, 129
fixSetByRedCost_

ABA_MASTER, 150
fixSetNewBound

ABA_SUB, 186
flush

ABA_OSTREAM,510
forceExactSolver

ABA_SUB, 186
forceExactSolver_

ABA_SUB, 206
FortMP

ABA_MASTER, 116
fracPart

ABA_ABACUSROOT,92
Free

ABA_FSVARSTAT,258
freeChar

ABA_OSIIF, 307
freeDouble

ABA_OSIIF, 307
freeInt

ABA_OSIIF, 307
freeSlots_

ABA_STANDARDPOOL,353
freeStatus

ABA_OSIIF, 307
fsVarStat

ABA_SUB, 186
ABA_VARIABLE, 231

fsVarStat_
ABA_FIXCAND, 411
ABA_SUB, 206
ABA_VARIABLE, 234

Full
ABA_MASTER, 117

full

ABA_BSTACK, 469
ABA_BUFFER,446

g++,9
genColumn

ABA_VARIABLE, 231
generateBranchRules

ABA_SUB, 186
generateLp

ABA_SUB, 187
generateSon

ABA_SUB, 187
genNonLiftCons_

ABA_SUB, 207
genRow

ABA_CONSTRAINT,224
ABA_SROWCON,386

getBase
ABA_SUB, 187

getDefaultInterface
ABA_OSIIF, 307

getInfeas
ABA_LP, 286
ABA_LPSUB,316

getMin
ABA_BHEAP, 474
ABA_BPRIOQUEUE,478

getMinKey
ABA_BHEAP, 474
ABA_BPRIOQUEUE,478

getParameter
ABA_GLOBAL, 100

getSimplexIterationLimit
ABA_LP, 286

getSlot
ABA_POOL,346
ABA_STANDARDPOOL,350

getSol
ABA_OSIIF, 307

glob
ABA_DICTIONARY, 489

glob_
ABA_ARRAY, 443
ABA_BHEAP, 475
ABA_BPRIOQUEUE,479
ABA_BSTACK, 471
ABA_BUFFER,448
ABA_CSENSE,252
ABA_DICTIONARY, 489
ABA_DLIST, 462
ABA_FSVARSTAT,261
ABA_HASH, 485
ABA_LIST, 455

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

544 INDEX

ABA_LPVARSTAT, 266
ABA_RING, 467
ABA_SET,428
ABA_SLACKSTAT, 269
ABA_SORTER,494
ABA_SPARVEC,425
ABA_STRING,436
ABA_TIMER, 498

global
ABA_CONVAR, 216

GLPK
ABA_MASTER, 116

goodCol
ABA_SUB, 187

goodVar
ABA_INFEASCON,404

Greater
ABA_CSENSE,250

Guarantee, 74
guarantee,74
guarantee

ABA_MASTER, 129
ABA_SUB, 188

Guaranteed
ABA_MASTER, 118

guaranteed
ABA_MASTER, 129
ABA_SUB, 188

hardDelete
ABA_POOLSLOT,360

hardDeleteConVar
ABA_NONDUPLPOOL,355
ABA_POOL,346

hash table,41
hash_

ABA_DICTIONARY, 489
ABA_NONDUPLPOOL,357
ABA_SEPARATOR,244

hashKey
ABA_CONVAR, 216

head_
ABA_RING, 467

heap,41
heap_

ABA_BHEAP, 476
ABA_BPRIOQUEUE,479

heapify
ABA_BHEAP, 474
ABA_SORTER,492

heapSort
ABA_SORTER,492

hf

ABA_HASH, 482
highestLevel

ABA_MASTER, 130
highestLevel_

ABA_MASTER, 151
history

ABA_MASTER, 130
history_

ABA_MASTER, 151
hours

ABA_TIMER, 497

id
ABA_SUB, 188

id_
ABA_SUB, 207

idLp
ABA_LPSOLUTION,237

idLp_
ABA_LPSOLUTION,239

idSub
ABA_LPSOLUTION,237

idSub_
ABA_LPSOLUTION,239

ignoreInTailingOff
ABA_SUB, 188

ignoreInTailingOff_
ABA_SUB, 207

improve
ABA_SUB, 188

improveTime
ABA_MASTER, 130

improveTime_
ABA_MASTER, 151

include file path,10
increase

ABA_NONDUPLPOOL,356
ABA_STANDARDPOOL,350

incrementRedundantAge
ABA_ACTIVE, 393

INFEAS
ABA_INFEASCON,403

infeas
ABA_INFEASCON,404

infeas_
ABA_INFEASCON,404

infeasCon
ABA_LPSUB,316

infeasCon_
ABA_SUB, 207

infeasCons_
ABA_LPSUB,321

Infeasible

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

INDEX 545

ABA_LP, 276
infeasible

ABA_LP, 286
ABA_LPSUB,316
ABA_SUB, 189

infeasibleSub
ABA_SUB, 189

infeasVar_
ABA_SUB, 207

infinity
ABA_GLOBAL, 101

infinity_
ABA_GLOBAL, 104

inheritance graph,21
initialize

ABA_BRANCHRULE, 329
ABA_CONBRANCHRULE,343
ABA_LP, 286, 287
ABA_LPSUB,316, 317

initializeCons
ABA_SUB, 189

initializeIteration
ABA_HASH, 483

initializeLp
ABA_SUB, 189

initializeLpParameters
ABA_LPMASTER,325
ABA_LPMASTEROSI,326

initializeOptimization
ABA_MASTER, 130

initializeOptSense
ABA_MASTER, 130

initializeParameters
ABA_MASTER, 130

initializePools
ABA_MASTER, 131

initializeVars
ABA_SUB, 189

initLP
ABA_MASTER, 131

initMakeFeas
ABA_SUB, 189

initPostOpt
ABA_LP, 287

insert
ABA_ACTIVE, 393
ABA_BHEAP, 474
ABA_BPRIOQUEUE,478
ABA_CUTBUFFER,399
ABA_DICTIONARY, 488
ABA_HASH, 483
ABA_NONDUPLPOOL,356
ABA_OPENSUB,407

ABA_POOL,346
ABA_POOLSLOT,360
ABA_RING, 464
ABA_SPARVEC,422
ABA_STANDARDPOOL,351

insertParameter
ABA_GLOBAL, 101

Integer
ABA_VARTYPE, 254

integer
ABA_VARIABLE, 231
ABA_VARTYPE, 255

integer objective function,72, 76
integerFeasible

ABA_SUB, 190
isInfinity

ABA_GLOBAL, 101
isInteger

ABA_GLOBAL, 101, 102
isLogOn

ABA_OSTREAM,506
isMinusInfinity

ABA_GLOBAL, 102
isOn

ABA_OSTREAM,506
itemSwap_

ABA_SORTER,494
iter_

ABA_HASH, 486

keepInPool_
ABA_CUTBUFFER,401

keys_
ABA_BHEAP, 476

keySwap_
ABA_SORTER,494

knownOptimum
ABA_MASTER, 132

last
ABA_DLIST, 461
ABA_LIST, 454

last_
ABA_DLIST, 462
ABA_LIST, 455

lastIterConAdd_
ABA_SUB, 207

lastIterVarAdd_
ABA_SUB, 207

lastLP_
ABA_SUB, 207

lBound
ABA_BOUNDBRANCHRULE,336
ABA_COLUMN, 375

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

546 INDEX

ABA_LP, 287
ABA_LPSUB,317
ABA_SUB, 190
ABA_VARIABLE, 231

lBound_
ABA_BOUNDBRANCHRULE,337
ABA_COLUMN, 376
ABA_SUB, 208
ABA_VARIABLE, 234

leftShift
ABA_ARRAY, 440
ABA_BUFFER,446
ABA_SPARVEC,422

leftSon
ABA_BHEAP, 474

Less
ABA_CSENSE,250

level
ABA_SUB, 191

level in enumeration tree,75
level_

ABA_SUB, 208
lhs_

ABA_FIXCAND, 412
liftable

ABA_CONSTRAINT,225
liftable_

ABA_CONSTRAINT,227
lifting, 28
linear program,22, 28, 34

infeasible,59
method,67
output,79
relaxation,36

LinearProgram
ABA_MASTER, 117

linked list,41
Linking, 6
list_

ABA_OPENSUB,408
loadBasis

ABA_LP, 288
ABA_LPSUB,318

loadDummyRow
ABA_OSIIF, 307

local
ABA_CONVAR, 216

local_
ABA_CONVAR, 220

localTimer_
ABA_SUB, 208

lock
ABA_CONVAR, 216

locked
ABA_CONVAR, 216

log
ABA_OSTREAM,506

log level,77
log_

ABA_OSTREAM,510
LogLevel, 77
logLevel

ABA_MASTER, 132
logLevel_

ABA_MASTER, 151
logOff

ABA_OSTREAM,506
logOn

ABA_OSTREAM,506
logOn_

ABA_OSTREAM,510
lookUp

ABA_DICTIONARY, 488
lowerBound

ABA_MASTER, 132
ABA_SUB, 191

lp
ABA_SUB, 191

LP-solver
internal data,73

LP-solver interface,36
lp2orig_

ABA_LPSUB,321
lp_

ABA_SUB, 208
lpHistory_

ABA_TAILOFF, 415
lpMasterOsi

ABA_MASTER, 132
lpMasterOsi_

ABA_MASTER, 151
ABA_OSIIF, 309

lpMethod_
ABA_SUB, 208

lpRankBranchingRule
ABA_SUB, 191

lpSol_
ABA_SEPARATOR,244

lpSolution
ABA_SEPARATOR,242

lpSolverTime
ABA_LP, 288
ABA_MASTER, 132

lpSolverTime_
ABA_LP, 293
ABA_MASTER, 151

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

INDEX 547

lpTime
ABA_MASTER, 133

lpTime_
ABA_MASTER, 151

lpVarStat
ABA_LP, 288
ABA_LPSUB,318
ABA_SUB, 191

lpVarStat2osi
ABA_OSIIF, 307

lpVarStat_
ABA_SUB, 208

machineEps
ABA_GLOBAL, 102

machineEps_
ABA_GLOBAL, 104

mailing list,7
makeFeasible

ABA_SUB, 192
makeSet

ABA_SET,428
master,22, 24, 47
master

ABA_POOLSLOT,360
ABA_SUB, 192

master_
ABA_ACTIVE, 396
ABA_BRANCHRULE, 330
ABA_CONVAR, 220
ABA_CUTBUFFER,401
ABA_FIXCAND, 412
ABA_HISTORY, 418
ABA_INFEASCON,404
ABA_LP, 293
ABA_LPMASTER,325
ABA_LPSOLUTION,239
ABA_OPENSUB,408
ABA_POOL,347
ABA_POOLSLOT,363
ABA_POOLSLOTREF,367
ABA_SEPARATOR,244
ABA_SUB, 208
ABA_TAILOFF, 415

Max
ABA_OPTSENSE,247

max
ABA_ACTIVE, 394
ABA_OPTSENSE,247

maxCol
ABA_LP, 288
ABA_LPSUB,318

maxCon

ABA_SUB, 192
MaxConAdd, 79
MaxConAdd, 70
maxConAdd

ABA_MASTER, 133
maxConAdd_

ABA_MASTER, 151
MaxConBuffered, 79
MaxConBuffered, 70
maxConBuffered

ABA_MASTER, 133
maxConBuffered_

ABA_MASTER, 151
MaxCowTime

ABA_MASTER, 118
MaxCowTime, 75
maxCowTime

ABA_MASTER, 133, 134
maxCowTime_

ABA_MASTER, 152
MaxCpuTime

ABA_MASTER, 118
MaxCpuTime, 75
maxCpuTime

ABA_MASTER, 134
maxCpuTime_

ABA_MASTER, 152
maxGen

ABA_SEPARATOR,243
MaxIterations, 80
maxIterations

ABA_MASTER, 134
ABA_SUB, 192

maxIterations_
ABA_MASTER, 152
ABA_SUB, 208

MaxLevel
ABA_MASTER, 118

MaxLevel, 75
maxLevel

ABA_MASTER, 135
maxLevel_

ABA_MASTER, 152
maxRow

ABA_LP, 288
maxVar

ABA_SUB, 192
MaxVarAdd, 80
MaxVarAdd, 70
maxVarAdd

ABA_MASTER, 135
maxVarAdd_

ABA_MASTER, 152

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

548 INDEX

MaxVarBuffered, 80
MaxVarBuffered, 70
maxVarBuffered

ABA_MASTER, 135
maxVarBuffered_

ABA_MASTER, 152
memory management,10, 29, 68
METHOD

ABA_LP, 276
Min

ABA_OPTSENSE,247
min

ABA_OPTSENSE,247
minAbsViolation

ABA_SEPARATOR,243
minAbsViolation_

ABA_SEPARATOR,245
MinDormantRounds, 77
minDormantRounds

ABA_MASTER, 136
minDormantRounds_

ABA_MASTER, 152
minutes

ABA_TIMER, 497
Missing

ABA_LP, 277
MOSEK

ABA_MASTER, 116

n_
ABA_ACTIVE, 396
ABA_ARRAY, 443
ABA_BHEAP, 476
ABA_BUFFER,448
ABA_CUTBUFFER,401
ABA_HISTORY, 418
ABA_OPENSUB,408

nActive_
ABA_CONVAR, 220

nAddCons_
ABA_MASTER, 152

nAddVars_
ABA_MASTER, 153

name
ABA_CONVAR, 217

naming style,45
NBranchingVariableCandidates, 17
NBranchingVariableCandidates, 83
NBranchingVariableCandidates, 18, 65
nBranchingVariableCandidates

ABA_MASTER, 136
nBranchingVariableCandidates_

ABA_MASTER, 153

nCol
ABA_LP, 288
ABA_LPSUB,318

nCollisions
ABA_HASH, 483
ABA_SEPARATOR,243

nCollisions_
ABA_HASH, 486

nCon
ABA_SUB, 193

nDormantRounds
ABA_SUB, 193

nDormantRounds_
ABA_SUB, 208

nDuplications
ABA_SEPARATOR,243

nDuplications_
ABA_NONDUPLPOOL,357
ABA_SEPARATOR,245

newCons_
ABA_SEPARATOR,245

newDormantRound
ABA_SUB, 193

newest
ABA_RING, 464

newestIndex
ABA_RING, 465

newFixed
ABA_MASTER, 136

NewRootReOptimize, 80
newRootReOptimize

ABA_MASTER, 136, 137
newRootReOptimize_

ABA_MASTER, 153
newSub

ABA_MASTER, 137
next

ABA_HASH, 483
nFixed_

ABA_MASTER, 153
nGen

ABA_SEPARATOR,243
nIter_

ABA_SUB, 209
nLocks_

ABA_CONVAR, 220
nLp

ABA_MASTER, 137
nLp_

ABA_MASTER, 153
nNewRoot

ABA_MASTER, 137
nNewRoot_

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

INDEX 549

ABA_MASTER, 153
nnz

ABA_LP, 288
ABA_LPSUB,318
ABA_SPARVEC,423

nnz_
ABA_SPARVEC,425

nnzReserve
ABA_SUB, 193

nnzReserve_
ABA_SUB, 209

NO_RANK
ABA_POOL,345

NoConElim
ABA_MASTER, 116

NonBasicFree
ABA_LPVARSTAT, 264

NonBasicNonZero
ABA_SLACKSTAT, 268

NonBasicZero
ABA_SLACKSTAT, 268

NonBinding
ABA_MASTER, 116

nonBindingConEliminate
ABA_SUB, 193

NoPrimalBound
ABA_MASTER, 117

nOpt
ABA_LP, 288

nOpt_
ABA_LP, 293
ABA_SUB, 209

nOrigVar_
ABA_LPSUB,321

norm
ABA_SPARVEC,423

NoVarElim
ABA_MASTER, 119

NoVbc
ABA_MASTER, 119

nReferences
ABA_CONVAR, 217

nReferences_
ABA_CONVAR, 220

nRemCons_
ABA_MASTER, 153

nRemVars_
ABA_MASTER, 153

nRow
ABA_LP, 289

nSub
ABA_MASTER, 137

nSub_

ABA_MASTER, 154
nSubSelected

ABA_MASTER, 137
nSubSelected_

ABA_MASTER, 154
number

ABA_ACTIVE, 394
ABA_BHEAP, 474
ABA_BPRIOQUEUE,478
ABA_BUFFER,446
ABA_CUTBUFFER,399
ABA_NUMCON, 378
ABA_NUMVAR, 384
ABA_OPENSUB,407
ABA_POOL,346
ABA_RING, 465

number_
ABA_NUMCON, 379
ABA_NUMVAR, 384
ABA_POOL,348

numCols_
ABA_OSIIF, 309

numRows_
ABA_OSIIF, 309

nVar
ABA_SUB, 193

nVarCon
ABA_LPSOLUTION,238

nVarCon_
ABA_LPSOLUTION,239

obj
ABA_COLUMN, 375
ABA_LP, 289
ABA_LPSUB,318
ABA_VARIABLE, 232

obj_
ABA_COLUMN, 376
ABA_VARIABLE, 234

objAllInteger
ABA_SUB, 193

objcoeff_
ABA_OSIIF, 309

ObjInteger, 76
ObjInteger, 72
objInteger

ABA_MASTER, 137, 138
objInteger_

ABA_MASTER, 154
off

ABA_OSTREAM,506
Ok

ABA_ABACUSROOT,91

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

550 INDEX

oldest
ABA_RING, 465

oldestIndex
ABA_RING, 465

oldLpBound_
ABA_SETBRANCHRULE,333

oldLpLBound_
ABA_BOUNDBRANCHRULE,337
ABA_VALBRANCHRULE, 340

oldLpUBound_
ABA_BOUNDBRANCHRULE,337
ABA_VALBRANCHRULE, 340

on
ABA_OSTREAM,507

on_
ABA_OSTREAM,510

onOff
ABA_ABACUSROOT,92

Open Solver Interface,9, 36
open subproblems,37
openSub

ABA_MASTER, 138
openSub_

ABA_MASTER, 154
operator!=

ABA_STRING,435
operator<<

ABA_ACTIVE, 395
ABA_ARRAY, 443
ABA_BHEAP, 475
ABA_BOUNDBRANCHRULE,336
ABA_BSTACK, 470
ABA_BUFFER,448
ABA_COLUMN, 376
ABA_COLVAR, 390
ABA_CONBRANCHRULE,343
ABA_CSENSE,252
ABA_DICTIONARY, 488
ABA_DLIST, 461
ABA_DLISTITEM, 457
ABA_FSVARSTAT,261
ABA_GLOBAL, 103
ABA_HASH, 485
ABA_HISTORY, 417
ABA_LIST, 454
ABA_LISTITEM, 450
ABA_LP, 292
ABA_LPSOLUTION,238
ABA_LPVARSTAT, 265
ABA_NUMCON, 379
ABA_NUMVAR, 384
ABA_OPTSENSE,248
ABA_OSTREAM,507, 508

ABA_POOLSLOTREF,367
ABA_RING, 466
ABA_ROW, 371
ABA_SETBRANCHRULE,333
ABA_SLACKSTAT, 269
ABA_SPARVEC,425
ABA_STANDARDPOOL,353
ABA_STRING,435
ABA_TAILOFF, 415
ABA_TIMER, 498
ABA_VALBRANCHRULE, 340
ABA_VARTYPE, 255

operator=
ABA_ACTIVE, 394
ABA_ARRAY, 440, 441
ABA_BUFFER,446
ABA_CONBRANCHRULE,343
ABA_CONSTRAINT,225
ABA_CSENSE,251
ABA_CUTBUFFER,400
ABA_DICTIONARY, 488
ABA_DLIST, 461
ABA_FIXCAND, 411
ABA_GLOBAL, 102
ABA_HASH, 484
ABA_LIST, 454
ABA_LP, 289
ABA_LPSOLUTION,238
ABA_LPSUB,318
ABA_LPSUBOSI,323
ABA_MASTER, 138
ABA_NONDUPLPOOL,356
ABA_OPENSUB,407
ABA_OSIIF, 308
ABA_POOLSLOT,360
ABA_POOLSLOTREF,366
ABA_SEPARATOR,244
ABA_SPARVEC,423
ABA_STANDARDPOOL,351
ABA_STRING,434
ABA_SUB, 194

operator==
ABA_STRING,436

operator[]
ABA_ACTIVE, 394
ABA_ARRAY, 441
ABA_BUFFER,446, 447
ABA_RING, 465
ABA_STRING,434

Optimal
ABA_LP, 276
ABA_MASTER, 118

optimization,55

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

INDEX 551

optimize
ABA_LP, 289
ABA_LPSUB,319
ABA_MASTER, 138
ABA_SUB, 194

Optimum
ABA_MASTER, 117

optimum solution values,81
OptimumFileName, 81
optimumFileName

ABA_MASTER, 138
optimumFileName_

ABA_MASTER, 154
OptimumOne

ABA_MASTER, 117
optSense

ABA_MASTER, 138
optSense_

ABA_MASTER, 154
OPTSTAT

ABA_LP, 276
optStat_

ABA_LP, 293
orig2lp_

ABA_LPSUB,322
origCoeff

ABA_SPARVEC,423
Osi,9, 36

internal data,73
osi2csense

ABA_OSIIF, 308
osi2lpVarStat

ABA_OSIIF, 308
osi2slackStat

ABA_OSIIF, 308
osiLP

ABA_OSIIF, 308
osiLP_

ABA_OSIIF, 309
OSISOLVER

ABA_MASTER, 116
OSISOLVER_

ABA_MASTER, 154
OSL

ABA_MASTER, 116
out

ABA_GLOBAL, 102
out_

ABA_GLOBAL, 104
ABA_OSTREAM,510

OUTLEVEL
ABA_MASTER, 116

outLevel

ABA_MASTER, 139
OUTLEVEL_

ABA_MASTER, 154
outLevel_

ABA_MASTER, 154
OutOfMemory

ABA_MASTER, 118
output,67
output

ABA_MASTER, 139
output level,77
output stream,43
OutputLevel, 77
outputLpStatistics

ABA_LPMASTER,325
ABA_LPMASTEROSI,326

overWrite
ABA_HASH, 484

parameter file,84
parameters,25, 74
paramTable_

ABA_GLOBAL, 104
parent_

ABA_SET,428
partition

ABA_SORTER,492
pausing

ABA_SUB, 194
pbMode

ABA_MASTER, 139
pbMode_

ABA_MASTER, 155
PHASE

ABA_SUB, 167
Pipe

ABA_MASTER, 119
pivotSlackVariableIn

ABA_LP, 289
platforms,5
pool,23, 32, 48, 68

default,34
initial cutting planes,49
no multiple storage,57
pricing,32
problem specific,56
separation,32, 56
standard,34
without duplication,17

pool slot,33
pool_

ABA_POOLSLOT,363
ABA_SEPARATOR,245

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

552 INDEX

ABA_STANDARDPOOL,353
poolSlotRef

ABA_ACTIVE, 394
poolSlotRef_

ABA_CONBRANCHRULE,344
pop

ABA_BSTACK, 469
ABA_BUFFER,447

pred
ABA_DLISTITEM, 457

pred_
ABA_DLISTITEM, 458

prepareBranching
ABA_SUB, 194

present
ABA_NONDUPLPOOL,356

previous
ABA_RING, 466

pricing,53
frequency,78

pricing
ABA_MASTER, 139
ABA_SUB, 195

pricing_
ABA_MASTER, 155

pricingFreq
ABA_MASTER, 139, 140

pricingFreq_
ABA_MASTER, 155

PricingFrequency, 78
pricingTime

ABA_MASTER, 140
pricingTime_

ABA_MASTER, 155
Primal

ABA_LP, 276
primal bound,25

initialization,78
primal heuristics,54
primalBound

ABA_MASTER, 140
primalBound_

ABA_HISTORY, 418
ABA_MASTER, 155

PrimalBoundInitMode, 78
PRIMALBOUNDMODE

ABA_MASTER, 117
PRIMALBOUNDMODE_

ABA_MASTER, 155
primalSeparation

ABA_SUB, 195
primalViolated

ABA_MASTER, 140

print
ABA_COLVAR, 390
ABA_CONVAR, 217
ABA_NUMCON, 378
ABA_ROWCON,382

printCol
ABA_VARIABLE, 232

printDifferentVersionError
ABA_POOLSLOTREF,366

printGuarantee
ABA_MASTER, 141

PrintLP, 79
printLP

ABA_MASTER, 141
printLP_

ABA_MASTER, 155
printLpParameters

ABA_LPMASTER,325
ABA_LPMASTEROSI,326

printParameters
ABA_MASTER, 141

printRow
ABA_CONSTRAINT,225

priority queue,41
problemName

ABA_MASTER, 141
problemName_

ABA_MASTER, 155
Processed

ABA_SUB, 168
Processing

ABA_MASTER, 118
prune

ABA_OPENSUB,407
psRef_

ABA_CUTBUFFER,401
pure kernel classes,21, 22
push

ABA_BSTACK, 469
ABA_BUFFER,447

putSlot
ABA_POOL,347
ABA_STANDARDPOOL,351

quickSort
ABA_SORTER,493

rangeCheck
ABA_ARRAY, 441
ABA_SPARVEC,423
ABA_STRING,435

RANK
ABA_POOL,345

rank

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

INDEX 553

ABA_CONVAR, 218
rank_

ABA_CUTBUFFER,401
ABA_FASTSET,430

rankBranchingRule
ABA_SUB, 195

rankBranchingSample
ABA_SUB, 195

RANKING
ABA_POOL,345

ranking_
ABA_CUTBUFFER,402

readParameters
ABA_GLOBAL, 103

readParamFromFile_
ABA_MASTER, 156

realloc
ABA_ACTIVE, 395
ABA_ARRAY, 441, 442
ABA_BHEAP, 475
ABA_BPRIOQUEUE,478
ABA_BSTACK, 469
ABA_BUFFER,447
ABA_HISTORY, 417
ABA_RING, 466
ABA_SPARVEC,424

reallocFac_
ABA_SPARVEC,425

reco
ABA_LP, 289
ABA_LPSUB,319

reco_
ABA_OSIIF, 310

recoStatus
ABA_LP, 289

recoStatus_
ABA_LP, 294

recursive calls ofABACUS, 67
redCost

ABA_VARIABLE, 232
redCostVarEliminate

ABA_SUB, 196
ReducedCost

ABA_MASTER, 119
redundantAge

ABA_ACTIVE, 395
redundantAge_

ABA_ACTIVE, 396
reference to a pool slot,34
relativeReserve

ABA_SUB, 196
relativeReserve_

ABA_SUB, 209

remCols
ABA_LP, 290

remove
ABA_ACTIVE, 395
ABA_CUTBUFFER,400
ABA_DLIST, 461
ABA_HASH, 484
ABA_OPENSUB,407

removeCon
ABA_SUB, 196

removeConBuffer_
ABA_SUB, 209

removeCons
ABA_LPSUB,319
ABA_MASTER, 141
ABA_SUB, 196

removeConVar
ABA_POOL,347

removeConVarFromPool
ABA_POOLSLOT,361

removeHead
ABA_DLIST, 461

removeNonActive
ABA_STANDARDPOOL,351

removeNonLiftableCons
ABA_SUB, 196

removeReference
ABA_CONVAR, 218

removeVar
ABA_SUB, 197

removeVarBuffer_
ABA_SUB, 209

removeVars
ABA_LPSUB,319
ABA_MASTER, 141
ABA_SUB, 197

remRows
ABA_LP, 290

rename
ABA_SPARVEC,424

reoptimize
ABA_SUB, 197

requiredGuarantee
ABA_MASTER, 142

requiredGuarantee_
ABA_MASTER, 156

reset
ABA_TAILOFF, 414
ABA_TIMER, 497

resetRedundantAge
ABA_ACTIVE, 395

resize
ABA_HASH, 485

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

554 INDEX

rhs
ABA_CONSTRAINT,225
ABA_LP, 290
ABA_ROW, 371

rhs_
ABA_CONSTRAINT,227
ABA_OSIIF, 310
ABA_ROW, 372

rightSon
ABA_BHEAP, 475

ring, 41
ring_

ABA_RING, 467
root

ABA_MASTER, 142
root node

roptimization,80
root_

ABA_MASTER, 156
rootDualBound

ABA_MASTER, 142
rootDualBound_

ABA_MASTER, 156
row, 30
row

ABA_LP, 290
ABA_ROWCON,382

row format,31
row_

ABA_ROWCON,382
rowactivity_

ABA_OSIIF, 310
rowRangeCheck

ABA_LP, 290
rowRealloc

ABA_LP, 290
ABA_LPSUB,319

rows2cols
ABA_LP, 290

rowsense_
ABA_OSIIF, 310

rRoot
ABA_MASTER, 142

rRoot_
ABA_MASTER, 156

rStat_
ABA_OSIIF, 310

running
ABA_TIMER, 497

running_
ABA_TIMER, 499

saveCandidates

ABA_FIXCAND, 411
seconds

ABA_TIMER, 497
select

ABA_MASTER, 143
ABA_OPENSUB,407

selectBestBranchingSample
ABA_SUB, 197

selectBranchingVariable
ABA_SUB, 198

selectBranchingVariableCandidates
ABA_SUB, 198

selectCons
ABA_SUB, 199

selectVars
ABA_SUB, 199

sendConstraints_
ABA_SEPARATOR,245

SENSE
ABA_CSENSE,250
ABA_OPTSENSE,246

sense
ABA_CONSTRAINT,225
ABA_CSENSE,251, 252
ABA_LP, 291
ABA_OPTSENSE,247, 248
ABA_ROW, 371

sense of the optimization,25
sense_

ABA_CONSTRAINT,227
ABA_CSENSE,252
ABA_OPTSENSE,248
ABA_ROW, 372

separate
ABA_POOL,347
ABA_SEPARATOR,244
ABA_STANDARDPOOL,351
ABA_SUB, 199

separation,52
separationTime

ABA_MASTER, 143
separationTime_

ABA_MASTER, 156
Set

ABA_FSVARSTAT,258
set

ABA_ARRAY, 442
ABA_FSVARSTAT,260
ABA_SUB, 199, 200

setByLogImp
ABA_SUB, 200

setByRedCost
ABA_SUB, 200

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

INDEX 555

setDefaultLpParameters
ABA_LPMASTER,325
ABA_LPMASTEROSI,327

setFormatFlag
ABA_OSTREAM,509

setSimplexIterationLimit
ABA_LP, 291

setSolverParameters
ABA_MASTER, 143

setting
by reduced cost,79

setting
ABA_SUB, 201

setting variables
by logical implications,71
elimination,80

SetToLowerBound
ABA_FSVARSTAT,258

SetToUpperBound
ABA_FSVARSTAT,258

setToUpperBound
ABA_SETBRANCHRULE,332

ShowAverageCutDistance, 81
showAverageCutDistance

ABA_MASTER, 143
showAverageCutDistance_

ABA_MASTER, 156
Silent

ABA_MASTER, 117
size

ABA_ARRAY, 442
ABA_BHEAP, 475
ABA_BPRIOQUEUE,479
ABA_BSTACK, 470
ABA_BUFFER,448
ABA_CUTBUFFER,400
ABA_DICTIONARY, 489
ABA_HASH, 485
ABA_HISTORY, 417
ABA_RING, 466
ABA_SPARVEC,424
ABA_STANDARDPOOL,352
ABA_STRING,435

size_
ABA_BUFFER,448
ABA_HASH, 486
ABA_SPARVEC,426

SkipByLevel
ABA_MASTER, 118

SkipByNode
ABA_MASTER, 118

SkipFactor, 78
skipFactor

ABA_MASTER, 143, 144
skipFactor_

ABA_MASTER, 156
skipping

mode,78
SKIPPINGMODE

ABA_MASTER, 117
SkippingMode, 78
skippingMode

ABA_MASTER, 144
SKIPPINGMODE_

ABA_MASTER, 157
skippingMode_

ABA_MASTER, 157
slack

ABA_CONSTRAINT,225
ABA_LP, 291
ABA_SROWCON,387

slackStat
ABA_LP, 291
ABA_SUB, 201

slackStat2osi
ABA_OSIIF, 308

slackStat_
ABA_SUB, 209

slackStatus
ABA_LP, 291

slackStatus_
ABA_LP, 294

slot
ABA_CUTBUFFER,400
ABA_POOLSLOTREF,366
ABA_STANDARDPOOL,352

slot_
ABA_POOLSLOTREF,367

softDelete
ABA_POOLSLOT,361

softDeleteConVar
ABA_NONDUPLPOOL,357
ABA_POOL,347

SOLSTAT
ABA_LP, 276

solution history,40
SolveApprox,84
SolveApprox, 84
solveApprox

ABA_MASTER, 144
solveApprox_

ABA_MASTER, 157
solveApproxNow

ABA_SUB, 201
solveApproxNow(),84
solveLp

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

556 INDEX

ABA_SUB, 201
solver,5
solver parameters,84
SOLVERTYPE

ABA_OSIIF, 298
sons_

ABA_SUB, 209
SoPlex

ABA_MASTER, 116
Soplex,16
SoPlexRepresentation, 18
sort

ABA_CUTBUFFER,400
sorting,44
space

ABA_CUTBUFFER,400
sparse vector,42
stack,41
stack_

ABA_BSTACK, 471
start

ABA_TIMER, 497
startTime_

ABA_TIMER, 499
Statistics

ABA_MASTER, 117
statistics

ABA_NONDUPLPOOL,357
STATUS

ABA_FSVARSTAT,257
ABA_LPVARSTAT, 263
ABA_MASTER, 118
ABA_SLACKSTAT, 267
ABA_SUB, 168

status
ABA_FSVARSTAT,260, 261
ABA_LPVARSTAT, 265
ABA_MASTER, 144
ABA_SLACKSTAT, 268, 269
ABA_SUB, 202

STATUS_
ABA_MASTER, 157

status_
ABA_FSVARSTAT,262
ABA_LPVARSTAT, 266
ABA_MASTER, 157
ABA_SETBRANCHRULE,333
ABA_SLACKSTAT, 269
ABA_SUB, 210

stop
ABA_TIMER, 498

String,42
string

ABA_STRING,435
string_

ABA_STRING,436
strong branching,17, 18, 64

comparing branching samples,65
default,65
other branching rules,66
ranking branching rules,65
selecting branching samples,66
variable selection,65

sub
ABA_CONVAR, 218
ABA_LPSUB,319

sub_
ABA_CONVAR, 220
ABA_LPSUB,322

Subproblem
ABA_MASTER, 117

subproblem,22, 26
activating,70
deactivate,70

subtour elimination constraint,30, 31, 57
succ

ABA_DLISTITEM, 457
ABA_LISTITEM, 450

succ_
ABA_DLISTITEM, 458
ABA_LISTITEM, 451

support
ABA_SPARVEC,424

support_
ABA_SPARVEC,426

switchInterfaces
ABA_OSIIF, 308

SYMPHONY
ABA_MASTER, 116

tab_
ABA_GLOBAL, 104

table_
ABA_HASH, 486

tailing off, 17, 40
advanced control,74
minimal change,76
number of LPs,76

tailingOff
ABA_SUB, 202

tailOff
ABA_TAILOFF, 414

tailOff_
ABA_SUB, 210

tailOffNLp
ABA_MASTER, 144, 145

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

INDEX 557

tailOffNLp_
ABA_MASTER, 157

TailOffNLps, 76
TailOffPercent, 76
tailOffPercent

ABA_MASTER, 145
tailOffPercent_

ABA_MASTER, 157
templates,13, 87
terminateOptimization

ABA_MASTER, 145
terminateSeparation

ABA_SEPARATOR,244
theFuture

ABA_MASTER, 145
theTime

ABA_COWTIMER, 503
ABA_CPUTIMER,501
ABA_TIMER, 498

time_
ABA_HISTORY, 418

timer,44
TooLarge

ABA_INFEASCON,403
TooSmall

ABA_INFEASCON,403
top

ABA_BSTACK, 470
tos

ABA_BSTACK, 470
tos_

ABA_BSTACK, 471
totalCowTime

ABA_MASTER, 145
totalCowTime_

ABA_MASTER, 157
totalTime

ABA_MASTER, 145
totalTime_

ABA_MASTER, 157
ABA_TIMER, 499

treeInterfaceLowerBound
ABA_MASTER, 146

treeInterfaceNewNode
ABA_MASTER, 146

treeInterfaceNodeBounds
ABA_MASTER, 146

treeInterfacePaintNode
ABA_MASTER, 146

treeInterfaceUpperBound
ABA_MASTER, 146

treeStream_
ABA_MASTER, 158

trueNCol
ABA_LPSUB,319

trueNnz
ABA_LPSUB,320

TYPE
ABA_VARTYPE, 254

type
ABA_VARTYPE, 255

type_
ABA_VARIABLE, 234
ABA_VARTYPE, 256

uBound
ABA_BOUNDBRANCHRULE,336
ABA_COLUMN, 375
ABA_LP, 291
ABA_LPSUB,320
ABA_SUB, 202
ABA_VARIABLE, 232

uBound_
ABA_BOUNDBRANCHRULE,337
ABA_COLUMN, 376
ABA_SUB, 210
ABA_VARIABLE, 234

Unbounded
ABA_LP, 276

unExtract
ABA_BOUNDBRANCHRULE,336
ABA_BRANCHRULE, 329
ABA_CONBRANCHRULE,343
ABA_SETBRANCHRULE,333
ABA_VALBRANCHRULE, 339

unionSets
ABA_FASTSET,430
ABA_SET,428

Unknown
ABA_LPVARSTAT, 264
ABA_OPTSENSE,247
ABA_SLACKSTAT, 268

unknown
ABA_OPTSENSE,248

unlock
ABA_CONVAR, 218

Unoptimized
ABA_LP, 276

Unprocessed
ABA_MASTER, 118
ABA_SUB, 168

upd-includes-2.0, 16
upd-names-2.0, 16
update

ABA_HISTORY, 417
ABA_TAILOFF, 414

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

558 INDEX

updateBoundInLp
ABA_SUB, 203

updateDualBound
ABA_OPENSUB,408

upperBound
ABA_MASTER, 146
ABA_SUB, 203

useful
ABA_VARIABLE, 233

valid
ABA_CONSTRAINT,226
ABA_VARIABLE, 233

value
ABA_FSVARSTAT,261
ABA_LP, 292
ABA_LPSUB,320
ABA_VALBRANCHRULE, 339

value_
ABA_FSVARSTAT,262
ABA_OSIIF, 310
ABA_VALBRANCHRULE, 340

valueAdd_
ABA_LPSUB,322

VarElimAge, 82
varElimAge

ABA_MASTER, 146
varElimAge_

ABA_MASTER, 158
VarElimEps, 82
varElimEps

ABA_MASTER, 147
varElimEps_

ABA_MASTER, 158
varEliminate

ABA_SUB, 203
VARELIMMODE

ABA_MASTER, 118
varElimMode

ABA_MASTER, 147
VARELIMMODE_

ABA_MASTER, 158
varElimMode_

ABA_MASTER, 158
variablae

buffering,27
variable,22, 29, 32, 46, 57, 58

active,28, 30
adding,27, 69
binary,32
compressed format,31, 57
continuous,32
dynamic,31

eliminating,69
elimination mode,82
elimination tolerance,82
expanded format,31, 57
integer,32
locally valid,30, 32
locked,30
maximal added,80
maximal buffered,80
removing,27
static,31

variable
ABA_BOUNDBRANCHRULE,336
ABA_SETBRANCHRULE,333
ABA_SUB, 203
ABA_VALBRANCHRULE, 340

variable_
ABA_BOUNDBRANCHRULE,337
ABA_SETBRANCHRULE,333
ABA_VALBRANCHRULE, 340

VariableEliminationMode, 82
variablePoolSeparation

ABA_SUB, 203
varPool

ABA_MASTER, 147
varPool_

ABA_MASTER, 158
varRealloc

ABA_LPSUB,320
ABA_SUB, 204

varReserve_
ABA_SUB, 210

varType
ABA_VARIABLE, 233

VBC-tool, 83
VbcLog, 83
vbcLog

ABA_MASTER, 147, 148
VbcLog_

ABA_MASTER, 158
VBCMODE

ABA_MASTER, 119
VBCMODE_

ABA_MASTER, 158
version

ABA_POOLSLOT,361
ABA_POOLSLOTREF,367

version_
ABA_POOLSLOT,363
ABA_POOLSLOTREF,367

violated
ABA_CONSTRAINT,226
ABA_VARIABLE, 233, 234

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

INDEX 559

virtual dummy function,21
Visual C++, 17
voidLhsViolated

ABA_CONSTRAINT,227
Vol

ABA_MASTER, 116
Volume Algorithm,10, 84

watchNonDuplPool
ABA_SEPARATOR,244

writeBasisMatrix
ABA_LP, 292

writeTreeInterface
ABA_MASTER, 148

ws_
ABA_OSIIF, 310

XPRESS_MP
ABA_MASTER, 116

xVal
ABA_LP, 292
ABA_LPSUB,320
ABA_SUB, 204

xVal_
ABA_OSIIF, 310
ABA_SUB, 210

xValStatus
ABA_LP, 292

xValStatus_
ABA_LP, 294

yVal
ABA_LP, 292
ABA_SUB, 204

yVal_
ABA_OSIIF, 310
ABA_SUB, 210

yValStatus
ABA_LP, 292

yValStatus_
ABA_LP, 294

zVal
ABA_LPSOLUTION,238

zVal_
ABA_LPSOLUTION,239

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

	Preface
	Installation
	Obtaining ABACUS
	Platforms
	Building ABACUS
	Compiling and Linking
	Environment Variables
	Contact
	Mailing List

	New Features
	New Features of ABACUS 3.0
	Open Solver Interface
	Compilers
	Library creation by the user
	Documentation System
	Approximate solver
	Memory management
	Preprocessor Flags and Include Paths

	New Features of ABACUS 2.3
	Version macro
	New classes for separation
	Rank for constraints/variables

	New Features of ABACUS 2.2
	Lp-Solver Xpress
	Lp-Solver Cplex
	Lp-Methods
	New Compilers
	Library Architectures
	Library Creation by the User
	New or Changed Preprocessor Flags
	Templates
	New LP Master Classes
	HTML Documentation
	Parameter Handling
	Name changings

	New Features of ABACUS 2.1
	Elimination of Constraints and Variables
	Cplex 5.0
	Templates
	Bug Fixes

	New Features of ABACUS 2.0
	LP-Solver Soplex
	Naming Conventions
	Include File Path
	Advanced Control of the Tailing Off Effect
	Problem Specific Fathoming
	Problem Specific Branching
	Generalized Strong Branching
	Pool without Constraint Duplication
	Visual C++ Compiler
	Compiler Preprocessor Flag
	LP-Solver Preprocessor Flag
	Parameters of Configuration File
	New Functions
	Miscellaneous

	Design
	Basics
	Application Base Classes
	Pure Kernel Classes
	Auxiliaries

	Details
	The Root of the Class-Tree
	The Master
	The Subproblem
	Constraints and Variables
	Constraint and Variable Pools
	Linear Programs
	Auxiliary Classes for Branch-and-Bound
	Basic Generic Data Structures
	Other Basic Data Structures
	Tools

	Using ABACUS
	Basics
	Constraints and Variables
	The Master
	The Subproblem
	Starting the Optimization

	Advanced Features
	Using other Pools
	Pool without Multiple Storage of Items
	Constraints and Variables
	Infeasible Linear Programs
	Other Enumeration Strategies
	Selection of the Branching Variable
	Using other Branching Strategies
	Strong Branching
	Activating and Deactivating a Subproblem
	Calling ABACUS Recursively
	Selecting the LP-Method
	Generating Output
	Memory Management
	Eliminating Constraints
	Eliminating Variables
	Adding Constraints/Variables in General
	Fixing and Setting Variables by Logical Implications
	Loading an Initial Basis
	Integer Objective Functions
	An Entry Point at the End of the Optimization
	Output of Statistics
	Accessing Internal Data of the LP-Solver
	Problem Specific Fathoming Criteria
	Enforcing a Branching Step
	Advanced Tailing Off Control
	System Parameters
	Solver Parameters
	Parameter Handling

	Using the ABACUS Templates

	Reference Manual
	Application Base Classes
	ABA_ABACUSROOT Class Reference
	Detailed Description
	Member Enumeration Documentation
	Constructor & Destructor Documentation
	Member Function Documentation

	ABA_GLOBAL Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_MASTER Class Reference
	Detailed Description
	Member Enumeration Documentation
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_SUB Class Reference
	Detailed Description
	Member Enumeration Documentation
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_CONVAR Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_CONSTRAINT Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_VARIABLE Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Member Data Documentation

	ABA_LPSOLUTION< BaseType, CoType > Class Template Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_SEPARATOR< BaseType, CoType > Class Template Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Member Data Documentation

	System Classes
	ABA_OPTSENSE Class Reference
	Detailed Description
	Member Enumeration Documentation
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_CSENSE Class Reference
	Detailed Description
	Member Enumeration Documentation
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_VARTYPE Class Reference
	Detailed Description
	Member Enumeration Documentation
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_FSVARSTAT Class Reference
	Detailed Description
	Member Enumeration Documentation
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_LPVARSTAT Class Reference
	Detailed Description
	Member Enumeration Documentation
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_SLACKSTAT Class Reference
	Detailed Description
	Member Enumeration Documentation
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_LP Class Reference
	Detailed Description
	Member Enumeration Documentation
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_OSIIF Class Reference
	Member Enumeration Documentation
	Constructor & Destructor Documentation
	Member Function Documentation
	Member Data Documentation

	ABA_LPSUB Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_LPSUBOSI Class Reference
	Constructor & Destructor Documentation
	Member Function Documentation

	ABA_LPMASTER Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Member Data Documentation

	ABA_LPMASTEROSI Class Reference
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation

	ABA_BRANCHRULE Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Member Data Documentation

	ABA_SETBRANCHRULE Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_BOUNDBRANCHRULE Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_VALBRANCHRULE Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_CONBRANCHRULE Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_POOL< BaseType, CoType > Class Template Reference
	Detailed Description
	Member Enumeration Documentation
	Constructor & Destructor Documentation
	Member Function Documentation
	Member Data Documentation

	ABA_STANDARDPOOL< BaseType, CoType > Class Template Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_NONDUPLPOOL< BaseType, CoType > Class Template Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Member Data Documentation

	ABA_POOLSLOT< BaseType, CoType > Class Template Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_POOLSLOTREF< BaseType, CoType > Class Template Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_ROW Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_COLUMN Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_NUMCON Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_ROWCON Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Member Data Documentation

	ABA_NUMVAR Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_SROWCON Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation

	ABA_COLVAR Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_ACTIVE< BaseType, CoType > Class Template Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_CUTBUFFER< BaseType, CoType > Class Template Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_INFEASCON Class Reference
	Detailed Description
	Member Enumeration Documentation
	Constructor & Destructor Documentation
	Member Function Documentation
	Member Data Documentation

	ABA_OPENSUB Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_FIXCAND Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_TAILOFF Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_HISTORY Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	Basic Data Structures
	ABA_SPARVEC Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_SET Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Member Data Documentation

	ABA_FASTSET Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Member Data Documentation

	ABA_STRING Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	Templates
	ABA_ARRAY< Type > Class Template Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_BUFFER< Type > Class Template Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_LISTITEM< Type > Class Template Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_LIST< Type > Class Template Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_DLISTITEM< Type > Class Template Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_DLIST< Type > Class Template Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_RING< Type > Class Template Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_BSTACK< Type > Class Template Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_BHEAP< Type, Key > Class Template Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_BPRIOQUEUE< Type, Key > Class Template Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Member Data Documentation

	ABA_HASH< KeyType, ItemType > Class Template Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_DICTIONARY< KeyType, ItemType > Class Template Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	Tools
	ABA_SORTER< ItemType, KeyType > Class Template Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Member Data Documentation

	ABA_TIMER Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_CPUTIMER Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Member Data Documentation

	ABA_COWTIMER Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Member Data Documentation

	ABA_OSTREAM Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	Preprocessor Flags

	Warranty and Copyright
	Warranty
	Copyright

