ABACUS

A Branch-And-CUt System
Version 3.0
User’s Guide and Reference Manual

2007

ABACUS 3.0 Documentation

For use with Version 3.0 of thaBACUS Library

The information in this document is subject to change withmmtice.

Contents

1 Preface
2 Installation
2.1 Obtaining ABACUS
2.2 Platforms
2.3 BuUlldingABACUS
24 Compilingand Linking.
2.5 EnvironmentVariables.
26 ContaCt.
27 Mailing List
3 New Features
3.1 NewFeaturesof ABACUS 3.0 i
3.1.1 OpenSolverinterface.
3.1.2 Compilers
3.1.3 Librarycreationbytheuser
3.1.4 Documentation System.
3.1.5 Approximate solver e
3.1.6 Memory management e e e e e e
3.1.7 Preprocessor Flagsand IncludePaths.
3.2 NewFeatures Of ABACUS 2.3
3.2.1 MersionmMaCrO. . . . o v v v o o e e e e
3.2.2 Newclassesforseparation. e
3.2.3 Rankforconstraints/variables.
3.3 NewFeaturesof ABACUS 2.2
3.3.1 Lp-Solver Xpress o e e
3.3.2 Lp-SolverCplex. e

3.3.3 Lp-Methods e

<~ oo O O U g O

© © o © ©

iv CONTENTS

3.34 NewCompilers e 11
3.3.5 Library Architectures L 11
3.3.6 Library CreationbytheUser. 11
3.3.7 NeworChanged PreprocessorFlags. 13
3.3.8 Templates 13
3.3.9 NewlLPMasterClasses e 13
3.3.10 HTML Documentation 0 i e 14
3.3.11 ParameterHandling. 14
3.3.12 Namechangings e 14
3.4 NewFeatures Of ABACUS 2.1 i 15
3.4.1 Elimination of Constraints and Variables 15
3.4.2 Cplex5.0. . . . 15
343 Templates 15
344 BUgFIXES. e 15
3.5 NewFeaturesof ABACUS 2.0 15
3.5.1 LP-SolverSoplex e 16
3,52 NamingConventions 16
3.5.3 IncludeFilePath. 16
3.5.4 Advanced Control of the Tailing OffEffect 17
3.5.5 Problem Specific Fathoming. 17
3.5.6 Problem SpecificBranching 17
3.5.7 Generalized Strong Branching. 17
3.5.8 Pool without Constraint Duplication. 17
3.5.9 Visual G-+ Compiler 17
3.5.10 Compiler PreprocessorFlag. 18
3.5.11 LP-SolverPreprocessorFlag 18
3.5.12 Parameters of ConfigurationFile 18
3.5.13 New Functions. 18
3.5.14 Miscellaneous. 19
4 Design 21
41 BaSiCS. 21
4.1.1 ApplicationBase Classes e 22
4.1.2 PureKernelClasses 22
4.1.3 Auxiliaries 23
4.2 Details. e 23
4.2.1 TheRootoftheClass-Tree. 23

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

CONTENTS v
422 TheMaster. e 24
4.2.3 The Subproblem. 26
4.2.4 Constraintsand Variables 29
42,5 Constraintand Variable Pools 32
4.2.6 LinearPrograms. 34
4.2.7 Auxiliary Classes for Branch-and-Bound 37
4.2.8 Basic Generic Data Structures. 40
4.2.9 OtherBasic Data Structures. 42
4.2.10 TOOIS . . . o o 43
5 Using ABACUS 45

5.1 BAaSICS. . . . o 45
5.1.1 Constraintsand Variables 46
5.1.2 TheMaster. 47
5.1.3 The Subproblem. 49
5.1.4 Starting the Optimization. 55

5.2 Advanced Features 56
5.2.1 UsingotherPools. 56
5.2.2 Pool without Multiple Storage of ltems 57
5.2.3 Constraintsand Variables 57
5.2.4 Infeasible Linear Programs. e 59
5.2.5 Other Enumeration Strategies. 60
5.2.6 Selection of the Branching Variable., 60
5.2.7 Using other Branching Strategies. 61
5.2.8 Strong Branching 64
5.2.9 Activating and Deactivating a Subproblem. L. 66
5.2.10 Calling ABACUS Recursively 67
5.2.11 Selectingthe LP-Method. 67
5.2.12 Generating Output 67
5.2.13 Memory Management e 68
5.2.14 Eliminating Constraints. 68
5.2.15 Eliminating Variables 69
5.2.16 Adding Constraints/VariablesinGeneral. 69
5.2.17 Fixing and Setting Variables by Logical Implicagson. 71
5.2.18 Loadingan Initial Basis. e 71
5.2.19 Integer Objective Functions 72
5.2.20 An Entry Point at the End of the Optimization 72

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

Vi CONTENTS

5.2.21 Outputof Statistics e 73
5.2.22 Accessing Internal Data of the LP-Solver. 73
5.2.23 Problem Specific Fathoming Criteria 73
5.2.24 EnforcingaBranchingStep 73
5.2.25 Advanced Tailing Off Control. 74
5.2.26 System Parameters. 74
5.2.27 Solver Parameters 84
5.2.28 Parameter Handling. 84
5.3 Usingthe ABACUS Templates. e 87
Reference Manual 89
6.1 ApplicationBase Classes. 89
6.2 ABA ABACUSROOT ClassReference 90
6.2.1 Detailed Description 91
6.2.2 Member Enumeration Documentation o oL 91
6.2.3 Constructor & Destructor Documentation. 91
6.2.4 Member Function Documentation. 91
6.3 ABA_GLOBAL ClassReference. i 92
6.3.1 Detailed Description 95
6.3.2 Constructor & Destructor Documentation. 95
6.3.3 Member Function Documentation. 96
6.3.4 Friends And Related Function Documentation. 103
6.3.5 Member Data Documentation 103
6.4 ABA MASTER ClassReference. e 104
6.4.1 Detailed Description 115
6.4.2 Member Enumeration Documentation o oL 115
6.4.3 Constructor & Destructor Documentation. 119
6.4.4 Member Function Documentation. 120
6.4.5 Friends And Related Function Documentation. 148
6.4.6 Member Data Documentation 148
6.5 ABA_SUBClassReference. 159
6.5.1 Detailed Description 167
6.5.2 Member Enumeration Documentation L 167
6.5.3 Constructor & Destructor Documentation. 168
6.5.4 Member Function Documentation. 169
6.5.5 Friends And Related Function Documentation. 204
6.5.6 Member Data Documentation 205

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

CONTENTS Vi
6.6 ABA CONVAR ClassReference. it e 210
6.6.1 Detailed Description. e 213
6.6.2 Constructor & Destructor Documentation. 213
6.6.3 Member Function Documentation. 214
6.6.4 Friends And Related Function Documentatian. 218
6.6.5 Member Data Documentation 219
6.7 ABA_CONSTRAINT Class Reference., 221
6.7.1 Detailed Description 222
6.7.2 Constructor & Destructor Documentation. 222
6.7.3 Member Function Documentation. 223
6.7.4 Friends And Related Function Documentation. 227
6.7.5 Member Data Documentation 227
6.8 ABA VARIABLE Class Reference. it 228
6.8.1 Detailed Description 229
6.8.2 Constructor & Destructor Documentation. 229
6.8.3 Member Function Documentation. 230
6.8.4 Member Data Documentation 234
6.9 ABA_LPSOLUTION BaseType, CoType Class Template Reference. 235
6.9.1 Detailed Description 236
6.9.2 Constructor & Destructor Documentation. 236
6.9.3 Member Function Documentation. 237
6.9.4 Friends And Related Function Documentation. 238
6.9.5 Member Data Documentation 239
6.10 ABA_SEPARATOR: BaseType, CoType Class Template Reference 239
6.10.1 Detailed Description e e e 241
6.10.2 Constructor & Destructor Documentation 241
6.10.3 Member Function Documentatian. 242
6.10.4 Member Data Documentation. 244
6.11 System Classes i e e e e 245
6.12 ABA_OPTSENSE Class Reference. i e 245
6.12.1 Detailed Description 246
6.12.2 Member Enumeration Documentation oL 246
6.12.3 Constructor & Destructor Documentation 247
6.12.4 Member Function Documentatian. Lo 247
6.12.5 Friends And Related Function Documentation. 248
6.12.6 Member Data Documentation. 248

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.13

6.14

6.15

6.16

6.17

6.18

Viii CONTENTS

ABA_CSENSE Class Reference. et 249
6.13.1 Detailed Description e 250
6.13.2 Member Enumeration Documentation oL 250
6.13.3 Constructor & Destructor Documentation 250
6.13.4 Member Function Documentatian. 251
6.13.5 Friends And Related Function Documentation. 252
6.13.6 Member Data Documentation. 252
ABA VARTYPE ClassReference e 253
6.14.1 Detailed Description e e e 253
6.14.2 Member Enumeration Documentation oL 254
6.14.3 Constructor & Destructor Documentation 254
6.14.4 Member Function Documentatian. 254
6.14.5 Friends And Related Function Documentation. 255
6.14.6 Member Data Documentation. 256
ABA _FSVARSTAT Class Reference. i 256
6.15.1 Detailed Description e 257
6.15.2 Member Enumeration Documentation 257
6.15.3 Constructor & Destructor Documentation 258
6.15.4 Member Function Documentatian. 259
6.15.5 Friends And Related Function Documentation. 261
6.15.6 Member Data Documentation. 261
ABA_LPVARSTAT Class Reference. i 262
6.16.1 Detailed Description 263
6.16.2 Member Enumeration Documentation oL 263
6.16.3 Constructor & Destructor Documentation 264
6.16.4 Member Function Documentatian. Lo 265
6.16.5 Friends And Related Function Documentation. 265
6.16.6 Member Data Documentation. 266
ABA SLACKSTAT Class Reference. i i e e e e 266
6.17.1 Detailed DesCription e 267
6.17.2 Member Enumeration Documentation oL 267
6.17.3 Constructor & Destructor Documentation 268
6.17.4 Member Function Documentatian. Lo 268
6.17.5 Friends And Related Function Documentation. 269
6.17.6 Member Data Documentation. 269
ABA_LP Class Reference. e 270

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

CONTENTS iX

6.18.1 Detailed Description e 275
6.18.2 Member Enumeration Documentation 276
6.18.3 Constructor & Destructor Documentation 277
6.18.4 Member Function Documentatian. 277
6.18.5 Friends And Related Function Documentation. 292
6.18.6 Member Data Documentation. 293
6.19 ABA OSIIFClassReference. e 294
6.19.1 Member Enumeration Documentation oL 298
6.19.2 Constructor & Destructor Documentation 299
6.19.3 Member Function Documentatian. Lo 299
6.19.4 Member Data Documentation. 308
6.20 ABA LPSUB Class Reference. e 311
6.20.1 Detailed Description e e 313
6.20.2 Constructor & Destructor Documentation 313
6.20.3 Member Function Documentatian. Lo 314
6.20.4 Friends And Related Function Documentation. 321
6.20.5 Member Data Documentation. 321
6.21 ABA LPSUBOSIClassReference. 322
6.21.1 Constructor & Destructor Documentation 323
6.21.2 Member Function Documentatian. Lo 323
6.22 ABA LPMASTER Class Reference i it 324
6.22.1 Detailed DescCription 324
6.22.2 Constructor & Destructor Documentation 324
6.22.3 Member Function Documentatian. 325
6.22.4 Member Data Documentation. 325
6.23 ABA LPMASTEROSIClass Reference. 325
6.23.1 Constructor & Destructor Documentation 326
6.23.2 Member Function Documentatian. 326
6.23.3 Friends And Related Function Documentation. 327
6.24 ABA_BRANCHRULE Class Reference 327
6.24.1 Detailed Description 328
6.24.2 Constructor & Destructor Documentation 328
6.24.3 Member Function Documentatian. Lo 328
6.24.4 Member Data Documentation. 330
6.25 ABA SETBRANCHRULE ClassReference. 330
6.25.1 Detailed Description e 331

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.26

6.27

6.28

6.29

6.30

6.31

X CONTENTS

6.25.2 Constructor & Destructor Documentation 331
6.25.3 Member Function Documentatian. 332
6.25.4 Friends And Related Function Documentation. 333
6.25.5 Member Data Documentation. 333
ABA_BOUNDBRANCHRULE Class Reference 334
6.26.1 Detailed Description 335
6.26.2 Constructor & Destructor Documentation 335
6.26.3 Member Function Documentatian. 335
6.26.4 Friends And Related Function Documentation. 336
6.26.5 Member Data Documentation. 337
ABA VALBRANCHRULE Class Reference. 337
6.27.1 Detailed Description 338
6.27.2 Constructor & Destructor Documentation 339
6.27.3 Member Function Documentatian. Lo 339
6.27.4 Friends And Related Function Documentation. 340
6.27.5 Member Data Documentation. 340
ABA CONBRANCHRULE Class Reference 341
6.28.1 Detailed DesCription 342
6.28.2 Constructor & Destructor Documentation 342
6.28.3 Member Function Documentatian. L 342
6.28.4 Friends And Related Function Documentation. 343
6.28.5 Member Data Documentation. 344
ABA_POOI« BaseType, CoType Class Template Reference 344

6.29.1 Detailed Description e 345
6.29.2 Member Enumeration Documentation 345
6.29.3 Constructor & Destructor Documentation 346
6.29.4 Member Function Documentation. 346
6.29.5 Member Data Documentation. 347
ABA_STANDARDPOOI« BaseType, CoType Class Template Reference 348

6.30.1 Detailed DesCription o 349
6.30.2 Constructor & Destructor Documentation 349
6.30.3 Member Function Documentatian. 350
6.30.4 Friends And Related Function Documentation. 353

6.30.5 Member Data Documentation. 353
ABA_NONDUPLPOOI« BaseType, CoType Class Template Reference. 354

6.31.1 Detailed Description e e 355

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

CONTENTS Xi

6.31.2 Constructor & Destructor Documentation 355
6.31.3 Member Function Documentation. 355
6.31.4 Member Data Documentation. 357
6.32 ABA_POOLSLOKk BaseType, CoType Class Template Reference 358
6.32.1 Detailed Description e e 359
6.32.2 Constructor & Destructor Documentation 359
6.32.3 Member Function Documentatian. Lo 360
6.32.4 Friends And Related Function Documentation. 361
6.32.5 Member Data Documentation. 363
6.33 ABA_POOLSLOTREE BaseType, CoType- Class Template Reference. 364
6.33.1 Detailed DesCription 365
6.33.2 Constructor & Destructor Documentation 365
6.33.3 Member Function Documentation. 366
6.33.4 Friends And Related Function Documentation. 367
6.33.5 Member Data Documentation. 367
6.34 ABA_ ROW Class Reference e 368
6.34.1 Detailed Description e e 369
6.34.2 Constructor & Destructor Documentation 369
6.34.3 Member Function Documentatian. Lo 370
6.34.4 Friends And Related Function Documentation. 371
6.34.5 Member Data Documentation. 372
6.35 ABA COLUMN Class Reference it 372
6.35.1 Detailed Description 373
6.35.2 Constructor & Destructor Documentation 373
6.35.3 Member Function Documentatian. 374
6.35.4 Friends And Related Function Documentation. 376
6.35.5 Member Data Documentation. 376
6.36 ABA_ NUMCON ClassReference i 377
6.36.1 Detailed Description e e 377
6.36.2 Constructor & Destructor Documentation 378
6.36.3 Member Function Documentatian. 378
6.36.4 Friends And Related Function Documentation. 379
6.36.5 Member Data Documentation. 379
6.37 ABA ROWCON ClassReference i 379
6.37.1 Detailed Description 380
6.37.2 Constructor & Destructor Documentation 380

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.38

6.39

6.40

6.41

6.42

6.43

Xii CONTENTS

6.37.3 Member Function Documentatian. 381
6.37.4 Member Data Documentation. 382
ABA NUMVAR Class Reference. e 382
6.38.1 Detailed Description 383
6.38.2 Constructor & Destructor Documentation 383
6.38.3 Member Function Documentatian. Lo 384
6.38.4 Friends And Related Function Documentation. 384
6.38.5 Member Data Documentation. 384
ABA SROWCONClassReference it 385
6.39.1 Detailed DescCription 386
6.39.2 Constructor & Destructor Documentation 386
6.39.3 Member Function Documentatian. 386
ABA COLVARClassReference e e 387
6.40.1 Detailed DesCription 388
6.40.2 Constructor & Destructor Documentation 388
6.40.3 Member Function Documentatian. 389
6.40.4 Friends And Related Function Documentation. 390
6.40.5 Member Data Documentation. 391
ABA_ACTIVE< BaseType, CoType Class Template Reference. 391

6.41.1 Detailed Description 392
6.41.2 Constructor & Destructor Documentation 392
6.41.3 Member Function Documentatian. Lo 393
6.41.4 Friends And Related Function Documentation. 395
6.41.5 Member Data Documentation. 396
ABA_CUTBUFFER: BaseType, CoType- Class Template Reference 397

6.42.1 Detailed DesSCription e 398
6.42.2 Constructor & Destructor Documentation 398
6.42.3 Member Function Documentatian. 398
6.42.4 Friends And Related Function Documentation. 401
6.42.5 Member Data Documentation. 401
ABA INFEASCON Class Reference 402
6.43.1 Detailed Description e 403
6.43.2 Member Enumeration Documentation oL 403
6.43.3 Constructor & Destructor Documentation 403
6.43.4 Member Function Documentatian. 404
6.43.5 Member Data Documentation. oo 404

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

CONTENTS Xiii

6.44 ABA OPENSUB Class Reference. i 405
6.44.1 Detailed Description e 406
6.44.2 Constructor & Destructor Documentation 406
6.44.3 Member Function Documentatian. L 406
6.44.4 Friends And Related Function Documentation. 408
6.44.5 Member Data Documentation. 408

6.45 ABA FIXCAND ClassReference 409
6.45.1 Detailed Description 410
6.45.2 Constructor & Destructor Documentation 410
6.45.3 Member Function Documentatian. Lo 410
6.45.4 Friends And Related Function Documentation. 411
6.45.5 Member Data Documentation. 411

6.46 ABA TAILOFF ClassReference. et 412
6.46.1 Detailed DesCription 413
6.46.2 Constructor & Destructor Documentation 413
6.46.3 Member Function Documentatian. 414
6.46.4 Friends And Related Function Documentation. 415
6.46.5 Member Data Documentation. 415

6.47 ABA HISTORY Class Reference i 416
6.47.1 Detailed Description e 416
6.47.2 Constructor & Destructor Documentation, 417
6.47.3 Member Function Documentatian. Lo 417
6.47.4 Friends And Related Function Documentation. 417
6.47.5 Member Data Documentation. 418

6.48 Basic Data Structures. 419

6.49 ABA_SPARVEC Class Reference 419
6.49.1 Detailed Description 420
6.49.2 Constructor & Destructor Documentation 421
6.49.3 Member Function Documentatian. 422
6.49.4 Friends And Related Function Documentation. 425
6.49.5 Member Data Documentation. 425

6.50 ABA _SET Class Reference. e 426
6.50.1 Detailed DescCription 427
6.50.2 Constructor & Destructor Documentation 427
6.50.3 Member Function Documentatian. 427
6.50.4 Member Data Documentation. 428

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.51

6.52

6.53
6.54

6.55

6.56

6.57

Xiv CONTENTS

ABA_FASTSET Class Reference it 429
6.51.1 Detailed Description e e 429
6.51.2 Constructor & Destructor Documentation 429
6.51.3 Member Function Documentatian. 430
6.51.4 Member Data Documentation. 430
ABA_STRING Class Reference 430
6.52.1 Detailed Description 432
6.52.2 Constructor & Destructor Documentation 432
6.52.3 Member Function Documentation. 433
6.52.4 Friends And Related Function Documentation. 435
6.52.5 Member Data Documentation. 436
Templates. 437
ABA_ARRAY< Type> Class Template Reference. 437
6.54.1 Detailed DesCription 438
6.54.2 Constructor & Destructor Documentation 438
6.54.3 Member Function Documentatian. 440
6.54.4 Friends And Related Function Documentation. 443
6.54.5 Member Data Documentation. 443
ABA_BUFFER< Type> Class Template Reference 443
6.55.1 Detailed Description 445
6.55.2 Constructor & Destructor Documentation, 445
6.55.3 Member Function Documentatian. Lo 445
6.55.4 Friends And Related Function Documentation. 448
6.55.5 Member Data Documentation. 448
ABA_LISTITEM< Type> Class Template Reference 449
6.56.1 Detailed DescCription 449
6.56.2 Constructor & Destructor Documentation 450
6.56.3 Member Function Documentatian.o 450
6.56.4 Friends And Related Function Documentation. 450
6.56.5 Member Data Documentation. 451
ABA_LIST< Type > Class Template Reference 451
6.57.1 Detailed Description e 452
6.57.2 Constructor & Destructor Documentation 452
6.57.3 Member Function Documentatian. Lo 453
6.57.4 Friends And Related Function Documentation. 454
6.57.5 Member Data Documentation. 455

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

CONTENTS XV

6.58 ABA_DLISTITEM< Type> Class Template Reference 455
6.58.1 Detailed Description e e 456
6.58.2 Constructor & Destructor Documentation 456
6.58.3 Member Function Documentatian. 457
6.58.4 Friends And Related Function Documentation. 457
6.58.5 Member Data Documentation. 457

6.59 ABA_DLIST< Type> Class Template Reference 458
6.59.1 Detailed Description 459
6.59.2 Constructor & Destructor Documentation, 459
6.59.3 Member Function Documentatian. L o 460
6.59.4 Friends And Related Function Documentation. 461
6.59.5 Member Data Documentation. 462

6.60 ABA_RING< Type> Class Template Reference. 462
6.60.1 Detailed DesCription 463
6.60.2 Constructor & Destructor Documentation 463
6.60.3 Member Function Documentatian. 464
6.60.4 Friends And Related Function Documentation. 466
6.60.5 Member Data Documentation. 467

6.61 ABA_BSTACK< Type> Class Template Reference 467
6.61.1 Detailed Description 468
6.61.2 Constructor & Destructor Documentation 468
6.61.3 Member Function Documentatian. Lo 469
6.61.4 Friends And Related Function Documentation. 470
6.61.5 Member Data Documentation. 471

6.62 ABA_BHEAR Type, Key> Class Template Reference 471
6.62.1 Detailed DesCription 472
6.62.2 Constructor & Destructor Documentation 472
6.62.3 Member Function Documentatian. 473
6.62.4 Friends And Related Function Documentation. 475
6.62.5 Member Data Documentation. 475

6.63 ABA_BPRIOQUEUK: Type, Key> Class Template Reference. 476
6.63.1 Detailed Description e 477
6.63.2 Constructor & Destructor Documentation 477
6.63.3 Member Function Documentatian. Lo 477
6.63.4 Member Data Documentation. 479

6.64 ABA_HASH< KeyType, IltemType> Class Template Reference. 479

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

XVi CONTENTS

6.64.1 Detailed Description e 481
6.64.2 Constructor & Destructor Documentation 481
6.64.3 Member Function Documentatian. Lo 482
6.64.4 Friends And Related Function Documentation. 485
6.64.5 Member Data Documentation. oo 485
6.65 ABA_DICTIONARY< KeyType, ltemType> Class Template Reference 486
6.65.1 Detailed Description 487
6.65.2 Constructor & Destructor Documentation 487
6.65.3 Member Function Documentation. 488
6.65.4 Friends And Related Function Documentation. 488
6.65.5 Member Data Documentation. 489
6.66 TOOIS. 8A
6.67 ABA_SORTER ItemType, KeyType> Class Template Reference 490
6.67.1 Detailed DesCription e 491
6.67.2 Constructor & Destructor Documentation 491
6.67.3 Member Function Documentatian. 491
6.67.4 Member Data Documentation. 494
6.68 ABA_TIMER Class Reference 494
6.68.1 Detailed DesSCription 496
6.68.2 Constructor & Destructor Documentation 496
6.68.3 Member Function Documentatian. 496
6.68.4 Friends And Related Function Documentation. 498
6.68.5 Member Data Documentation. 498
6.69 ABA CPUTIMER ClassReference 499
6.69.1 Detailed Description e 500
6.69.2 Constructor & Destructor Documentation 500
6.69.3 Member Function Documentatian. 501
6.69.4 Member Data Documentation. 501
6.70 ABA COWTIMER Class Reference. i i it 501
6.70.1 Detailed DesCription e 502
6.70.2 Constructor & Destructor Documentation 502
6.70.3 Member Function Documentatian. 503
6.70.4 Member Data Documentation. 503
6.71 ABA OSTREAM ClassReference. i 503
6.71.1 Detailed Description 505
6.71.2 Constructor & Destructor Documentation 505

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

CONTENTS XVil

6.71.3 Member Function Documentatian. 506
6.71.4 Friends And Related Function Documentation. 509
6.71.5 Member Data Documentation. 510
6.72 PreprocessorFlags e 511
7 Warranty and Copyright 513
7.1 Warranty. e e 513
7.2 Copyright 513

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

Xviii CONTENTS

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

Chapter 1

Preface

Preface to Release 3.0

Major enhancements IABACUS 3.0 include the new solver interface to Osi, the ability ttved_Ps with the
Volume Algorithm and support for state-of-the-art GNU colens. The documentation system has been changed
from cweb to doxygen and the build process has been simplii8ACUS 3.0 is released under the Gnu Lesser
General Public License (LGPL). See sect®mfor details.

We thank the members of Michael Jinger’s group for many détimg discussions and valuable insights that
helped improve the current release. Special thanks go tstGph Buchheim, Frauke Liers, Thomas Lange (all
University of Cologne) and Markus Chimani (University of iaund).

Kdln, August 2007 Frank BaumannMark SprengeandAndrea Wagner

Preface to Release 2.3

ABACUS 2.3 is the first commercial release ABACUS distributed by the newly founded company Oreas
GmbH. The changes made involve mainly some bug fixes and aiocemsing mechanism, which allows to dis-
tribute also 30-days evaluation licenses.

Kdln, December 1999 Matthias ElfandCarsten Gutwenger
Oreas GmbH

Preface to Release 2.2

ABACUS is a software system for the implementation of linear-paogming based branch-and-bound algo-
rithms, i.e., branch-and-cut algorithms, branch-andepdlgorithms, and their combination. It applies the con-
cepts of object oriented programming (programming languag+). An implementation of a problem specific
algorithm is obtained by deriving some classes from abisii@se classes @BACUS in order to embed problem
specific functions.

2 Preface

Based on our earlier work on non-object oriented branchendrameworks, Stefan Thienel developa@A-
CUS 1.0 in his PhD thesis that was defended in December 1995e Samtuary 1996 he developed the public re-
leasesABACUS 1.2 to 2.1 with the partial support of ESPRIT LTR Project n@224 (ALCOM-IT) and H.C.M.
Institutional Grant no. ERBCHBGCT940710 (DONET). Stefdméenel laid the foundations cABACUS with
great dedication and enthusiasm. We regret that he deaidedve the Universitat zu KéIn in spring 1998. Very
much to our satisfaction, Max Béhm and Thomas Christof imiatety took over the responsibility foABA-
CUS. We are very glad thaABACUS is again in competent hands and future development and emainte is
guaranteed.

Kdln, August 1998 Michael Junger
Heidelberg, August 1998 Gerhard Reinelt

ABACUS 2.1 was left ready for release in February 1998 byastathienel. After Stefan Thienel left university
and we took over the responsibility fé&édBACUS, we decided not to release ABACUS 2.1, but to add some new
features to the software. The major enhancements of thétingsuersion 2.2 are the interface to the LP solver
Xpress and the compilation &BACUS with different native compilers. In addition, we introducsome new
functions for easier parameter handling and improved th#&HVersion of the Reference Manual. A complete
presentation of all modifications can be found in Sec8dh

We are very grateful to Stefan Thienel for his efforts inwmhin the development, documentation and support of
ABACUS, and wish him the very best for his future. For the user&BIACUS, we hope that this transition in
responsibility will be almost invisible to them.

Kdln, August 1998 Max Béhm
Athens, GA, August 1998 Thomas Christof

Preface to Release 2.1

The main purpose of version 2.1 AlBACUS is the provision of some bug fixes. However, there are alsava fe
new features that are explained in Sectioh

Koln, February 1998 Stefan Thienel

Preface to Release 2.0

During its first year of public availabilitABACUS reached a rather active community of users, which is growing
slowly but constantly. Many of them contributed to makin@ ACUS more reliable. | want to thank all of them
for their helpful feedback. In particular, | want to mentibtax Bohm, who pointed me to several improvement
possibilities.

But not only the users worked witABACUS, also its development continued such that it is now readyafor
second releas@BACUS 2.0 offers besides many minor extensions four major nevufeat

« the interface to the new LP-solver SoPlex

« the support of the Visual €+ compiler

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

¢ ageneralized strong branching method

* increased safety against name collisions

In particular, | am very happy that the abstract LP-intezfacoved its usefulness during the integration of the
LP-solver SoPlex. Since the adaption of the framework toVilseal C++ compiler could be performed, | am
optimistic that also other compilers can be supported irfuhee.

Users who want to upgrade from version 1.2.x find the new featand the differences to previous versions in
Section3.

Koln, August 1997 Stefan Thienel

Preface to Release 1.2

While the Chapters 1 to 4 of this manual are a user’s guide i@sgrthe installation, design, and application
of ABACUS the last chapter contains the reference manual. Ch2meplains howABACUS is installed on
your computer system and what hardware and software em@ohis required. In order to simplify the user
understandingtABACUS | describe in Chapted the design of the software framework. While | recommend
to study in any case the basic concepts outlined in Sedtibivefore beginning with the implementation of an
application, it should be sufficient to return to Sectib8 only for rather advanced usage. Also Chafiés split
into two sections. The first one, Sectibril, explains the first steps that have to be performed to imphrae
application. This section should be studied together viighexample included in thaBACUS distribution. The
second one, Chaptér2, shows how default strategiesABACUS can be modified and outlines some additional
features of the system. The reference manual of Ch&ggecomplemented by the index that simplifies finding a
certain class or one of its members.

This manual is both available in Postscript and HTML formgihe HTML form turns out to be quite useful for
finding members of the reference manual.

This user’s guide is not intended to teach the concepts e&fiprogramming based branch-and-bound, but | as-
sume that the reader of this manual and the us&®ACUS is familiar with these algorithms. For an introduction
to branch-and-cut | refer ta RT93, for an introduction to branch-and-price algorithms losunend to BJN*97].

Both approaches are describedTim[25].

Moreover, | also assume that the used ACUS is familiar with the concepts of object oriented programgnin
For the reader who is unexperienced in object oriented progring | refer to KM 90] for a good brief introduction
and to Boo94 for a detailed description. There are many books about thgramming language -€+. The
classical introduction isgir93. Very useful reference manuals are597] and the current working paper of the
C++ standardization committeé 5 C94.

ABACUS originates from the dissertation of its authGh[95] and has since then been tested, slightly modi-
fied and improved. Here, | would like to thank all initial tesg, in particular Thomas Christof, Meinrad Funke,
and Francois Margot for their bug reports and helpful comsieham very grateful to Joachim Kupke for care-

fully proofreading an earlier version. | also want to than&nis Naddef, LMC-IMAG, Grenoble, France, for his

hospitality while writing the major part of this manual.

Despite these successful tests | consil&ACUS still as an experimental system. Therefore, feedback of the
users is appreciated. Some parts of the user’s guide weptealdiom [hi95], while the reference manual has
been compiled for the first time. Therefore, | also encouthgeeader to send me error reports and improvement
suggestions for the user’s guide and the reference manual.

| am aware that neither the software nor its documentatigrerfect, but | think it is time to dare a first public
release.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

4 Preface

Grenoble, August 1996 Stefan Thienel

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

Chapter 2

Installation

2.1 Obtaining ABACUS

ABACUS can be obtained from
http://ww. i nformati k. uni - koel n. de/ abacus/ .

Please note thadABACUS requires a working installation of the Open Solver Integfd©si) provided by The
Computational Infrastructure for Operations ResearchIfCOR) project. Please see Sectidr8 for details. If
you have any questions abodABACUS please send a mail to

abacus@ nf or mat i k. uni - koel n. de .

2.2 Platforms

ABACUS is currently available fot i nux. If you are interested in a version for another platform péeeontact
us directly.

2.3 Building aBacus

ABACUS can be compiled with theNU- C++ compilersg++ 3.3.5 - 4. 1. 2.

ABACUS provides a general interface to linear programming solvEne current release supports the LP-solvers
supported by COIN Osi version 0.96. Not all of them might befulkin combination withABACUS though.
Before compiling ABACUS 3.0 make sure that COIN Osi is inst@dl For more information on the installation of
COIN Osi see Sebt t ps:// proj ects. coi n-or.org/ Gsi for details.

Set the paths at the top of the Makefile to the include dirgztaf COIN Osi and the LP solvers installed on your
system.

Settings for different compilers are stored in the diregctdake-settings. Which settings file is used is determined
by the variable ABACUS_MAKE_SETTINGS. To compile ABACUStig++-4.1, for example, do:

make abacus ABACUS MAKE_SETTINGS=linux20-gcc41

To install abacus to a specific location instead of the bageidiry set the variables ABACUS_INSTALL_LIBDIR
and ABACUS_INSTALL_HEADERDIR in the Makefile and run, foraxple:

6 Installation

make install ABACUS_MAKE_SETTINGS=linux20-gcc41l
For information on how to produce the documentation, please

make

2.4 Compiling and Linking

For compiling your files using\BACUS add theabacus/ i ncl ude directory either to your include directory
path or specify it explicitly with the | compiler option. Furthermore, add the include file pathdefltP-solvers
you want to use. The flag for the4G+ compiler can be defined at compilation time using tf@switch of the
compiler (e.g.; DABACUS_COWPI LER_GCCA1) or specified in thdvakef i | e. See table2.1for valid settings.
It might be helpful to consult theakef i | e of the example included in theBACUS distribution.

compiler preprocessor flags

Linux g++ 4.1 ABACUS_COWPI LER_GCCA1 or ABACUS_COWPI LER_GCC
Linux g++ 3.4 ABACUS COWPI LER GCC34

Linux g++ 3.3 ABACUS_COMWPI LER_GCC33

SUN C++ 4.2 ABACUS COWPI LER SUN

Table 2.1: compilers

2.5 Environment Variables

The environment variablABACUS DI R has to be set to the directory containing the general corafiigur file
. abacus. A master version of this configuration file is provided in theese directory of th&ABACUS dis-
tribution. It is recommended that every user makes a privapy of the file. abacus and setsABACUS DI R
accordingly.

To set the environment variable tcdvorre/ your hone, for example, using the C-shell or its relatives, do:
set env ABACUS DI R / hone/ your hone

If the Bourne-shell is used do:

export ABACUS DI R=/ hone/ your hone

Usually it is convenient to add these instructions to thesqeal. | ogi n file.

2.6 Contact

Feedback from the users is highly appreciated. Pleasetrgpar experiences and make your suggestions. Also
comments on this user manual are appreciated. Report allgmns and suggestions by e-mail to:

abacus@ nf or mat i k. uni - koel n. de

Before reporting a bug, please make sure that it does not dmmean incorrect usage of the programming
language G-+.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

2.7 Mailing List 7

2.7 Mailing List
There is a mailing list available fokBACUS. To subscribe to this service, please register at

https://1ists.uni-koeln.de/mailman/listinfo/abacus-forum.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

Installation

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

Chapter 3

New Features

This section summarizes all new features that have beerdinted successively.

3.1 New Features of ABACUS 3.0

3.1.1 Open Solver Interface

ABACUS now supports the Qpen Sol ver Interface (Osi) developed by theCO N OR
(COmputational INfrastructure for Operations Research) project. All interface classes
(ICPLEXIF|, |SOPLEXIF|, |[XPRESSIF|) have been replacethbysingle new class |OSIIF|. This change has
the advantage that every solver supported by Osi can be assalvie LP relaxations. For the user only small
modifications (if any) to existing code should be necessHng setting of parameters for specific solvers now has
to be implemented by the user in the problem specific derilassaising Osi functions. For this we provide a new
virtual function |ABA_MASTER::setSolverParametersiigttcan be redefined by the user.

3.1.2 Compilers

New supported compilers are tBNU- C++ compilersg++ 3.3 - 4. 1. Support for some older compilers
has been dropped.

3.1.3 Library creation by the user

As there is now a single interface to all supported solvélssaly creation is greatly simplified. Callingake
andmake install after adapting th&akefi | e compiles the library i babacus- osi . a and installs the
header files to the specified location.

3.1.4 Documentation System

The reference manual is now extracted directly from ¢he source files using thdoxygen documentation
system.cweave andct angl e are no longer needed to compile the library.

10 New Features

3.1.5 Approximate solver

ABACUS now can use approximate instead of exact methods for solMhgelaxations. Currently, only the
Volume Algorithm is supported, as it is the only approximatethod provided by Osi. The new parameter
|SolveApprox| and the virtual function |JABA_MASTER::seApprox()| are provided to switch between exact
and approximate solvers. See SectioB.1] the reference manual and the example included iIPABACUS
distribution for details.

3.1.6 Memory management

The allocation and management of memory for the internabsgmtation of the LP is completely handled by Osi.
The correspondind BACUS functions are kept only for compatibility reasons.

3.1.7 Preprocessor Flags and Include Paths

A lot of preprocessor flags are no longer used. EspeciallftabeBACUS OLD | NCLUDE introduced in version
2.0 is obsolete. To include the array header file, for exantjue

#i ncl ude "abacus/array. h"

3.2 New Features of ABACUS 2.3

3.2.1 \Version macro

The include fileabacusr oot . h contains now a definBACUS_VERSI ON with the version number of the
ABACUS release. Itis settd30 in this release.

3.2.2 New classes for separation

New classes |ABA_LPSOLUTION] for storing an LP solution $dBA SEPARATOR| for implementing a sepa-
ration procedure facilitate encapsulation of the code.@dwer, the class |ABA_SEPARATOR| provides functions
for checking for duplication of generated constraintsalales.

3.2.3 Rank for constraints/variables

A new virtual function |ABA_CONVAR::rank()| allows to assate a rank with a constraint/variable. This

rank can be used for ranking the constraints/variables énftimctions |[ABA_STANDARDPOOL::separate()|,
|[ABA_SUB::constraintPoolSeparation| and |ABA_SUB:iablePoolSeparation()|.

3.3 New Features of ABACUS 2.2

Version 2.2 includes a new interface to the Lp-Solver Xpasss Cplex 6.0 and it provides enhaced functionality
for parameter handling. Moreover, the library is now avdédor different native compilers. It can be configured
for any combination of supported LP-Solvers by the useBACUS now intensively uses inline functions to
improve performance.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

3.3 New Features of ABACUS 2.2 11

3.3.1 Lp-Solver Xpress
In addition to the LP-Solvers Cplex and Soplex ABACUS novogisovides an interface to the LP-Solver Xpress-
MP Version 10. The Xpress librariés bxosl . a andl i bnp- opt . a have both to be linked.

Xpress-MP is a commercial product by Dash Associates. Yod further information about Xpress at
http://ww. dash. co. uk/.

3.3.2 Lp-Solver Cplex

Cplex 6.0 is now supported.

In addition, a new paramet@pl exHol dEnvi r onnent is introduced. If this parameter is true, then the Cplex
environment is held open during the branch-and-cut opttion. This reserves a Cplex license for the complete
time of optimization.

3.3.3 Lp-Methods

The solution method for linear programsLP::Barrier is replaced by the methods
LP: : Barri er AndCr ossover andLP: : Barri er NoCr ossover.

3.3.4 New Compilers

New supported compilers are tlgNU C++ conpil er gcc 2.8 and theSun Wbr kShop Conpi | er
C++ 4. 2. We now provide 32 and 64 bit versions of tA&ACUS library compiled with theSG M PSpr o
7.2 C++ conpiler.

3.3.5 Library Architectures

The ABACUS library is provided for different combinations dfar dwar e, operati ng systens and
conpi | ers. These combinations are identified by «ar ch> name. Some architectures are shown in table
3.1

3.3.6 Library Creation by the User

The library archive fileabacus- <ver si on>- <ar ch>. t ar. gz contains the basi@aBACUS library and
libraries for each supportdcht er f ace to an LP-Solver. Currently supported Interfaces are showtable3.2

You can creaté& BACUS libraries for any combination of supported LP-Solvers byngelf. Downloaded and un-
pack the library ditribution archive with the right <arch»the installation root directiry (e.g. /usr/local/abacus
directoryabacus- <ver si on/ | i b/ <ar ch>/ st uf f is created which contains all required files to build spe-
cific ABACUS libraries. Then create LP-Solver specific ABACUS libraftigsusing the commandake- | i b

in the directoryl i b/ <ar ch> for any desired combination of different LP-solvers.

For example if you want to havé BACUS libraries for Solaris compiled with gcc 2.8 download the file
abacus- 2. 2-sol ari s-gcc28.tar. gz.

gunzi p abacus-2.2-sol aris-gcc28.tar. gz
tar xvf abacus-2.2-sol aris-gcc28.tar

To create libraries with interfaces for Cplex 6.0, Soplegreés and all three together type

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

12 New Features

Hardware Operating System Compiler <arch>
SUN SPARC SUN-0S 4.1.3 GNU C++ Compiler 2.8.1 sunos-gcc28
SUN SPARC SUN-OS 5.6 GNU C++ Compiler 2.8.1 solaris-gcc28
SUN SPARC SUN-OS 5.6 GNU C++ Compiler 2.7.2 solaris-gcc27
SUN SPARC SUN-OS 5.6 SUN WorkShop Compiler C++ 4.2 solaris-CC
IBM RS6000 AIX 4.1.5 GNU C++ Compiler 2.8.1 aix4-gcc28
IBM RS6000 AIX 4.1.5 GNU C++ Compiler 2.7.2 aix4-gcc27
DEC ALPHA OSF 3.2 GNU C++ Compiler 2.8.1 osf-gcc28
DEC ALPHA OSF 3.2 GNU C++ Compiler 2.7.2 osf-gcc27
SILICON GRAPHICS| Irix 6.2 GNU C++ Compiler 2.7.2 irx6-gcc27
SILICON GRAPHICS| Irix 6.2 MIPSpro 7.2 C++ compiler 32 Bit, irix6-CCn32
mips4
SILICON GRAPHICS | Irix 6.2 MIPSpro 7.2 C++ compiler 64 Bit| irix6-CC64
mips4
HP 9000 HP-UX 10.20 GNU C++ Compiler 2.8.1 hpux10-gcc28
PC Linux 2.0.27 GNU C++ Compiler 2.8.1 linux20-gcc28
PC Linux 2.0.27 GNU C++ Compiler 2.7.2 linux20-gcc27
PC Windows NT MS Visual C++ 5.0 winnt

Table 3.1: Architecture names.

Interface name LP-Solver
cplex22 Cplex 2.2
cplex30 Cplex 3.0
cplex40 Cplex 4.0
cplex50 Cplex 5.0
cplex60 Cplex 6.0
soplex Soplex 1.0
Xpress Xpress-MP 10

Table 3.2: Interface names.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

3.3 New Features of ABACUS 2.2 13

cd abacus-2.2/1ib/solaris-gcc28
make-1ib cpl ex60

make-1ib sopl ex

make-1ib xpress

make-1ib cpl ex60-sopl ex- xpress

Themake-1i b <interfaces>command creates the file
abacus-<version>/1ib/sol aris-gcc28/1i babacus-<interfaces>. a,

where<i nt er f aces> is an interface string or a combination of interface stringscatenated by the character

3.3.7 New or Changed Preprocessor Flags

A list of preprocessor flags with new or changed meaning \igdlo

Preprocessor Flag Meaning

ABACUS_COMPILER_GCC28 GNU C++ compiler 2.8
ABACUS_COMPILER_GCC27 GNU C++ compiler 2.7

ABACUS_COMPILER_GCC defaults to ABACUS_COMPILER_GCC28
ABACUS_COMPILER_SUN SUN WorkShop C++ Compiler 4.2
ABACUS_EXPLICIT_TEMPLATES | no longer needed

ABACUS CPP_MATH no longer needed

ABACUS_SYS_XXXXXX no longer needed

ABACUS LP_SOPLEX no longer needed

ABACUS LP_CPLEXxx needed only if Ipmastercplex.h or cplexif.h is included.

See the updated Makefile of the TSP examplahiacus- 2. 2/ exanpl e/ Makef i | e for a description of the
valid compiler and linker flags. This file also explains howind an application with more than one LP solver.

3.3.8 Templates
Itis no longer needed to include template definition fileg¢). These files are now automatically included by the
coresponding header files (*.h).

If you are using gcc 2.8 no special flags for template indfatianeed to be defined. If you are using gcc 2.7
we recommended to define the compilerflaigno-i npli cit-tenpl at es and to manually instantiate the
templates which are needed, but not contained in the ABAGh#Srly as described in secti@n3.

3.3.9 New LP Master Classes

There is a new abstract classABA LPMASTER and subclasses ABA LPMASTERCPLEX,
ABA_LPNMASTERSCOPLEX and ABA_LPMASTERXPRESS. These classes handle LP solver specific parame-
ters and global data. As a consequence some LP solver sganiftions which were located in ABA_MASTER
are now located in one of these classes. If you are using sfugiicéion you have to change your code as shown
in the example below:

mast er - >cpl exQut put Level (| evel);
should be changed to

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

14 New Features

ABA LPNVASTERCPLEX *cpl exMast er = naster->l pMaster Cpl ex();
| pMast er Cpl ex- >cpl exQut put Level (1l evel);

or simply
mast er - >l pMast er Cpl ex() - >cpl exQut put Level (| evel);

The corresponding header files aabacus/ | pmast er cpl ex. h, abacus/ | pnast er sopl ex. h, and
abacus/ | prmast er xpr ess. h.

3.3.10 HTML Documentation

In the HTML version of the Reference Manual (Secti®n we added links in the declaration part of the class
which point to other classes and to the descriptions of thesanembers.

3.3.11 Parameter Handling

The system parameter table and the functions for handlingnpeters moved from clagsBA MASTER to its
base claseéBA GLOBAL. Now, it is possible to use the parameter concepa BIACUS even without generating
an object ofABA_MASTER. (This might be useful when writing some experimental codimg the Tools and
Templates 0ABACUS, but not writting an complete branch-and-cut-applicajion

In addition to the overloaded functior&BA GLOBAL: : get Paraneter (), we now provide the over-
loaded functionsABA_ _GLOBAL: : assi gnPar anet er () and ABA_GLOBAL: : fi ndPar anet er () with
enhanched functionality. The new functions test for thestexice of a parameter in the table, compare the cur-
rent setting with feasible settings and allow for termioatof the program if a required paramter is not found, or
if it is found but if its setting is not feasible.

Moreover, a branch-and-cut-optimization can be startedout reading the parameter filabacus.

See section.2.28for further details on using parameters.

3.3.12 Name changings
This version contains some changings of names that seemmsohable to us. Most changings were guided by the
principle that we want to have the feasible values of M@ACUS parameters coinciding with the enumerators

of the corresponding enumeration type. (As all enumeratoose class have to be different, an exception to that
rule is the parameter validone which is feasible for different paramaters.)

In addition, we changed in general3oPl ex the uppelP to a lower one.

Table 3.3 summarizes the changings. We provide Perl scripts for paifg the changings on yolkBACUS
application. For a parameter file, use

upd- paraneter-2.2 <paranmeter-fil e>
and apply

upd- sources-2.2 <code-fil se>

to your C++ code files.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

3.4 New Features of ABACUS 2.1 15

Location Old New
ParameteEnuner at i onStr at egy Best Best Fi r st
ParameteEnuner at i onStr at egy Dept h Dept hFi r st
ParameteEnumner at i onSt r at egy Breadt h Br eadt hFi r st
ABA NMASTER: : PRI MAL BOUNDMODE Opt i mal Pri mal Bound Opt i mum
ABA_NMASTER: : PRI MALBOUNDMODE || Opt i mal OnePri mal Bound Opt i mumOne

ABA_NASTER: : VBCMODE None NoVbcLog
various SoPI ex Sopl ex
ABA_LP: : METHOD Barrier Barri er AndCr ossover

Table 3.3: Name changings.

3.4 New Features of ABACUS 2.1

In version 2.1 we added a few new features, fixed some bugsirardved the performance of some functions.

3.4.1 Elimination of Constraints and Variables

So far a constraint or variable was eliminated from the seictif’e items as soon as the criterion for elimination
hold. Now the number of iterations the criterion must holdiltthe elimination is performed can be specified in
the configuration file abacus (see Sectiob.2.2§.

3.4.2 Cplex5.0

Cplex 5.0 is now supported yBACUS.

3.4.3 Templates

In addition to the explicit instantiation of templatesSBACUS now also supports the implicit instantiation (see
Section5.3).

3.4.4 Bug Fixes
3.4.4.1 Constraint and Variable Selection

The selection of constraints and variables with highest feom the buffers of generated constraints and variables
is now performed correctly again.

3.4.4.2 Variable Generation

We have tested the dymanic variable generatioABRACUS more intensively and could fix some so far unknown
bugs.

3.5 New Features of ABACUS 2.0

This section summarizes all new features that have beasdinted since the release ABACUS 1.2.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

16 New Features

3.5.1 LP-Solver Soplex

Besides CpleXABACUS provides now an interface to the LP-Solver Sopléxi[197.

If Soplex is used as LP-solver, it might be required to switcthe new include file structure (see Sect®B.3 in
order to avoid name conflicts. Both Soplex aRBACUS provide include files with the nantg mer . h.

3.5.2 Naming Conventions

The previous version did not use any prefix for all globallgilvie names in order to avoid name collisions with
other libraries since the €+ concept of namespaces should make this technique redundafortunately, it
turned out that the GNU €+ compiler does still not support namespaces. ThetGFAQ mentions that even in
the next release 2.8 this concept might not be supported.

In order to provide the possibility of avoiding name cobiiss without namespaces, we added to all globally visible
names the prefiABA . There are two possibilities for reusing your old codes tiogiewith the new name concept.

The first method is to include the filel dnames. h into every file usingABACUS names without the prefix
ABA . In the compilation the preprocessor flRBACUS _OLD_NANMES must be set. With preprocessor definitions
the old names are converted to new names. You should be amatréhis technique can have dangerous side
effects. Therefore, this procedure shontit be applied if you combin BACUS with any other library in your
application.

The second method is the better method and is not much moketham the first one. In theool s subdirectory
of the ABACUS distribution you can find the Perl scrippd- nanes- 2. 0. If you apply this script to all source
files of yourABACUS application by calling

upd-nanmes-2.0 <fil es>

a copy of each file given inf i | es>is made in the subdirectonew- f i | es and the old nhames are replaced by
the new names.

3.5.3 Include File Path

Another problem are header files of different libraries wite same name. It can happen that due to the inclusion
structure it is not possible to avoid these conflicts by tteepof the include file search paths. Therefore, every
ABACUS include file ¢. h and*. i nc) is included now from the subdirectoapacus. You can continue using
the old include file structure by setting the preprocessgrABACUS _OLD | NCLUDE. Here is an example how
an ABACUS file includes otheABACUS files:

#i f def ABACUS _OLD | NCLUDE
#i ncl ude "array. h"

#el se

#i ncl ude "abacus/array. h"
#endi f

We strongly recommend the use of the new include file strectlm combination with the LP-solver Soplex the
new include file structure is sometimes required (it depevidsh ABACUS and which Soplex files you include).
There may be name conflicts since both systems havetsifiter . h.

Due to this concept also the directory structure of #8ACUS distribution has changed. All include files are
now in the subdirectoriyncl ude/ abacus.

A conversion can be performed with the help of the Perl s¢rgquil s/ upd- i ncl udes- 2. 0. Calling

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

3.5 New Features of ABACUS 2.0 17

upd-includes-2.0 <fil es>

makes a copy of akf i | es> into the subdirectorpew- i ncl udes and adapts them to the new include structure,
e.g.,

#i ncl ude "nmmster. h"
is replaced by
#i ncl ude "abacus/ master. h"

in the new files.

3.5.4 Advanced Control of the Tailing Off Effect
ABACUS automatically controls the tailing off effect according tobe parameterstai | O f NLps and

Tai | O f Per cent of the configuration file abacus. Solutions of LP-relaxations can be skipped in this control
by calling the functioni gnor el nTai | i ngOf f () (see Sectio®.2.25.

3.5.5 Problem Specific Fathoming

Problem specific fathoming criteria can be added by the neitiefi of the virtual functionABA_SUB: : excep-
ti onFat hon() (see Sectio®.2.23.

3.5.6 Problem Specific Branching

A problem specific branching step can be enforced by the ratlefi of the virtual functionABA SUB: : ex-
ceptionBranch() (see Sectio®.2.29.

3.5.7 Generalized Strong Branching

Generalized strong branching is the possibility of evéhgatlifferent branching rules and selecting the best ones.
If branching on variables is performed, e.g., the first Im@@grams of the (potential) sons for various branching
variables are solved, in order to find the most promisingadei. Together with the built-in branching strategies
this feature can be controlled with the new enigr anchi ngVar i abl eCandi dat es of the configuration
file (Section5.2.26. Moreover, also other branching strategies can be el explained in Sectidn2.8

3.5.8 Pool without Constraint Duplication
One problem in usindABACUS can be the large number of generated constraints and \esittidt use a lot of

memory. In order to reduce the memory usage we provide a nelctassABA NONDUPL POCL that avoids the
multiple storage of the same constraint or variable in tmeespool. The details are explained in Sectio®.2

3.5.9 Visual C++ Compiler

In addition to the GNU G-+ compiler on UNIX operating system8BACUS is now also available on Windows
NT in combination with the Visual &+ compiler. Further details for usingBACUS in this new environment
can be found in Sectio®

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

18 New Features

3.5.10 Compiler Preprocessor Flag

In the compilation of alABACUS-application the used compiler must be specified by a pregsor flag (see
Section2.1).

3.5.11 LP-Solver Preprocessor Flag

The LP-solvers that are used have to be specified by a pregzarciag (see Sectich3). Also the flags for the
LP-solver Cplex changed.

3.5.12 Parameters of Configuration File

Three new parameters have been added to the configuratiorablecus.

3.5.12.1 NBranchingVariableCandidates

The parameteNBr anchi ngVar i abl eCandi dat es can be used to control the number of tested branching
variables if our extended strong branching concept is usee $ectio®.2.9.

3.5.12.2 DefaultLpSolver

An other new parameter Ref aul t LpSol ver allows to choose eithéZpl ex or Sopl ex as default LP-solver
for the solution of the LP-relaxations.

3.5.12.3 SoPlexRepresentation
Soplex works internally either with column or a row basis.isTbasis representation can be selected with the

parameteBoPl exRepr esent at i on. Our tests show that only the row basis works stable in SdplgxFurther
details are explained in Secti@n2.26

3.5.13 New Functions

We implemented several new functions. Some of them mightdmeiateresting for the users &BACUS. For
the detailed documentation we refer to the reference manual

ABA BPRI OQUEUE: : get M nKey()

ABA BHEAP: : get M nKey/()

bool ABA GLOBAL::i sl nteger(doubl e x)

¢ |n addition to the function

voi d MASTER :initializePool s(ABA BUFFER<ABA CONSTRAI NT*> &constraints,
ABA BUFFER<ABA VARI ABLE*> &Vari abl es,
i nt varPool Si ze,
i nt cut Pool Si ze,
bool dynam cCut Pool = false);

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

3.5 New Features of ABACUS 2.0 19

the function

void MASTER: :initializePool s(ABA_BUFFER<ABA CONSTRAI NT*> &constraints,
ABA BUFFER<ABA CONSTRAI NT*> &cuts,
ABA BUFFER<ABA VARI ABLE*> &Vari abl es,
i nt varPool Si ze,
i nt cutPool Si ze,
bool dynani cCut Pool = fal se);

also allows the insertion of some initial cuts into the cublpo

* Manipulators for setting the width and the precisiol’ABA OSTREAMhave been added that work like the
corresponding manipulators of the classt r eam

ABA_OSTREAM NANI P_I NT setWdth(int w);
ABA_OSTREAM NMANI P_I NT set Preci sion(int p);

ABA OSTREAM : set For mat Fl ag(fntfl ags)

« The objective function sense can be changed in the ABA_&Bsels with the function

voi d ABA LP::sense(const ABA OPTSENSE &newSense).

« The != operator is now available for the cla&BA STRI NG,

3.5.14 Miscellaneous

Besides some bug fixes we made many minor improvements. Theimmgortant ones are listed here.

« The output for the output leveBubPr obl emandLi near Pr ogr amis formatted in a nicer way.

» Besides those Cplex parameters that could be directlyated by ABACUS functions, it is now possible
to get or to modify any Cplex 4.0 and 5.0 parameter with thefions:

i nt CPLEXI F: : CPXget dbl paran(i nt whi chParam doubl e *val ue);
i nt CPLEXI F: : CPXset dbl paran{i nt whi chParam doubl e val ue);
i nt CPLEXI F:: CPXgetintparan(int whi chParam int *val ue);
int CPLEXI F:: CPXsetintparan(int whichParam int value);

« If a linear program is solved with the barrier method, thenally a cross over to an optimal basic solution
is performed. The value of a variable in the optimal solutbthe barrier method before the cross over can
be obtained with the functiodoubl e bar XVal (i nt i) . If this “pre-cross over” solution is available,
can be checked with the functi®@OLSTAT bar XVal St at us() const.

« The minimal required violation of a constraint or varialilea pool separation or pool pricing, respec-
tively, can be specified as a parameter of the functidB8_SUB: : const r ai nt Pool Separ ati on
andABA _SUB: : var i abl ePool Separ at i on. The minimal violation is also a parameter of the func-
tion ABA_PQOCL: : separ at e and of redefinitions of this function in derived classes.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

20

New Features

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

Chapter 4

Design

From a user’s point of view, who wants to implement a lineargpamming based branch-and-bound algorithm,
ABACUS provides a small system of base classes from which the apiplicspecific classes can be derived.

All problem independent parts are “invisible” for the usecls that he can concentrate on the problem specific
algorithms and data structures.

The basic ideas are pure virtual functions, virtual fune$icand virtual dummy functions. A pure virtual function
has to be implemented in a class derived by the user of theefrank, e.g., the initialization of the branch-and-
bound tree with a subproblem associated with the applicatiovirtual functions we provide default implementa-
tions, which are often useful for a big number of applicagidout can be redefined if required, e.g., the branching
strategy. Finally, under a virtual dummy function we untmsd a virtual function that does nothing in its default
implementation, but can be redefined in a derived class,tbegseparation of cutting planes. Itis not a pure virtual
function as its definition is not required for the correctetthe algorithm.

Moreover, an application based &BACUS can be refined step by step. Only the derivation of a few new
classes and the definition of some pure virtual functionedgiired to get a branch-and-bound algorithm running.
Then, this branch-and-bound algorithm can be enhancedetyytiamic generation of constraints and/or variables,
primal heuristics, or the implementation of new branchingrmumeration strategies.

Default strategies are available for numerous parts of taedh-and-bound algorithm, which can be controlled via
a parameter file. If none of the system strategies meets gogeenents of the application, the default strategy can
simply be replaced by the redefinition of a virtual functioraiderived class.

4.1 Basics

The inheritance graph of any set of classes #HCmust be a directed acyclic graph. Very often these inharéan
graphs form forests or trees. Also the inheritance graphBACUS is designed as a tree with a single exception
where we use multiple inheritance.

The following sections and Tab#1 give a survey of the different classesABACUS. The details are outlined
in Sectiond.2

Basically the classes A BACUS can be divided in three different main groups. The applicabase classes
are the most important ones for the user. From these classesseér of the framework has to derive the classes
for his applications. The pure kernel classes are usualigibie for the user. To this group belong, e.g., classes
for supporting the branch-and-bound algorithm, for theioh of linear programs, and for the management of
constraints and variables. Finally, there are the auidlar.e., classes providing basic data structures and,tool
which can optionally be used for the implementation of arliappion.

22 Design

ABACUS
Pure Kernel Application Base | Auxiliaries
Linear Program | Master Basic Data Structures
Pool Subproblem Tools
Branch & Bound| Constraints
Variables

Table 4.1: The classes i BACUS.

4.1.1 Application Base Classes

The following classes are usually involved in the derivafiwocess for the implementation of a new application.

4.1.1.1 The Master
The classABA MASTER is one of the central classes of the framework. It contradsaptimization process and

stores global data structures for the optimization. Foheesw application a class has to be derived from the class
ABA MASTER

4.1.1.2 The Subproblem

The classABA SUB represents a subproblem of the implicit enumeration, aepde of the branch-and-bound
tree. The subproblem optimization is performed by the smiudf linear programming relaxations. Usually, most
running time is spent within the member functions of thisslaAlso from the clas&BA SUB a new class has to be

derived for each new application. By redefining virtual ftioes in the derived class problem specific algorithms
as, e.g., cutting plane or column generation, can be embiedde

4.1.1.3 The Constraints and Variables
ABACUS provides some default concepts for the representation oétmaints and variables. However,
it still might be necessary that for a new application sgeclasses have to be derived from the classes

ABA_CONSTRAI NT andABA_VARI ABLE, which then implement application specific methods andagi@ifor-
mats.

4.1.2 Pure Kernel Classes

This group covers classes that are required for the impléatien of the kernel o0ABACUS but usually of no
direct importance for the user of the framework.

4.1.2.1 The Root of the Class Tree

All classes ofABACUS have the common base cla&BA ABACUSROOT.

4.1.2.2 The Linear Program

The part of the inheritance graph related to the solutionirefar programs contains several classes. There is
a general interface to the linear program from which a clasghe solution of linear programming relaxations

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

4.2 Details 23

within our branch-and-bound algorithm is derived. Botlssks are independent from the used LP-solver, which
can be plugged in via a separate class. Currently, we sughygorP-solvers supported by the Open Solver Interface
(Osi). In theory all these solvers can be used to solve theelaRations. We have testédBACUS with CPLEX,

Clp and Glpk.

4.1.2.3 The Pool
Constraints and variables are stored in pools. We provideatract base class for the representation of pools and

derive from this class a standard realization of a pool. @wher classes are required for a safe management of
active and inactive constraints and variables.

4.1.2.4 The Branch-and-Bound Auxiliary Classes

Various classes are required to support the linear-progiiammbased branch-and-bound algorithm, e.g., for the
management of the branch-and-bound tree, for the storatfealctive and inactive constraints, special buffers
for newly generated constraints and variables, for therobof the tailing off effect, and for fixing variables by

reduced costs. An important part of the inheritance graghigncontext is formed by the various branching rules,
which allow a very flexible implementation of branching stgies.

4.1.3 Auxiliaries

We use the following classes for the implementation of othasses withirPABACUS, but they might also be
useful for the implementation of new applications.

4.1.3.1 The Basic Data Structures

ABACUS is complemented by a set of basic data structures. Most of dre implemented as generic classes
(templates).

4.1.3.2 The Tools

Finally, we also provide some useful tools, e.g., for getiegaoutput, measuring time, and sorting.

4.2 Detalils

In this section we describe the different subtrees in thesdigerarchy and their classes. We give this description
not in the form of a manual by describing each member of the&sdlis is later done partially in Chapteand in
detail in the reference manual), but we try to explain théofmms, our ideas, why we designed the class hierarchy
and the single classes as we did, and discuss also somextitesn

4.2.1 The Root of the Class-Tree

It is well known that global variables, constants, or fuors can cause a lot of problems within a big software
system. This is even worse for frameworks suctA&ACUS that are used by other programmers and may be
linked together with other libraries. Here, name confliatd andesired side effects are almost inevitable. Since
global variables can also make a future parallelizationendiifficult we have avoided them completely.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

24 Design

We have embedded functions and enumerations that might bd by all other classes in the class
ABA ABACUSROOT. We use this class as a base class for all classes within atensy. Since the class
ABA ABACUSROOT contains no data members, objects of derived classes abtomot up.

Currently, ABA ABACUSROOT implements only an enumeration with the different exit déthe framework
and implements some public member functions. The most itapbone of them is the functicexi t () , which
calls the system functioexi t () . This construction turns out to be very helpful for debuggburposes.

4.2.2 The Master

In an object oriented implementation of a linear-prograngriased branch-and-bound algorithm we require one
object that controls the optimization, in particular theiereration and resource limits, and stores data that can
be accessed from any other object involved in the optimonadif a specific instance. This task is performed by
the classABA MASTER, which is not identical with the root node of the enumerati@e. For each application

of ABACUS we have to derive a class froABA MASTER implementing problem specific “global” data and
functions.

Every object, which requires access to this “global” infatian, stores a pointer to the corresponding object of
the classABA MASTER. This holds for almost all classes of the framework. For gxanthe classABA SUB,
implementing a subproblem of the branch-and-bound treg,akaa member a pointer to an object of the class
ABA MASTER (other members of the clag8A SUB are omitted):

class ABA SUB {
ABA NMASTER *master _;

} il
Then, we can access within a member function of the &#s SUB, e.g., the global upper bound by calling
mast er - >upper Bound() ;

whereupper Bound() is a member function of the clag8A MASTER.

Encapsulating this global information in a class is alsoangnt, if more than one linear-programming based
branch-and-bound is solved within one application. If thieipg problem within a branch-and-price algorithm is
again solved with the help #&BACUS, e.g., then separate master objects with different glosat dre used.

4.2.2.1 The Base Class Global

Within a specific application there are always some glob& d@aembers as the output and error streams, zero
tolerances, a big number representing “infinity”, and soumefions related with these data. For the same reasons
we discussed already in the description of the ckBA ABACUSROOT we should avoid storing these data in
global variables. It is also not reasonable to add thesetdatse classABA_ ABACUSROOT, because it would
blow up every derived class &BA ABACUSROOT and it is neither necessary nor desired to have extra output
streams, zero tolerances, etc., for every object.

Instead of implementing this data directly in the cla&\ MASTER we designed an extra clad8A GLOBAL,
from which the classABA_MASTER is derived. The reason is that there are several classesciaklyp some
basic data structures, which might be useful in programisateanot branch-and-bound algorithms. To simplify
their reuse these classes have a pointer to an object ofdheABA G_OBAL instead of one to an object of the
classABA_MASTER

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

4.2 Details 25

4.2.2.2 Branch-and-Bound Data and Functions

The clasABA_MASTER augments the data inherited from the claBs _GLOBAL with specific data members and
functions for branch-and-bound. It has objects of classesembers that store the list of subproblems which still
have to be processed in the implicit enumeration (ch8s OPENSUB), and that store the variables which might
be fixed by reduced cost criteria in later iterations (claB8._FI XCAND). Moreover, the solution history, timers
for parts of the optimization, and a lot of other statisticébrmation is stored within the clagdBA MASTER.

The classABA_MASTER also provides default implementations of pools for theagjerof constraints and vari-
ables. We explain the details in Secti2.5

A branch-and-bound framework requires also a flexible wayl&fining enumeration strategies. The correspond-
ing virtual functions are defined in the cla&BA MASTER, but for a better understanding we explain this concept
in Sectiond.2.7, when we discuss the data structure for the open subproblems

4.2.2.3 Limits on the Optimization Process

The control of limits on the optimization process, e.g.,dh@unts of CPU time and wall-clock time, and the size
of the enumeration tree are performed by members of the ABAs MASTER during the optimization process.
Also the guarantee of the solution is monitored by the chd¥s MASTER.

4.2.2.4 The Initialization of the Branch-and-Bound Tree

When the optimization is started, the root node of the braaraf+bound tree has to be initialized with an object
of the classABA _SUB. However, the claséBA SUB is an abstract class, from which a class implementing the
problem specific features of the subproblem optimizatiantbdoe derived. Therefore, the initialization of the root
node is performed by a pure virtual function returning a pmito a class derived from the cla8BA SUB. This
function has to be defined by a problem specific class deriaed the clas#\BA MASTER.

4.2.2.5 The Sense of the Optimization

For simplification often programs that can be used for mination and maximization problems use internally
only one sense of the optimization, e.g., maximization. hifiita framework this strategy is dangerous, because
if we access internal results, e.g., the reduced costs, &roapplication, we might misinterpret them. Therefore,
ABACUS also works internally with the true sense of optimizatiohealue of the best known feasible solution
is denotedprimal bound the value of a linear programming relaxation is denaded! boundif all variables
price out correctly. The functionsower Bound() andupper Bound() interpret the primal or dual bound,
respectively, depending on the sense of the optimizationeduivalent method is also used for the local bounds
of the subproblems.

4.2.2.6 Reading Parameters

Computer programs in a UNIX environment often use configomafiles for the control of certain parameters.
Usually, these parameters are stored in the home directding aiser or the directory of the program and start with
a‘’. We use a similar concept for reading the parametelaBACUS. These parameters are read from the file
. abacus.

However, asABACUS is a framework for the implementation of different algonitk, there are further require-
ments for the parameter concept. First, there should be @lesivay for reading problem specific parameters. An
extendable parameter format should relieve the user ofiogpamd reading his own parameter files. Second, a user
of our system might have several applications. It shoulddssible to specify parameters for different applications
and to redefine application dependent parameters definkd fild. abacus.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

26 Design

Therefore, we provide the following parameter concept. paltameters read from the filebacus are written
into a dictionary. Application specific parameters can bec#ed in extra parameter files following a very simple
format. For files using our parameter format we provide alyean input function. The parameters read by this
input function are also written to the parameter diction&tgnce, parameters of the filmbacus can be easily
redefined. Moreover, we also provide simple functions toaexttthe values of the parameters from the dictionary.

The parameters inabacus include limits on the resources of the optimization processtrol of various strate-
gies (e.g., the enumeration strategy, the branching giratero tolerances for various decisions, the amount of
output, parameters for the LP-solver). A detailed list agpaeters can be found in Sectibr2.26

4.2.3 The Subproblem

The classABA SUB represents a subproblem of the implicit enumeration, aepde of the branch-and-bound
tree. The class subproblem is an abstract class, from whichldem specific subproblem has to be derived. In
this derivation process problem specific functions can loedde.g., for the generation of variables or constraints.

4.2.3.1 The Root Node of the Branch-and-Bound Tree

For the root node of the optimization the constraint andalde sets can be initialized explicitly. As in many
applications the initial variable and constraint sets ar@ one-to-one correspondence with the items of the initial
variable and constraint pools, we provide this defaultafization mechanism. By default, the first linear program
is solved with the barrier method followed by a crossover basic solution, but we provide a flexible mechanism
for the selection of the LP-method (see Sectoh 1)).

4.2.3.2 The Other Nodes of the Branch-and-Bound Tree

As long as only globally valid constraints and variablesieged it would be correct to initialize the constraint and
variable system of a subproblem with the system of the pusiyoprocessed subproblem. HoweveBACUS is
designed also for locally valid constraints and variablEserefore, each subproblem inherits the final constraint
and variable system of the father node in the enumeratian tfdis system might be modified by the applied
branching rule. Moreover, this approach avoids also tedi@gomputations and makes sure that heuristically
generated constraints do not get lost.

If conventional branching strategies, like setting a binariable, changing the bounds of an integer variable, or
even adding a branching constraint are applied, then this bithe last solved linear program of the father is still
dual feasible. As we store the basis status of the variabléslack variables we can avoid phase 1 of the simplex
method if we use the dual simplex method.

If due to another branching method, e.g., for branch-amcemlgorithms, the dual feasibility of the basis is lost,
another LP-method can be used.

4.2.3.3 Branch-and-Bound

A linear-programming based branch-and-bound algorithitsisimpliest form is obtained if linear programming
relaxations in each subproblem are solved that are neititemreed by the generation of cutting planes nor by the
dynamic generation of variables. Such an algorithm requirdy two problem specific functions: one to check if
a given LP-solution is a feasible solution of the optimiaatproblem, and one for the generation of the sons.

The first function is problem specific, because, if constsairf the integer programming formulation are violated,
the condition that all discrete variables have integereslig not sufficient. Therefore, for safety this function is
declared pure virtual.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

4.2 Details 27

The second required problem specific function is usually @bne-liner, which returns the problem specific
subproblem generated by a branching rule.

Hence, the implementation of a pure branch-and-boundithgodoes not require very much effort.

4.2.3.4 The Optimization of the Subproblem

The core of the clasB8BA_SUB is its optimization by a cutting plane algorithm. As dynaatig generated vari-
ables are dual cuts we also use the notion cutting planeitdgofor a column generation algorithm. By default,
the cutting plane algorithm only solves the LP-relaxatind &ies to fix and set variables by reduced costs. Within
the cutting plane algorithm four virtual dummy functions fbe separation of constraints, for the pricing of vari-
ables, for the application of primal heuristics, and forrixivariables by logical implications are called. In a
problem specific class derived from the cl@#A SUB these virtual functions can be redefined. Motivated by
duality theory (seehi95]), we handle constraint and variable generation equitigletf both constraints and
variables are generated, then by default constraints arerged. In addition to the mandatory pricing phase be-
fore the fathoming of a subproblem, we price out the inactiwdables every iterations. The value of can

be controlled by a parameter. By the redefinition of a virfualction other strategies for the separation/pricing
decision can be implemented.

4.2.3.5 Adding Constraints

Cutting planes may not only be generated in the functiepar at e() but also in other functions of the cutting
plane phase. For the maximum cut problem, e.g., it is adgaoiss if the generation of cutting planes is also
possible in the functiom mpr ove(), in which usually primally feasible solutions are computesirristically.

If not all constraints of the integer programming formubatiare active, then it might be necessary to solve a
separation problem also for the feasibility test. Therefave allow the generation of cutting planes in every
subroutine of the cutting plane algorithm.

4.2.3.6 Adding Variables

Like for constraints, we also allow the generation of vaealuring the complete subproblem optimization.

4.2.3.7 Buffering New Constraints and Variables

New constraints and variables are not immediately addduetsubproblem, but stored in buffers and added at the
beginning of the next iteration. We present the details isf¢bncept in Sectiod.2.7.

4.2.3.8 Removing Constraints and Variables

In order to avoid corrupting the linear program and the sétctive constraints and variables, and to allow the
removal of variables and constraints in any subroutine efdiitting plane phase, we also buffer these variables
and constraints. The removal is executed before constraid variables are added at the beginning of the next
iteration of the cutting plane algorithm.

Moreover, we provide default functions for the removal ofistraints according to the value or the basis status of
the slack variables. Variables can be removed accordinigetodlue of the reduced costs. These operations can
be controlled by parameters and the corresponding virtuaitfons can be redefined if other criteria should be
applied. We try to remove constraints also before a bragcstiep is performed.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

28 Design

4.2.3.9 The Active Constraints and Variables

In order to allow a flexible combination of constraint andiahte generation, every subproblem has its own set of
active constraints and variables, which are representételyyeneric clastBA_ACTI VE. By default, the variables
and the constraints of the last solved linear program of alteef of the subproblem are inherited. Therefore, the
local constraint and variable sets speed up the optimizafithe disadvantage of these local copies is that more
memory is allocated per subproblem. However, this localagte of the active constraints and variables will
simplify a future parallelization of the framework.

Together with the active constraints and variables we atse 1 every subproblem the LP-statuses of the variables
and slack variables, the upper and lower bounds of the Jasahnd if a variable is fixed or set.

4.2.3.10 The Linear Program

As for active constraints and variables also every subprbiias its own linear program, which is only set up for
an active subproblem. Of course, the initialization at thgibning and the deletion of the linear program at the
end of the subproblem optimization costs some running tiomepared to a global linear program, which could be
stored in the master. However, a local linear program inyesebproblem will again simplify the implementation
of a parallel version oABACUS. Our current computational experience shows that thisheat is not too big.
However, if in future computational experiments it turns that these local linear programs slow down the overall
running time significantly, the implementation of a spesiatjuential version of the code with one global linear
program will not be too difficult, whereas the opposite dil@twould be harder to realize.

4.2.3.11 The LP-Method

Currently, three different methods are available in stdtthe-art LP-solvers: the primal simplex method, the dual
simplex method, and the barrier method in combination witissing over techniques for the determination of an
optimal basic solution. The choice of the method can be és$éor the performance of solution of the linear
program. If a primal feasible basis is available, the prisiaiplex method is often the right choice. If a dual
feasible basis is available, the dual simplex method isllyspeeferred. And finally, if no basis is known, or the
linear programs are very large, often the barrier methoelslyithe best running times.

Currently the Open Solver Interface used ABACUS does not support the barrier method. Nevertheless a
barri er method is provided for compatibility to older versions ®BACUSThis method outputs a warning
message and calls the primal simplex method. By defauleatiprogram is solved by the primal simplex method,
and by the dual simplex method, if constraints have beendyduderariables have been removed, or it is the first
linear program of a subproblem.

However, it should be possible to add problem specific deeisiiteria. Here, again a virtual function gives us
all flexibility. We keep control when this function is invattenamely at the point when all decisions concerning
addition and removal of constraints and variables have laen. The function has as arguments the correct
numbers of added and removed constraints and variables.Wamt to choose the LP-method problem specifically,
then we only have to redefine this function in a class derivechfthe clasé\BA SUB.

4.2.3.12 Generation of Non-Liftable Constraints

If constraint and variable generation are combined, therattive constraints must be lifted if a variable is added,
i.e., the column of the new variable must be computed. Tftiadi can not always be done in a straightforward
way, it can even require the solution of another optimizapooblem. Moreover, lifting is not only required when
a variable is added, but this problem has to be attackeddyiaring the solution of the pricing problem.

In order to allow the usage of constraints that cannot bedifir for which the lifting cannot be performed ef-
ficiently, we provide a management of non-liftable consitiai Each constraint has a flag if it is liftable. If the

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

4.2 Details 29

pricing routine is called and non-liftable constraints active, then all non-liftable constraints are removed, the
linear programming relaxation is solved again, and we comtiwith the cutting plane algorithm before we come
back to the pricing phase. In order to avoid an infinite rejoetiof this process we forbid the further generation of
non-liftable constraints during the rest of the optimiaatof this subproblem.

4.2.3.13 Reoptimization

If the root of the remaining branch-and-bound tree chanigaisthe new root has been processed earlier, then it
can be advantageous to optimize the corresponding sulgonoégjain, in order to get improved conditions for
fixing variables by reduced costs. Therefore, we providegbgtimization of a subproblem. The difference to the
ordinary optimization is that no branching is finally perfad even if the subproblem is not fathomed. If it turns
out during the reoptimization that the subproblem is fatadnthen we can fathom all subproblems contained in
the subtree rooted at this subproblem.

4.2.3.14 Branching

Virtual functions for the flexible definition of branchingrategies are implemented in the cla&BA SUB. We
explain them together with the concept of branching ruleSdntion4.2.7.

If constraints are generated heuristically, then the coihoé delayed branching can be advantageous. Instead
of generating the sons of a subproblem in a branching stepsibproblem is put back into the set of open
subproblems. There it stays several rounds dormant, theer subproblems are optimized in the meantime, until
the subproblem is processed again. If between two suceassiimizations of the subproblem good cutting planes
are generated that can be separated from the pool, therchisitue can accelerate the optimization. The maximal
numbers of optimizations and the minimal number of dormaunnds can be controlled by parameters.

4.2.3.15 Memory Allocation

Since constraints and variables are added and removed algmwe also provide a dynamic memory man-
agement system, which requires no user interaction. letienot enough memory already allocated to add a
constraint or variable, memory reallocations are perfaraugtomatically. As the reallocation of the local data, in
particular of the linear program, can require a lot of CPUetjifhit is performed regularly, we allocate some extra
space for the addition of variables and constraints, anthBononzero entries of the matrix of the LP-solver.

4.2.3.16 Activation and Deactivation

In order to save memory we set up those data structures #hanr required if the subproblem is active, e.g., the
linear program, at the beginning of the subproblem optitiomeand delete the memory again when the subproblem
becomes inactive. We observed that the additional CPU teqeired for these operations is negligible, but the
memory savings are significant.

4.2.4 Constraints and Variables

Constraints and variables are central items within lirgagramming based branch-and-bound algorithms. As
ABACUS is a system for general mixed integer optimization problamd combinatorial optimization problems
we require an abstract concept for the representation cftints and variables. Linear programming duality
motivated us to embed common features of constraints amables in a joint base class.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

30 Design

4.2.4.1 Constraint/Variable versus Row/Column

Usually, the notiongonstraintandrow, and the notionsariableandcolumn respectively, are used equivalently.

Within ABACUS constraints and rows are different items. Constraints @red in the pool and a subproblem
has a set of active constraints. Only if a constraint is addetle linear program, then the corresponding row is
computed. More precisely, a row is a representation of atcinsassociated with a certain variable set.

The reasons for this differentiation can be explained whth $ubtour elimination constraints of the traveling
salesman problem, which are defined for subBétsf the nodes of a graph ag £(W)) < |W| — 1. Storing this
inequality as it is added to the linear program would reqtgirgtore all edges (variables) with both endnodes in the
setW. Such a format would require(Q0V|?) storage space. However, it would be also sufficient to steebde
setW requiring q|W|) storage space. Given the variablassociated with the edde %), then the coefficient of

e in the subtour elimination constraint is 1tindh are contained iV, 0 otherwise.

For the solution of the traveling salesman problem we alsotw@ apply sparse graph techniques. Therefore,
storing the coefficients of all active and inactive variahié a subtour elimination constraint would waste a lot of
memory. If we store only the coefficients of the variableg #ra active when the constraint is generated, then the
computation of the coefficient of an added variable wouldiffeedlt or even impossible. However, if we store all
nodes defining the constraint, then the coefficients of begthat are later added can be determined easily.

Efficient memory management and dynamic variable generatie the reason why we distinguish between con-
straints and rows. Each constraint must have a member fumittat returns the coefficient for a variable such that
we can determine the row corresponding to a set of variables.

In these considerations “constraint” can be also replagetydriable” and “row” by “column”. A column is the
representation of a variable corresponding to a certaistcaint set. Again, we use the traveling salesman problem
as example. A variable for the traveling salesman problermresponds to an edge in a graph. Hence, it can be
represented by its end nodes. The column associated withidhiable consists of the coefficients of the edge for
all active constraints.

We implemented these concepts in the clags®s CONSTRAI NT/ABA VARI ABLE, which are used for the
representation of active constraints and variables anthéstorage of constraints and variables in the pools, and
ABA_ROWABA_COLUMN, which are used in particular in the interface to the LP-splv

This differentiation between constraints/variables amwsicolumns is not used by any other system for the im-
plementation of linear-programming based branch-andi@lgorithms, because they are usually designed for
the solution of general mixed integer optimization prokdemhich do not necessarily require this distinction.
However, this concept is crucial for a practically efficiamd simple application oABACUS to combinatorial
optimization problems.

4.2.4.2 Common Features of Constraints and Variables

Constraints and variables have several common featuréshwie consider in a common base class.

A constraint/variable is active if it belongs to the consti@ariable set of an active subproblem. An active con-
straint/variable must not be removed from its pool. As in eafj@ implementation ofABACUS there can be
several active subproblems, each constraint/variabla leasinter for the number of active subproblems, in which
it is active.

Besides being active there can be other reasons why a doisaeable should not be deleted from its pool, e.g.,
if the constraint/variable has just been generated, thismiit into a buffer, but is not yet activated (we explain the
details in Sectio.2.7). In such a case we want to set a lock on the constraint thahita be removed. Again,

in a parallel implementation, but also in a sequential orenpvay want to set locks at the same time on the same
constraint for different reasons. Hence, we count the nummblecks of each constraint/variable.

Constraints and variables can be locally or globally valilerefore, we provide a flag in the common base class
of constraints and variables. The functions to determirg libcal constraint or variable is valid for a certain

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

4.2 Details 31

subproblem are associated directly with the classes fataints and variables, respectively.

It has been stated that the use of locally valid constraints\eriables should be avoided as it requires a nasty
bookkeeping PR91. In order to free the user from this, we have embedded theagement of local constraints
and variables iIMBACUS. The validity of a constraint/variable is automaticallyecked if it is regenerated from
the pool.

We also distinguish between dynamic variables/consgaint static ones. As soon as a static variable/constraint
becomes active it cannot be deactivated. An example foic statiables are the variables in a general mixed
integer optimization problem, examples for static cornistsaare the constraints of the problem formulation of a
general mixed integer optimization problem or the degreestraints of the traveling salesman problem. Dynamic
constraints are usually cutting planes. In column geranatigorithm variables can be dynamic, too.

A crucial point in the implementation of a special variabteonstraint class is the tradeoff between performance
and memory usage. We have observed that a memory efficienaigstdormat can be one of the keys to the
solutions of larger instances. Such formats are in genetalery useful for the computation of the coefficient of
a single variable/constraint. Moreover, if the coefficgeot a constraint for several variables or the coefficients of
a variable for several constraints have to be computed,vehgn the row/column format of the constraint/variable
is generated in order to add it to the LP-solver, then theseadipns can become a bottleneck. However, given a
different format, using more memory, it might be possiblgéoform these operations more efficiently.

Therefore, we distinguish between the compressed fornthtlam expanded format of a constraint/variable.
Before a bigger number of time consuming coefficient contjria is performed, we try to generate the expanded
format, afterwards the constraint/variable is compressed

Of course, both expanded and compressed formats are rathsiraint/variable specific. But we provide the
bookkeeping already in the common base class and try to exparconstraint/variable, e.g., when it is added to
the linear program. Afterwards it is compressed again. Wi@ementation of the expansion and compression is
optional.

We use again the subtour elimination constraint of the tiragesalesman problem as an example for the com-
pressed and expanded format. For an inequality(17)) < |W| — 1 we store the nodes of the sif in the
compressed format. The computation of the coefficient ofdgeé¢t, i) requires @|W|) time and space. As
expanded format we use an ariaySubt our of typebool of lengthn (n is the number of nodes of the graph)
andi nSubt our [v] istrue if and only ifv € W. Now, we can determine the coefficient of an edge (variable)
in constant time.

4.2.4.3 Constraints

ABACUS provides all three different types of constraints: equetje-inequalities and>-inequalities. The only
pure virtual function is the computation of a coefficient ofaiable. We use this function to generate the row
format of a constraint, to compute the slack of an LP-solytamd to check if an LP-solution violates a constraint.
All these functions are declared virtual such that they carelefined for performance reasons.

We distinguish between locally and globally valid consttai By default, a locally valid constraint is considered
to be valid for the subproblem it was generated and for alpsoidems in the tree rooted at this subproblem. This
criterion is implemented in a virtual function such thatande redefined for special constraints.

If variables are generated dynamically, we distinguishwien liftable and non-liftable constraints. Non-liftable
constraints have to be removed before the pricing problenbeasolved (see Secti@n2.3.

ABACUS provides a default non-abstract constraint class with tagsé\BA ROACON, where a constraint is
represented by its row format, i.e., only the numbers ofaldeis with nonzero coefficients and the corresponding
coefficients are stored. This format is useful, e.g., forsti@ints of general mixed integer optimization problems.
From the clas®\BA ROWCON we derive the claseBA SROWDCN, which implements some member functions
more efficiently as it assumes that the variable set is siai¢cno variables are generated dynamically.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

32 Design

4.2.4.4 Variables

ABACUS supports continuous, integer, and binary variables in hesé&BA_ VARI ABLE. Each variable has a
lower and an upper bound, which can be set to plus/minustiyfiithe variable is unbounded. We also memorize
if a variable is fixed.

The following functions have their dual analogons in thesshBA_CONSTRAI NT. The only pure virtual function
is now the function that returns a coefficient in a constraivith this function the generation of the column format
and the computation of the reduced cost can be performed.aWa sariable is violated if it does not price out
correctly.

Also variables can be locally or globally valid. A subprablés by default associated with a locally valid variable.
The variable is then valid in all subproblems on the path ftbim subproblem to the root node. Of course, this
virtual function can be redefined for problem specific vagab

We provide already a non-abstract derived variable clakg. classABA_COLVAR implements a variable that is
represented by the column format, i.e., only the nonzeréicents together with the numbers of the correspond-
ing rows are stored.

4.2.5 Constraint and Variable Pools

Every constraint and variable either induced by the protiemmulation or generated in a separation or pricing
step is stored in a pool. A pool is a collection of constraamd variables. We will see later that it is advantageous
to keep separate pools for variables and constraints. Tenwill also discuss when it is useful to have also
different pools for different types of constraints or vaies. But for simplicity we assume now that there is only
one variable pool and one constraint pool.

There are two reasons for the usage of pools: saving memdrgraadditional separation/pricing method.

A constraint or variable usually belongs to the set of actiwastraints or variables of several subproblems that
still have to be processed. Hence, it is advantageous te Bidhe sets of active constraints or variables only
pointers to each constraint or variable, which is storecbatescentral place, i.e., in a pool that is a member of
the corresponding master of the optimization. Our prakégperiments show that this memory sensitive storage
format is of very high importance, since already this poohfat uses a large amount of memory.

4.2.5.1 Pool Separation/Pricing

From the point of view of a single subproblem a pool may noyamntain active but also inactive constraints
or variables. The inactive items can be checked in the seéparar pricing phase, respectively. We call these
techniques pool separation and pool pricing. Again, maivdy duality theory we use the notion “separation”
also for the generation of variables, i.e., for pricing. Psgparation is advantageous in two cases. First, pool
separation might be faster than the direct generation d@tad constraints or variables. In this case, we usually
check the pool for violated constraints or variables, anlgt dmo item is generated, we use the more time con-
suming direct method. Second, pool separation turns out exdlvantageous, if a class of constraints or variables
can be separated/priced out only heuristically. In thiscé#iscan happen that the heuristic cannot generate the
constraint or variable although it is violated. Howeverlieain the optimization process this constraint or vari-
able might have been generated. In this case the constravatriable can be easily regenerated from the pool.
Computational experiments show that this additional ssjar or pricing method can decrease the running time
significantly JRT94.

During the regeneration of constraints and variables frioenpools we also have to take into account that a con-
straint or variable might be only locally valid.

The pool separation is also one reason for using differentspfor variables and constraints. Otherwise, each
item would require an additional flag and a lot of unnecesgamk would have to be performed during the pool

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

4.2 Details 33

separation.

Pool separation is also one of the reasons why it can be ay@mis to provide several constraint or variable
pools. Some constraints, e.g., might be more importannhdutie pool separation than other constraints. In this
case, we might check this “important” pool first and only if faé in generating any item we might proceed with
other pools or continue immediately with direct separatemhniques.

Other classes of constraints or variables might be less itapioin the sense that they cannot or can only very
seldomly be regenerated from the pool (e.g., locally vatidstraints or variables). Such items could be kept in a
pool that immediately removes all items that do not belorthémactive constraint or variable set of any subproblem
which still has to be processed. A similar strategy mightdmpuired for constraints or variables requiring a big
amount of memory.

Finally, there are constraints for which it is advantagetoustay active in any case (e.g., the constraints of the
problem formulation in a general mixed integer optimizatfroblem, or the degree constraints for the traveling
salesman problem). Also for these constraints separate pgwadvantageous.

4.2.5.2 Garbage Collection

In any case, as soon as a lot of constraints or variables aeraed dynamically we can observe that the pools
become very, very large. In the worst case this might causdaarmal termination of the program if it runs out
of memory. But already earlier the optimization processhinlze slowed down since pool separation takes too
long. Of course, the second point can be avoided by limitetesiies in pool separation, which we will discuss
later. But to avoid the first problem we require suitable nieg up and garbage collection strategies.

The simplest strategy is to remove all items belonging netny active variable or constraint set of any active or
open subproblem in a garbage collection process. The dissalye of this strategy might be that good items are
removed that are accidentally momentarily inactive. A nsmphisticated strategy might be counting the number
of linear programs or subproblems where this item has be@reand removing initially only items with a small
counter.

Unfortunately, if the enumeration tree grows very largef tiié number of constraints and variables that are active
at a single subproblem is high, then even the above brute feahinique for the reduction of a pool turns out to be
insufficient.

Hence, we have to divide constraints and variables into togs. On the one hand the items that must not be
removed from the pool, e.g., the constraints and varialfiéiseoproblem formulation of a general mixed integer
optimization problem, and on the other hand those itemscénakither be regenerated in the pricing or separation
phase or are not important for the correctness of the algorie.g., cutting planes. If we use the data structures
we will describe now, then we can remove safely an item of do@sd group.

4.2.5.3 Pool Slots

So far, we have assumed that the sets of active variablesngtramts store pointers to variables or constraints,
respectively, which are stored in pools. If we would remdwe tariable or constraint, i.e., delete the memory we
have allocated for this object, then errors can occur if weess the removed item from a subproblem. These fatal
errors could be avoided if a message is sent to every sulggnolvhere the deleted item is currently active. This

technique would require additional memory and running tiriaerefore, we propose a data structure that can
handle this problem very simply and efficiently.

A pool is not a collection of constraints or variables, bubection of pool slots (clas8BA_POOLSLOT). Each

slot stores a pointer to a constraint or variable or a 0-poiifiit is void. The sets of active constraints or variables
store pointers to the corresponding slots instead of gjqrainters to the constraints or variables directly. So, if a
constraint or variable has been removed a 0-pointer willdomd in the slot and the subproblem recognizes that
the constraint or variable must be eliminated since it cabeaegenerated. The disadvantage of this method is

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

34 Design

that finally our program may run out of memory since there ameynseless slots.

In order to avoid this problem we add a version number as datalver to each pool slot. Initially the version
number is 0 and becomes 1 if a constraint or variable is iedeéntthe slot. After an item in a slot is deleted a new
item can be inserted into the slot. Each time a new item iedtor the slot the version number is incremented.
The sets of active constraints and variables do not onlyegpointers to the corresponding slots but also the
version number of the slot when the pointer is initializefla Imember of the active constraints or variables is
accessed we compare its original and current version nunibbrese numbers are not equal we know that this
is not the constraint or variable we were originally poigtito and remove it from the active set. We call the
data structure storing the pointer to the pool slot and tigir@l version number a reference to a pool slot (class
ABA POOLSLOTREF). Hence, the sets of active constraints and variables sagsaof references to pool slots.
We present an example for this pool concept in Figuie The numbers in the boxes are arbitraryly chosen version
numbers.

4.2.5.4 Standard Pool

The classABA POCL is an abstract class, which does not specify the storageatoofithe collection of pool
slots. The simplest implementation is an array of pool sldise set of free pool slots can be implemented by
a linked list. This concept is realized in the cla&8A STANDARDPOOL. Moreover, aABA STANDARDPOOL
can be static or dynamic. A dynamdBA STANDARDPQOCOL is automatically enlarged, when it is full, an item is
inserted, and the cleaning up procedure fails. A staB& STANDARDPOCL has a fixed size and no automatic
reallocation is performed.

More sophisticated implementations might keep an orddmepbol slots such that “important” items are detected
earlier in a pool separation such that a limited pool searahight be sufficient. A criterion for this order could
be the number of subproblems where this constraint or Vearialactive or has been active. We will consider such
a pool in a future release.

4.2.5.5 Default Pools

The number of the pools is very problem specific and dependdyrn the separation and pricing methods. Since
in many applications a pool for variables, a pool for the ¢aists of the problem formulation, and a pool for
cutting planes are sufficient, we implemented this defauticept. If not specified differently, in the initialization

of the pools, in the addition of variables and constraintsl, ia the pool pricing and pool separation these default
pools are used. We use a staiBA STANDARDPOCL for the default constraint and cutting planes pools. The
default variable pool is a dynamABA STANDARDPQOOL, because the correctness of the algorithm requires that
a variable which does not price out correctly can be addedhyncase, whereas the loss of a cutting plane that
cannot be added due to a full pool has no effect on the coesstof the algorithm as long as it does not belong to
the integer programming formulation.

If instead of the default pool concept an application spegfiol concept is implemented, then the user of the
framework must make sure that there is at least one variaié gnd one constraint pool and these pools are
embedded in a class derived from the claB& MASTER.

With this concept we provide a high flexibility: An easy to wfault implementation, which can be changed by
the redefinition of virtual functions and the applicatiomoi-default function arguments.

All classes involved in this pool concept are designed asgenlasses such that they can be used both for variables
and constraints.

4.2.6 Linear Programs

Since ABACUS is a framework for the implementation of linear-programgntmased branch-and-bound algo-
rithms it is obvious that the solution of linear programsygla central role, and we require a class concept of

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

35

4.2 Details

9 S

o o 8 £

o o)) £ =

o o] € |s £

8 3| e |3 S

g IT1™1s| 8 |20 3

> > 5|3 5

[T 2| & (o0 8}

= =
| 4 k| Y ISR | [
Variable =7 H ™~ A, N TH
Variable— ™} "INIE
Variable}~—F [V [PTH
Variable}~—F [K =T+
Variable - [V} " LK E
0] =
Variable =—f [P K| /@m £ |8 1 | H T
~ = = |» =

Variable}— = _,///Ew 8 m E\\\ e
Variable—— =} | [TITe| & | NIT| M~
<m:mc_m_A|._._2T/ /EM « M IEg | B
T E] =iEgl GIE!

———={ Constraint

——={ Constraint

—— Constraint

———={ Constraint

———{ Constraint

———={ Constraint

———={ Constraint

——={ Constraint

———={ Constraint

———={ Constraint

Figure 4.1: The pool concept.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

36 Design

the representation of linear programs. Moreover, lineag@ms might not only be used for the solution of
LP-relaxations in the subproblems, but they can also be fweather purposes, e.g., for the separation of lift-
and-project cutting planes of zero-one optimization peaid BCC935 BCC93H and within heuristics for the
determination of good feasible solutions in mixed integagpamming HP93.

Therefore, we would like to provide two basic interfacesddmear program. The first one should be in a very
general form for linear programs defined by a constraint imatored in some sparse format. The second one
should be designed for the solution of the LP-relaxationth@ésubproblem. The main differences to the first
interface are that the constraint matrix is stored in therabsABA VARl ABLE/ABA CONSTRAI NT format
instead of thedABA COLUMNVABA ROWformat and that fixed and set variables should be eliminated.

Another important design criterion is that the solutiontad tinear programs should be independent from the used
LP-solver, and plugging in a new LP-solver should be simple.

4.2.6.1 The Basic Interface

The result of these requirements is the class hierarchygeiré#.2. The classABA _LP is an abstract base class
providing the public functions that are usually expectaidtialization, optimization, addition of rows and columns
deletion of rows and columns, access to the problem dataainéon, the slack variables, the reduced costs, and
the dual variables. These functions do some minor bookkegegid call a pure virtual function having the same
name but starting with an underscore (et i ni ze() calls_opti ni ze). These functions starting with an
underscore are exactly the functions that have to be impleadeoy an interface to an LP-solver.

4.2.6.2 The LP-Solver Interface

The clasABA_OSI | F implements these solver specific functions. The chig& OSI | Fitself is an interface to
GCsi (Open Solver Interface) which is a uniform API for calling leedded linear and mixed-integer programming
solvers. Using this generic APl means that the single iaterfclassABA_OSI | F provides access to a whole
range of LP-solvers. Another advantage is that any chanteiAPI of a specific LP-solver is handled by th Osi
layer. That means that in order to support future versioridPegolvers no change to tleBACUS code will be
necessary. When support for futher solvers is added to Ogirimimal changes t&A\BACUS will be necessary
to make them available for solving linear programs.

4.2.6.3 Linear Programming Relaxations

The most important linear programs being solved within #ystem are the LP-relaxations solved in the op-
timization of the subproblems. However, the active colstsaand variables of a subproblem are not stored
in the format required by the classBA LP. Therefore, we have to implement a transformation from the
ABA VARI ABLE/ABA CONSTRAI NT format to theABA COLUMNABA ROWformat.

Two options are available for the realization of this tramsfation: either it can be implemented in the class
ABA SUB or in a new class derived from the cla&BA LP. We decided to implement such an interface class,
which we callABA_LPSUB, for the following reasons. First, the interface is bettenctured. Second, the sub-
problem optimization becomes more robust for later modifica of the clas&\BA_LP. Third, we regard the class
ABA_LPSUB as a preprocessor for the linear programs solved in the shlgm, because fixed and set variables
can be eliminated from the linear program submitted to theesolt depends on the used solution method if all
fixed and set variables should be eliminated. If the simplethod is used and a basis is known, then only non-
basic fixed and set variables should be eliminated. The sntatjpn of the interface between the subproblem and
the classABA_LP supports a more flexible adaption of the elimination to ottieysolvers in the future and also
enables us to use other LP-preprocessing techniquescengtraint elimination, or changing the bounds of vari-
ables under certain conditions (s€&{/94), without modifying the variables and constraints in thdgroblem.
Preprocessing techniques other than elimination of fixetdsah variables are currently not implemented.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

4.2 Details 37

ABA_LP

/\

ABA_OSIIF ABA_LPSUB

\/

ABA_LPSUBOSI

Figure 4.2: The linear programming classes.

4.2.6.4 Solving Linear Programming Relaxations

The subproblem optimization in the cla8BA_SUB uses only the public functions of the cladBA_LPSUB,
which is again an abstract class independent from the usesbh@r.

A linear program solving the relaxations within a subprobleiith a LP-solver supported by Osi is defined
by the classABA LPSUBCSI , which is derived from the classeBA LPSUB and ABA OSI | F. The class
ABA_LPSUBCSI only implements a constructor passing the arguments todke blasses. Using a LP-solver
not suppported by Osi in this context requires the definitiba class equivalent to the cla8BA LPSUBCSI and

a redefinition of the virtual functioABA LPSUB * ABA SUB: : gener at eLp() , which is a one-line function
allocating an object of the clagBA LPSUBCSI and returning a pointer to this object.

Therefore, it is easy to use different LP-solvers for déf@rABACUS applications and it is also possible to use
different LP-solvers in a singlaBACUS application. For instance, if there is a very fast methodtiersolution

of the linear programs in the root node of the enumeratios toat all other linear programs should be solved by
Cplex, then only a simple modification 68A_SUB: : gener at eLp() is required.

To avoid multiple instances of the clagsBA LP in objects of the classABA LPSUBCSI , the classes
ABA CSI | F, andABA LPSUB are virtually derived from the clas&BA LP. In order to save memory we do
not make copies of the LP-data in any of the classes of thimttky except for the data that is passed to the
LP-solvers in the clasaBA OSI | F.

4.2.7 Auxiliary Classes for Branch-and-Bound

In this section we are going to discuss the design of somerit@pioclasses that support the linear-programming
based branch-and-bound algorithm. These are classe®fardhagement of the open subproblems, for buffering
newly generated constraints and variables, for the impteatien of branching rules, for the candidates for fixing
variables by reduced costs, for the control of the tailirfgeffect, and for the storage of a solution history.

4.2.7.1 The Set of Open Subproblems

During a branch-and-bound algorithm subproblems are digaiy generated in branching steps and later opti-
mized. Therefore, we require a data structure that stori@sgue to all unprocessed and dormant subproblems and
supports the insertion and the extraction of a subproblem.

One of the important issues in a branch-and-bound algorighime enumeration strategy, i.e., which subproblem
is extracted from the set of open subproblems for furthecgssing. It would be possible to implement the
different classical enumeration strategies, like dep8t-8earch, breadth-first search, or best-first searchrwithi
this class. But in this case, an application-specific enati@r strategy could not be added in a simple way by
a user ofABACUS. Of course, with the help of inheritance and virtual funea technique similar to the one
we implemented for the usage of different LP-solvers forsiigproblem optimization could be applied. However,
there is a much simpler solution for this problem.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

38 Design

In the classABA MASTER we define a virtual member function that compares two subdenad according to the
selected enumeration strategy and returns 1 if the firstrebbgm has higher priority-1 if the second one has
higher priority, and O if both subproblems have equal ptyor\pplication specific enumeration strategies can be
integrated by a redefinition of this virtual function. In erdo compare two subproblems within the extraction
operation of the clas&BA OPENSUB this comparison function of the associated master is called

The classABA OPENSUB implements the set of open subproblems as a doubly linkeziifist. Each time
when another subproblem is required for further processiaggomplete list is scanned and the best subproblem
according to the applied enumeration strategy is extracidds implementation has the additional advantage,
that it is very easy to change the enumeration strategy glahi@ optimization process, e.g., to perform a diving
strategy, which uses best-first search but performs a lihdiepth first search evekyiterations.

The drawback of this implementation is the linear runnimgetiof the extraction of a subproblem. If the set of
open subproblems would be implemented by a heap, then tagiorsand the extraction of a subproblem would
require logarithmic time, whereas in the current impleragah the insertion requires constant, but the extraction
requires linear time. But if the enumeration strategy isjeal, the heap has to be reinitialized from scratch, which
requires linear time.

However, it is typical for a linear-programming based braaad-bound algorithm that a lot of work is performed
in the subproblem optimization, but the total number of sabfems is comparatively small. Also the performance
analysis of our current applications shows that the runtimg spent in the management of the set of open sub-
problems is negligible. Due to the encapsulation of the rgameent of the set of open subproblem in the private
part of the clasé\BA OPENSUB, it will be no problem to change the implementation, as saoitia required.

In order to allow the special fathoming technique for fatlirognmore than one subproblem in case of a contra-
diction (even though it is currently not implemented), thess ABA OPENSUB supports also the removal of an
arbitrary subproblem. This operation cannot be performéagarithmic time in a heap, but requires linear time. A
data structure providing logarithmic running time for theertion, extraction of the minimal element, and removal
of an arbitrary element is, e.g., a red-black tree\[72, GS7g. According to our current experience it seems that
the implementation effort for these enhanced data strestdoes not pay.

We provide four rather common enumeration strategies prautie best-first search, breadth-first search, depth-
first search, and a simple diving strategy performing ddijpsthsearch until the first feasible solution is found and
continuing afterwards with best-first search.

If the branching strategy is branching on a binary variatilen these default enumeration strategies are further
refined. We can often observe in mixed integer programmiagféasible solutions are sparse, i.e., only a small
number of variables have a nonzero value. Setting a binaighte to one may induce a subproblem with a smaller
number of feasible solutions than for its brother in whicl branching variable is set to zero. Therefore, if two
subproblems have the same priority in the enumeration, efepthat one with the branching variable set to one.
This resolution of subproblems having equal priority isfpened in a virtual function, such that it can be adapted
to each specific application or can be extended to other bragistrategies.

4.2.7.2 Buffering Generated Variables and Constraints

Usually, new constraints are generated in the separatiasephHowever, it is possible that in some applications
violated constraints are also generated in other submaitihthe cutting plane algorithm. In particular, if not all
constraints of the integer programming formulation arévadh the subproblem a separation routine might have
to be called to check the feasibility of the LP-solution. Amer example is the maximum cut problem, for which
it is rather convenient if new constraints can also be geednahile we try to find a better feasible solution after
the linear program has been solved. Therefore, it is negesat constraints can be added by a simple function
call from any part of the cutting plane algorithm.

This requirement also holds for variables. For instancegrwive perform a special rounding algorithm on a
fractional solution during the optimization of the travegisalesman problem, we may detect useful variables that
are currently inactive. It should be possible to add sucloitamt variables before they may be activated in a later

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

4.2 Details 39

pricing step.

It can happen that too many variables or constraints arergtuesuch that it is not appropriate to add all of them,
but only the “best” ones. Measurements for “best” are diffidar constraints this can be the slack or the distance
between the fractional solution and the associated hyaeepfor variables this can be the reduced costs.

Therefore, we have implemented a buffer for generated minst and variables in the generic class
ABA CUTBUFFER, which can be used both for variables and constraints. Tisevaee object of this class for
buffering variables, the other one for buffering constiminConstraints and variables that are added during the
subproblem optimization are not added directly to the liragram and the active sets of constraints and vari-
ables, but are added to these buffers. The size of the buff@rbe controlled by parameters. At the beginning of
the next iteration items out of the buffers are added to thieeaconstraint and variable sets and the buffers are
emptied. An item added to a buffer can receive an optiond given by a floating point number. If all items in a
buffer have a rank, then the items with maximal rank are adéadhe rank is only specified by a floating point
number, different measurements for the quality of the cairgs or variables can be applied. The number of added
constraints and variables can be controlled again by paesse

If an item is discarded during the selection of the constsaamd variables from the buffers, then usually it is also
removed from the pool and deleted. However, it may happdrthieae items should be kept in the pool in order
to regenerate them in later iterations. Therefore, it isiibs to set an additional flag while adding a constraint or
variable to the buffer that prevents it from being removexifithe pool if it is not added. Constraints or variables
that are regenerated form a pool receive this flag autontigtica

Another advantage of this buffering technique is that agldirconstraint or variable does not change immediately
the current linear program and active sets. The update séttiata structures is performed at the beginning of the
cutting plane or column generation algorithm before thedmprogram is solved. Hence, this buffering method
together with the buffering of removed constraints andalags relieves us also from some nasty bookkeeping.

4.2.7.3 Branching

It should be possible that in a framework for linear-prognang based branch-and-bound algorithms many dif-
ferent branching strategies can be embedded. Standarchimgrstrategies are branching on a binary variable by
setting it to O or 1, changing the bounds of an integer vagiatn splitting the solution space by a hyperplane such
that in one subproblem” 2 > 3 and in the other subprobleaf 2 < 3 must hold. A straightforward generaliza-
tion is that instead of one variable or one hyperplane wekusgiables ot hyperplanes, which results #-nary
enumeration tree instead of a binary enumeration tree.

Another branching strategy is branching on a set of equatiphz = 3;,...,a;" 2 = (3. Here,l new subprob-
lems are generated by adding one equation to the constyaiteins of the father in each case. Of course, as for
any branching strategy, the complete set of feasible swlstbf the father must be covered by the sets of feasible
solutions of the generated subproblems.

For branch-and-price algorithms often different branghirles are applied. Variables not satisfying the branching
rule have to be eliminated and it might be necessary to madéypricing problem. The branching rule of Ryan
and Foster [RF81] for set partitioning problems also requires the elimioatdf a constraint in one of the new
subproblems.

So it is obvious that we require on the one hand a rather gecmmaept for branching, which does not only cover
all mentioned strategies, but should also be extendablertkriown” branching methods.

On the other hand it should be simple for a user of the framlewmmadapt an existing branching strategy like
branching on a single variable by adding a new branchin@kbeiselection strategy.

Again, an abstract class is the basis for a general branskimgme, and overloading a virtual function provides a
simple method to change the branching strategy. We havéagecdethe concept of branching rules. A branching
rule defines the modifications of a subproblem for the germeralf a son. In a branching step as many rules as
new subproblems are instantiated. The constructor of a dwreblem receives a branching rule. When the

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

40 Design

optimization of a subproblem starts, the subproblem malapg of the member data defining its father, i.e., the
active constraints and variables, and makes the modificmtiocording to its branching rule.

The abstract base class for different branching rules isldssABA_BRANCHRULE, which declares a pure virtual
function modifying the subproblem according to the branghiule. We have to declare this function in the class
ABA BRANCHRULE instead of the clas8BA SUB because otherwise adding a new branchrule would require a
modification of the claséBA_SUB.

We derive from the abstract base cla®8A BRANCHRULE classes for branching by setting a binary vari-
able (classABA SETBRANCHRULE), for branching by changing the lower and upper bound of dager
variable (classABA BOUNDBRANCHRULE), for branching by setting an integer variable to a valuagsl
ABA_VALBRANCHRULE), and branching by adding a new constraint (cki88_CONBRANCHRULE).

This concept of branching rules should allow almost eveanbhing scheme. Especially, it is independent of the
number of generated sons of a subproblem. Further branchieg can be implemented by deriving new classes
from the classABA BRANCHRULE and defining the pure virtual function for the correspondimggdification of
the subproblem.

In order to simplify changing the branching strategy we ienpénted the generation of branching rules in a hier-
archy of virtual functions of the clagsBA_SUB. By default, the branching rules are generated by branabing
single variable. If a different branching strategy shoutdinplemented a virtual function must be redefined in a
class derived from the clagdBA SUB.

Often in a special branch-and-cut algorithm we only want tmlify the branching variable selection strategy. A
new branching variable selection strategy can be impleedesgain by redefining a virtual function.

4.2.7.4 Candidates for Fixing

Each time when all variables price out correctly during thecpssing of the root node of the branch-and-bound
tree, we store those nonbasic variables that cannot be fogadhter with their statuses, reduced costs, and the
current dual bound in an object of the cl#&3A FI XCAND. Later, when the primal bound improves, we can try to
fix these variables by reduced cost criteria. This datastracan also be updated if the root node of the remaining
branch-and-bound tree changes.

4.2.7.5 Tailing Off

We implemented the clagdBA_ TAI LOFF to memorize the values of the last solved linear programssabarob-
lem to control the tailing off effect. An instance of this s&is a member of each subproblem.

4.2.7.6 Solution History

The classABA HI STORY stores the solution history, i.e., it memorizes the printal ¢he dual bound and the
current time whenever a new primal or dual bound is found.

4.2.8 Basic Generic Data Structures

We have implemented several basic data structures as tesipM/e only sketch these classes briefly. For the
details on the implementations we refer to text books ablgar#hms and data structures such as, e@.H90.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

4.2 Details 41

4.2.8.1 Arrays

Arrays are already supported by+G- as in C. To provide in addition to the subscript operdtbrsimpler con-
struction, destruction, reallocation, copying, and assignt we have implemented the cl2é3A ARRAY.

4.2.8.2 A Buffer for Objects

Arrays are frequently used for buffering data, i.e., theran additional counter that is initially 0. Then, objects
are inserted in the array at the position of the counter, iwti@fterwards incremented. In order to simplify such
buffering operations we have encapsulated an array togeittethe counter in the classBA BUFFER.

Actually, a buffer is a special array such that the cla®\ BUFFER should be derived from the class
ABA ARRAY. Unfortunately, the version of the GNU-compiler we werengsivhen we developed this part of the
system had a bug in the inheritance of templates. In a fuelease we will derive this class froABA ARRAY.

4.2.8.3 Bounded Stack

A stack stores a set of elements according to the last-indirsprinciple, i.e., only the last inserted element can
be accessed or removed. A linked list could implement suchta structure in which an unlimited number of
elements (limited only by the available memory) can be iteserWe would have to sacrifice some efficiency for
this flexibility. Therefore, we use an array for implemegtenstack having a maximal size. If it turns out that the
initial estimation on the maximal size is too small, the ktean be reallocated.

4.2.8.4 Ring

A ring is a collection of elements that has a maximal sizehi§ tnaximal size is reached but a new element is
inserted, then the oldest element is replaced. No elemarth&€aemoved explicitly from the ring except that the
ring can be emptied in a single step. The claB& Rl NGimplements such a data structure with an array. We
need a ring in the framework to memorize the lage.g.,k = 10) values of the LP-solution in the subproblem
optimization, in order to control the tailing off effect.rfgie this data structure might be useful for other purposes
we implemented it as a template.

4.2.8.5 Linked Lists

The classe®BA LI ST andABA DLI ST provide implementations of a linked list and a doubly linKisd, re-
spectively.

4.2.8.6 Bounded Heap

A heap is a data structure representing a complete binagy where each node satisfies the so called “heap-
property”. For similar efficiency reasons, we discussedaaly in the context of the stack, we provide an imple-
mentationABA BHEAP of a heap with limited size by an array.

4.2.8.7 Bounded Priority Queue

A priority queue is a data structure storing a set of elemefhtsre each element is associated with a key. The
priority queue provides the operations inserting an elénfgrding the element with minimal key, and extracting
the element with minimal key. We provide an implementa#d@® BPRI OQUEUE of a priority queue of limited
size with the help of a heap.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

42 Design

4.2.8.8 Hash Table

In a hash table a set of elements is stored by computing foredlament the address in the table via a hash function
applied to the key of the element. As the number of possilileeganf keys is usually much greater than the number
of addresses in the table we require techniques for regpbaiiisions, i.e., if more than one element is mapped to
the same address.

We use direct addressing and collision resolution by chgim the clas®\BA HASH. For integer keys we imple-
mented the Fibonacci hash function and for strings a hasttitmproposed in{nu93.

4.2.8.9 Dictionary

A dictionary in our context is a data structure storing eletag¢ogether with some additional data. Besides the
insertion of an element we provide a look up operation reétgrthe data associated with an element. For the
implementation of the clagsBA DI CTI ONARY we use a hash table.

4.2.9 Other Basic Data Structures

In this section we shortly outline some other basic datatires, which are not implemented as templates. These
are classes for the representation of sparse vectors,dosesgraphs, for strings, and for disjoint sets.

4.2.9.1 Sparse Vector

Typically, mixed integer optimization problems have a domist matrix with a very small number of nonzero
elements. Storing also the zero elements of constraintédweaste a lot of memory and increase the running
time. Therefore, we implemented in the clé&8A SPARVEC, a data structure which stores only the non-zero
elements of a vector together with their coefficients in tways. With this implementation the critical operation
is the determination of the coefficient of an original comguain

In the worst case, i.e., if the coefficient is zero, the conepéeray must be scanned. However, in a performance
analysis of our current applications it turns out that mayghssticated implementations using sorted elements such
that binary search can be performed or using hash tableoarecessary.

To simplify the dynamic insertion of elements, which is vepmmon within this software system, an automatic
reallocation is performed if the arrays implementing tharsp vector are full. By default, the arrays are increased
by ten percent but this value can be changed in the constructo

We use the clas8BA SPARVEC mainly as base class of the clasgd®\ ROWand ABA COLUMWN, which are
essential in the interface to the LP-solver and also usethéimplementation of special types of constraints and
variables.

4.2.9.2 String
We also implement the clagsBA STRI NG for the representation of character strings. We providg timbse

member functions which are currently required in our sofensystem. This class still requires extensions in the
future.

4.2.9.3 Disjoint Sets

We provide the classe8BA SET andABA FASTSET for maintaining disjoint sets represented by integer num-
bers. The operations for generating a set, union of setsfiadithg the representative of the set the element is
contained in are effciently supported.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

4.2 Details 43

4.2.10 Tools

The following classes are not data structures in a narrosesdut provide useful tools for the management of the
output, for measuring time, and for sorting.

4.2.10.1 Output Streams

A framework like ABACUS requires different levels of output. A lot of information liequired during the
development and debugging phase of an application, onlg soformation on the progress of the solution process
and the final results are desired in ordinary runs, and firthlye should be no output at all if an application of
ABACUS is used as a subprogram.

In order to satisfy these requirements usually output istates are either enclosed in
#i f def
#endi f

preprocessor instructions or each output statement iggegicby a statement of the form
if (outLevel == ...)

We rejected the first method immediately since changing thiput level would require a recompilation of the
code. The second method has the drawback that all thesséirsents before output operations are not very nice
and make the source code less readable.

Therefore, we make use of thetG- output streams and derive from the class r eamof the i/o-stream library a
classABA OSTREAMimplementing a specialized output stream that can be twnexhd off. More precisely, we
can apply the output operateras usual, but write to an object of the cl#&A OSTREAMinstead ofost r eam

If the output should be suppressed, we call a member funtdidurn it off. If output is desired again later in the
program, it can be turned on again. The claBs OSTREAMis a filter in this context for an output stream of the
classost r eamthat can be turned on and off at any time.

The disadvantage of this filter is that if at a certain outgwel one output statement should pass, the next one
should be filtered out, etc., then a lot of code has to be iedentthe program for turning the output on and off,
which leads to a less readable code than the classical remedy

However, we observed that fdkBACUS a rather simple structure of output levels and output staigsis
sufficient. Between the two extreme cases that no outpunisrgéed Silen) and a lot of output is produceéyll)
there are only three levels supported. On each level iniaddit all output of the preceding levels some extra
information is given. After the levedilentfollows the levelStatisticsgenerating only some statistical information
at the end of the run. At the lev8Blubproblena short information on the status of the optimization is augt the
end of each subproblem optimization. Finally, at the outpwel LinearProgramsimilar output is generated after
every solved linear program.

Therefore, turning the output streams on and off is requieg seldomly withinABACUS and its applications
such that this concept improves the readability of the code.

Under the operating system UNIX output writtencdout can be redirected to a file. Unfortunately, in this case
no output is visible on the screen. Therefore, we have imeiged in the clasB8BA OSTREAMalso the option to
generate a log-file. If this option is chosen output is botlitem on the screen and to the log-file. This effect can
also be obtained by using the UNIX commanele. However, the output levels for the log-file and the standard
output may be different, e.g., one can choose output Bubproblenfor the standard output stream to monitor
the optimization process, bEull output on the log-file for a later analysis of the run.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

44 Design

Of course, several instances of the claBs OSTREAMcan be used. The default version®BACUS uses one
for the normal output messages, i.e., as filterdout and one for the warning and error messages, i.e., as filter
for cerr. In an application it is possible to introduce another otigiream for the problem specific output.

4.2.10.2 Timers

For a simple measurement of the CPU and the wall-clock tinpadt of the program we implemented the classes
ABA TI MER, ABA CPUTI MER, ABA COMI MER. The ABA Tl MER is the base class of the two other classes
and provides the basic functionality of a timer, like stagtistopping, resetting, output, retrieving the time, and
checking if the current time exceeds some value. The acteasurement of the time is performed by the pure
virtual functiont heTi me() . This is the only function (besides the constructors andl&structor) that is defined
by the classeABA CPUTI MER andABA COAI VER.

This class hierarchy is a nice, small example where inher@aand late binding save a lot of implementational
effort.

4.2.10.3 Sorting

Sorting an array of elements according to another array ¢$ ke quite frequently required. Usually, sorting
functions are good candidates for template functions, luprefer to embed these functions in a template class.
The advantage is that we can provide within a class also mewaliebles for swapping elements of the arrays,
which have the same advantages as global variables fron gfoitew of the sorting functions (they do not have
to be put on the stack for each function call), but do not hdebaj scope. Within the clasdBA SORTER we
implemented the quicksort and the heapsort algorithm.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

Chapter 5

Using ABACUS

Section5.1provides the basic guidelines how a new application cantbeksd with the help ocABACUS. While
this section describes the first steps a user should foll@nigcuss in Sectiob.2 advanced features, in particular
how default strategies can be modified according to probfguific requirements.

We strongly encourage to study this chapter together wighettample of theABACUS distribution. In this
example all concepts of Sectidnl and several features of Sectibr can be found.

In the following sections we also present pieces afH£code. When we discuss variables that are of the type
“pointer to some type”, then we usually omit for convenien€gresentation the “pointer to” and the operataf
there is no danger of confusion. For instance, given thelbei

ABA_ARRAY<ABA CONSTRAI NT*> *constrai nts;
we also say “the constraints are stored in the aci@yst r ai nt s” instead of “the pointer to constraints are stored
in the array* constrai nt s”.
In order to simplify the useABACUS we are using the following style for the names of classesctfans,

variables, and enumerations.

< Names of classes (e.gl, ass ABA COLUWN), names of enumerations (e.gnum VARELI MMODE), and
character strings associated with an enumeration @omst char* VARELI MMODE_[]) are written
with upper case letters.

* Members of enumerations begin with an upper case letteresum STATUS{ Fi xed, Set}.

« All other names (functions, objects, variables, functemguments) start with a lower case letter (e.g.,
optimze()).

* We use upper case letters within all names to increase #uabdity (e.g.gener at eSon()).

* Names of data members of classes end with an underscorefgidhey can be easily distinguished from
local variables of member functions.

* We do not refrain from using a long name if it helps expregs$ite concepts behind the name.

5.1 Basics

In this section we explain how our framework is used for thelementation of a new application. This section
should provide only the guidelines for the first steps of aplementation, for details we refer to Sectii2 and
to the documentation in the reference manual.

46 Using ABACUS

[ABA_ABACUSROOT

ABA_GLOBAL ABA_SUB ABA_CONVAR

ABA_MASTER [ABA_MYSUB] [ABA_VARIABLE | [ABA_CONSTRAINT

| ABA_MYMASTER | | ABA_MYVARIABLE| |ABA_MYCONSTRAINT|

Figure 5.1: Embedding problem specific classeABACUS.

If we want to useABACUS for a new application we have to derive problem specific elsgsom some base
classes. Usually, only four base classessd8ACUS are involved: ABA VARI ABLE, ABA_CONSTRAI NT,
ABA_MASTER, and SUBPROBLEM For some applications it is even possible that the clasBé&s VARI ABLE
and/orABA_CONSTRAI NT are not included in the derivation process if those congapisded already bABA-

CUS are sufficient. By the definition of some pure virtual funosmf the base classes in the derived classes and
the redefinition of some virtual functions a problem speafgorithm can be composed. Figusel shows how

the problem specific classéd/MASTER, MYySUB, MYVARI ABLE, and MYCONSTRAI NT are embedded in the
inheritance graph oABACUS.

Throughout this section we only use the default pool concéphBACUS, i.e., we have one pool for static
constraints, one pool for dynamically generated cuttimmes, and one pool for variables. We will outline how an
application specific pool concept can be implemented ini@ebt2.1

5.1.1 Constraints and Variables

The first step in the implementation of a new application & @halysis of its variable and constraint structure.
We require at least one constraint class derived from tres ABA CONSTRAI NT and at least one variable class
derived from the clas8BA VARI ABLE. The used variable and constraint classes have to matchlisaica row

or a column of the constraint matrix of an LP-relaxation cargbnerated.

We derive from the clasBBA_VARI ABLE the class\WVARI ABLE storing the attributes specific to the variables
of our application, e.g., its number, or the tail and the hafatie associated edge of a graph.

Then we derive the claddyCONSTRAI NT from the classA\BA_CONSTRAI NT

cl ass MYCONSTRAI NT : public ABA CONSTRAI NT {
publi c:
virtual double coeff(ABA VAR ABLE *v);
b

The functionABA CONSTRAI NT: : coef f (ABA VARI ABLE *v) is a pure virtual function. Hence, we define
it in the classMYCONSTRAI NT. It returns the coefficient of variable in the constraint. Usually, we need in an
implementation of the functionoef f (ABA VARI ABLE *v) access to the application specific attributes of the
variablev. Therefore, we have to castto a pointer to an object of the claB'VARI ABLE for the computation

of the coefficient ofv. Such that this cast can be performed safely, the varialbl@ésanstraints used within an
application have to be compatible. If run time type inforimat(RTTI) is supported on your system, these casts
can be performed safely.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

5.1 Basics 47

The functioncoef f () is used within the framework when the row format of a constrai computed, e.g., when
the linear program is set up, or a constraint is added to tealiprogram. When the column associated with a
variable is generated, then the virtual member funatioef f () of the classABA_VARI ABLE is used, which is

in contrast to the functionoef f () of the classABA_CONSTRAI NT not an abstract function:

doubl e ABA VARI ABLE: : coef f (ABA_CONSTRAI NT *con)
{

return con->coeff(this);

}

This method of defining the coefficients of the constraintrimatia the constraints of the matrix originates
from cutting plane algorithms. Whereas in a column genaradigorithm we usually have a different view
on the problem, i.e., the coefficients of the constraint iwaire defined with the help of the variables. In
this case, it is appropriate to define the functidCONSTRAI NT: : coef f (ABA_VARI ABLE *v) analo-
gously to the functionABA VARI ABLE: : coef f (ABA CONSTRAI NT *v) and to define the the function
MYVARI ABLE: : coef f (ABA_CONSTRAI NT *v).

ABACUS provides two constraint/variable pairs in its applicatiodependent kernel. The most simple one is
where each variable is identified by an integer number (&&8#s NUWAR) and each constraint is represented
by its nonzero coefficients and the corresponding numbehefvariables (claséBA RONCON). We use this
constraint/variable pair for general mixed integer optiation problems.

The constraint/variable pakBA NUMCONVABA COLVAR is dual to the previous one. Here the constraints are
given by an integer number, but we store the nonzero coeffi@nd the corresponding row numbers for each
variable. Therefore, this constraint/variable pair isfuls®r column generation algorithms.

ABACUS is not restricted to a single constraint/variable pair witbne application. There can be an arbitrary
number of constraint and variable classes. It is only regiuihat the coefficients of the constraint matrix can be
safely computed for each constraint/variable pair.

5.1.2 The Master

There are two main reasons why we require a problem speciitemaf the optimization. The first reason is that
we have to embed problem specific data members like the pndolenulation. The second reason is the initializa-
tion of the first subproblem, i.e., the root node of the braant-bound tree has to be initialized with a subproblem
of the classvWSUB. Therefore, a problem specific master has to be derived fnenalassABA MASTER:

cl ass MYMASTER : public ABA MASTER {};

5.1.2.1 The Constructor

Usually, the input data is read from afile by the constructaney are specified by the arguments of the constructor.
From the constructor of the claBYMASTER the constructor of the base cla&BA MASTER must be called:

ABA MASTER(const char *probl emNanme, bool cutting, bool pricing,
ABA_OPTSENSE: : SENSE opt Sense = ABA OPTSENSE: : Unknown,
doubl e eps = 1.0e-4, double machi neEps = 1. 0e-7,
double infinity = 1.0e32);

Whereas the first three arguments are mandatory, the otheao@eptional.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

48 Using ABACUS

pr obl emNanme The name of the problem being solved.

cutting If t r ue, then cutting planes are generated.

pricing If t r ue, then inactive variables are priced out.

opt Sense The sense of the optimization.

eps A zero-tolerance used within all member functions of olgebiat have a pointer to

this global object.

machi neEps Another zero tolerance to compare a value of a floating panable with 0. This
value is usually less thagps, becauseps includes some “safety” tolerance, e.g., to
test if a constraint is violated.

infinity All floating point numbers greater thamf i ni ty are regarded as “infinitely big”.
Please note that this value might be different from the vitied_P-solver uses inter-
nally. You should make sure that the value used here is algagater than or equal
to the value used by the solver.

An optional argument of the constructor of the cl&8&A MASTER is the sense of the optimization. For some
problems (e.g., the binary cutting stock problem or thedliag salesman problem) the sense of the optimization
is already known when this constructor is called. For otlieblems (e.g, the mixed integer optimization problem)
the sense of the optimization is determined later when tpatidata is read in the constructor of the specific
application. In this case, the sense of the optimizationtbdse initialized explicitly before the optimization is
started with the functioopti m ze() .

The following example of a constructor for the clA88VASTER sets up the master for a branch-and-cut algorithm
and initializes the optimization sense explicitly as itead from the input file.

MYMASTER: : MYMASTER(const char *probl emNane)
ABA NASTER(pr obl emNane, true, false),
{
/1 read the data fromthe file probl enNane
if (/* problenmNane is a minimzation problent/)
initializeOptSense(ABA OPTSENSE: : M n);
el se
initializeOptSense(ABA OPTSENSE: : Max) ;

5.1.2.2 Initialization of the Constraints and Variables

The constraints and variables that are not generated dga#ynie.g., the degree constraints of the traveling
salesman problem or the constraints and variables of thelggroformulation of a general mixed integer opti-
mization problem, have to be set up and inserted in pools ir@imer function of the cladgYMASTER. These
initializations can be also performed in the constructot, Wwe recommend to use the virtual dummy function
initializeOptimn zation() for this purpose, which is called after the optimization tared with the
functionopti m ze() .

By default, ABACUS provides three different pools: one for variables and twa@mstraints. The first constraint

pool stores the constraints that are not dynamically géaerand with which the first LP-relaxation of the first
subproblem is initialized. The second constraint pool ipgnat the beginning and is filled up with dynamically
generated cutting planes. In gener@BACUS provides a more flexible pool concept to which we will come
back later, but for many applications the default pools afficsent.

After the initial variables and constraints are generaley have to be inserted into the default pools by calling
the function

virtual void initializePool s(ABA BUFFER<ABA CONSTRAI NT*> &constraints,
ABA BUFFER<ABA VARI ABLE*> &vari abl es,

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

5.1 Basics 49

i nt var Pool Si ze,
i nt cut Pool Si ze,
bool dynam cCut Pool = false);

Here,const r ai nt s are the initial constraintsyar i abl es are the initial variablesyar Pool Si ze is the
initial size of the variable pool, anclut Pool Si ze is the initial size of the cutting plane pool. The size of the
variable pool is always dynamic, i.e., this pool is increhgaequired. By default, the size of the cutting plane
pool is fixed, but it becomes dynamic if the argumdyphani cCut Pool istr ue.

There is second version of the function |initializePog¢l$@t allows the insertion of an initial set of cutting plane
into the cut pool.

The functioni ni ti al i zeOpti m zati on() can be also used to determine a feasible solution by a hieurist
such that the primal bound can be initialized.

Hence, the functionni ti al i zeOpti m zati on() could look as follows under the assumption that the func-
tionsnVar () andnCon() are defined in the clasdyMASTER and return the number of variables and the number
of the constraints, respectively. In the example we intéathe size of the cut pool with* nCon() . As the ar-
guments of the constructors of the clasb®%ARI ABLE andMYCONSTRAI NT are problem specific we replace
them by “...".

After the pools are set up the primal bound is initializedhwiite value of a feasible solution returned by the
functionnyHeuri sti c() . While the initialization of the pools is mandatory the ialization of the primal
bound is optional.

void MYMASTER :initializeOptimn zation()
{
ABA BUFFER<ABA VARI ABLE*> vari abl es(this, nVar());
for (int i =0; i <nVar(); i++)
vari abl es. push(new MYVARI ABLE(...));
ABA BUFFER<ABA CONSTRAI NT*> constraints(this, nCon());
for (i = 0; i < nCon(); i++)
constraints. push(new MYCONSTRAI NT(...));
initializePool s(constraints, variables, nVar(), 2*nCon());
pri mal Bound(nmyHeuristic());

5.1.2.3 The First Subproblem

The root of the branch-and-bound tree has to be initializitl an object of the problem specific subproblem class
MYSUB, which is derived from the clas&BA SUB. This initialization must be performed by a definition of the
pure virtual functiorf i r st Sub() , which returns a pointer to the first subproblem. In the foitey example we
assume that the constructor of the cle®$SUB for the root node of the enumeration tree has only a pointdreo
associated master as argument.

ABA SUB * MYMASTER: : fi rst Sub()
{

}

return new MYSUB(t his);

5.1.3 The Subproblem
Finally, we have to derive a problem specific subproblem fthenclassABA SUB:

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

50 Using ABACUS

class MYSUB : public ABA SUB {};

Besides the constructors only two pure virtual functionshef base clas8BA SUB have to be defined, which
check if a solution of the LP-relaxation is a feasible sautbf the mixed integer optimization problem, and
generate the sons after a branching step, respectivelyedver, the main functionality of the problem specific
subproblem is to enhance the branch-and-bound algoritttndynamic variable and constraint generation and
sophisticated primal heuristics.

5.1.3.1 The Constructors

The classABA _SUB has two different constructors: one for the root node of thtentization and one for all other
subproblems of the optimization. This differentiationégjuired as the constraint and variable set of the root node
can be initialized explicitly, whereas for the other nodeis tata is copied from the father node and possibly
modified by a branching rule. Therefore, we also have to impl& these two constructors for the cladSUB.

The root node constructor for the claBBA _SUB must be called from the root node constructor of the class
MYSUB.

ABA SUB(ABA MASTER *nast er,
doubl e conRes, doubl e varRes, double nnzRes,
bool relativeRes = true,

ABA BUFFER<ABA_ POCLSLOT<ABA CONSTRAI NT, ABA VARI ABLE> *> *constraints
ABA BUFFER<ABA POOLSLOT<ABA VARI ABLE, ABA CONSTRAI NT> *> *variabl es =
nmast er A pointer to the corresponding master of the optimization.
conRes The additional memory allocated for constraints.
var Res The additional memory allocated for variables.
nnzRes The additional memory allocated for nonzero elements ottmestraint matrix.

rel ati veRes If this argument ist r ue, then reserve space for variables, constraints, and nosiodr
the previous three arguments is given in percent of the malgiumbers. Otherwise, the
numbers are interpreted as absolute values (casted t@ihteg

constrai nts The pool slots of the initial constraints. If the value islfen all constraints of the default
constraint pool are taken.

vari abl es The pool slots of the initial variables. If the value is O, rihal variables of the default
variable pool are taken.

The values of the argumentonRes, var Res, andnnzRes should only be good estimations. An underes-
timation does not cause a run time error, because spacelliscegad internally as required. However, many
reallocations decrease the performance. An overestimatity wastes memory.

In the following implementation of a constructor for the towde we do not specify additional memory for
variables, because we suppose that no variables are gahesatamically. We accept the default settings of the
last three arguments, as this is normally a good choice foryrapplications.

MYSUB: : MYSUB(MYMASTER * mast er)
ABA SUB(master, 50.0, 0.0, 100.0)

{1}
While there are some alternatives for the implementatiomefrbot node for the application, the constructor of
non-root nodes has usually the same form for all applicatibat might be augmented with some problem specific
initializations.

MYSUB: : MYSUB(ABA_NMASTER *master, ABA SUB *father, ABA BRANCHRULE *branchRul e)

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

0)

01

5.1 Basics 51

ABA SUB(nmaster, father, branchRul e)
{}

mast er A pointer to the corresponding master of the optimization.

fat her A pointer to the father in the enumeration tree.

branchRul e The rule defining the subspace of the solution space assdaiath this node. More
information about branching rules can be found in Secsicgh?7. As long as you are
using only the default branching on variables you do not ha@ow anything about
the classABA BRANCHRULE.

The root node constructor for the clag¥'SUB has to be called from the functidn r st Sub() of the class
MYMASTER. The constructor for non-root nodes has to be called in thetfon gener at eSon() of the class
MYSUB.

5.1.3.2 The Feasibility Check

After the LP-relaxation is solved we have to check if its optim solution is a feasible solution of our optimization
problem. Therefore, we have to define the pure virtual fumdtieasi bl e() in the classviySUB, which should
returnt r ue if the LP-solution is a feasible solution of the optimizatiproblem, and al se otherwise:

bool MYSUB: : f easi bl e()
{}

If all constraints of the integer programming formulatiae aresent in the LP-relaxation, then the LP-solution is
feasible if all discrete variables have integer valuessThieck can be performed by calling the member function
integerFeasible() of the base claf3A SUB:

bool MYSUB: : f easi bl e()
{

}

return integerFeasible();

If the LP-solution is feasible and its value is better thaa phimal bound, theBACUS automatically updates
the primal bound. However, the update of the solution iisgdfoblem specific, i.e., this update has to be performed
within the functionf easi bl e() .

5.1.3.3 The Generation of the Sons

Like the pure virtual functiorf i r st Sub() of the classABA MASTER, which generates the root node of the
branch-and-bound tree, we need a function generating afsarsabproblem. This function is required as the
nodes of the branch-and-bound tree have to be identifiedanpttoblem specific subproblem of the cla8SUB.
This is performed by the pure virtual functigener at eSon() , which calls the constructor for a non-root node
of the classvwSUB and returns a pointer to the newly generated subproblere I€dnstructor for non-root nodes
of the class\iySUB has the same arguments as the corresponding construcher lodise clasaBA SUB, then the
functiongener at eSon() can have the following form:

ABA SUB *MYSUB: : gener at eSon(ABA_ BRANCHRULE *r ul e)
{

}

return new MYSUB(master_, this, rule);

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

52 Using ABACUS

This function is automatically called during a branchinggess. If the already built-in branching strategies are
used, we do not have to care about the generation of the breneher ul e. How other branching strategies can
be implemented is presented in SectioB.7.

5.1.3.4 A Branch-and-Bound Algorithm

The two constructors, the functidreasi bl e() , and the functiorgener at eSon() must be implemented for
the subproblem class of every application. As soon as thesxtibns are available, a branch-and-bound algorithm
can be performed. All other functions of the cl&8¢SUB that we are going to explain now, are optional in order
to improve the performance of the implementation.

5.1.3.5 The Separation

Problem specific cutting planes can be generated by redgfinévirtual dummy functiosepar at e() . In this
case, also the argumeaitit t i ng in the constructor of the clagsBA MASTER should receive the valuer ue,
otherwise the separation is skipped. The first step is thefirétion of the functionsepar at e() of the base
classABA SUB.

int MYSUB:: separate()
{}

The functionsepar at e() returns the number of generated constraints.

We distinguish between the separation from scratch andeparation from a constraint pool. Newly generated
constraints have to be added by the functamdCons() to the buffer of the clas&BA SUB, which returns
the number of added constraints. Constraints generatedriiereiterations that have been become inactive in
the meantime might be still contained in the cut pool. Thesestraints can be regenerated by calling the func-
tionconst r ai nt Pool Separ at i on(), which adds the constraints to the buffer without an exptiall of the
functionaddCons() .

A very simple separation strategy is implemented in thefahg example of the functiogepar at e() . Only if

the pool separation fails, we generate new cuts from scratod generated constraints are added with the function
addCons() to the internal buffer, which has a limited size. The numtferamstraints that can still be added to
this buffer is returned by the functiamddConBuf f er Space() . The functionmy Separ at e() performs here
the application specific separation. If more cuts are addédthe functionaddCons() than there is space in
the internal buffer for cutting planes, then the redundai are discarded. The functiaaldCons() returns the
number of actually added cuts.

int MYSUB:: separate()
{
int nCuts = constraintPool Separation();
if (!I'nCuts) {
ABA BUFFER<ABA CONSTRAI NT*> newCut s(master _, addConBuf f er Space());
nCuts = nySeparat e(newCuts);
if (nCuts) nCuts = addCons(newCuts);
}

return nCuts;

}
Note, ABACUS does not automatically check if the added constraints alyreiolated. Adding only non-
violated constraints, can cause an infinite loop in the rmgtfilane algorithm, which is only left if the tailing off

control is turned on (see SectiérR.29.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

5.1 Basics 53

While constraints added with the functi@ddCons() are usually allocated by the user, they are deleted by
ABACUS. They musihot be deleted by the user (see Section.13.

If not all constraints of the integer programming formutatiare active, and all discrete variables have integer
values, then the solution of a separation problem might geired to check the feasibility of the LP-solution. In
order to avoid a redundant call of the same separation #éhgotater in the functiorsepar at e() , constraints
can be added already here by the funcaaidCons() .

In the following example of the functioheasi bl e() the separation is even performed if there are discrete
variables with fractional values such that the separatiaiime does not have to be called a second time in the
functionsepar at e() .

bool MYSUB: : f easi bl e()
{

bool feasible;

if (integerFeasible()) feasible
el se feasible

true;
fal se;

ABA BUFFER<ABA CONSTRAI NT*> newCut s(master _, addConBuf f er Space());
int nSep = nySepar at e(newCut s) ;

if (nSep) {
feasi ble = fal se;
addCons(newCut s) ;
}

return feasible;

5.1.3.6 Pricing out Inactive Variables

The dynamic generation of variables is performed very sirtyilto the separation of cutting planes. Here, the
virtual functionpri ci ng() has to be redefined and the argumpni ci ng in the constructor of the class
ABA MASTER should receive the valuer ue, otherwise the pricing is skipped.

We illustrate the redefinition of the functigr i ci ng() by an example that is an analogon to the example given
for the functionsepar at e() .

int MYSUB:: pricing()
{
int nNewars = vari abl ePool Separation();
if (!'nNewvars) {
ABA BUFFER<ABA VARI ABLE*> newVari abl es(naster _, addVar Buf f er Space());
nNewvars = nyPrici ng(newari abl es);
i f (nNewvars) nNewvars = addVars(newVari abl es);
}

return nNewvars;

}

While variables added with the functi@ddVar s() are usually allocated by the user, they are deleteAByA-
CUS. They musihot be deleted by the user (see Secttop.13.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

54 Using ABACUS

5.1.3.7 Primal Heuristics

After the LP-relaxation has been solved in the subprobletimipation the virtual functiom npr ove() is called.
Again, the default implementation does nothing but in afied®n in the derived clasBlYSUB application specific
primal heuristics can be inserted:

int MYSUB::inprove(double &primal Val ue)
{1}

If a better feasible solution is found its value has to beextanpr i mal Val ue and the function should return 1,
otherwise it should return 0. In this case, the value of th@grbound is updated b BACUS, whereas the solu-
tion itself has to be updated within the functionpr ove() as already explained for the functibeasi bl e() .

It is also possible to update the primal bound already withi functioni npr ove() if this is more conve-
nient to reduce internal bookkeeping. In the following epdéamwe apply the two problem specific heuristics
nyFi rst Heuri stic() andnySecondHeuri stic(). After each heuristic we check if theal ue of
the solution is better than the best known one with the fonctall mast er - >bett er Pri mal (val ue) .

If this function returnst r ue we update the value of the best known feasible solution byngathe function
mast er _->pri mal Bound() .

int MYSUB::inprove(doubl e &pri nmal Val ue)
{

int status = O;

doubl e val ue;

myFi rst Heuri stic(val ue);

if (master_->betterPrimal (value)) {
mast er _->pri mal Bound(val ue) ;
pri mal Val ue = val ue;
status = 1;

}

mySecondHeuri stic(val ue);

if (master _->betterPrimal (value)) {
mast er _->pri mal Bound(val ue) ;
primal Val ue = val ue;
status = 1;

}

return status;

5.1.3.8 Accessing Important Data

For a complete description of all members of the claBs SUB we refer to the documentation in the reference
manual. However, in most applications only a limited nundfefata is required for the implementation of problem
specific functions, like separation or pricing functionsr Bimplification we want to state some of these members
here:

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

5.1 Basics 55

int nCon() const; returns the number of active constraints.

int nvar() const; returns the number of active variables.

ABA VARI ABLE *variable(int i); returns a pointer to thie-th active variable.

ABA CONSTRAI NT *constraint(int i); returnsa pointer to thie-th active constraint.

doubl e *xVal _; an array storing the values of the variables after the linear
program is solved.

doubl e *yVal _ an array storing the values of the dual variables after the

linear program is solved.

5.1.4 Starting the Optimization

After the problem specific classes are defined as discusdbe iorevious sections, the optimization can be per-
formed with the following main program. We suppose that tlest@ar of our new application has as only parameter
the name of the input file.

#i ncl ude "nymaster. h"

int main(int argc, char **argv)

{
MYMASTER master (argv[1]);

master. optim ze();

return master.status();

}

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

56 Using ABACUS

5.2 Advanced Features

In the previous section we described the first steps for tigeimentation of a linear-programming based branch-
and-bound algorithm witABACUS. Now, we present several advanced featurea BIACUS. We show how
various built-in strategies can be used instead of the tteftiategies and how new problem specific concepts can
be integrated.

5.2.1 Using other Pools

By default, ABACUS provides one variable pool, one constraint pool for coistisaf the problem formulation,
and another constraint pool for cutting planes. For cerggiplications the implementation of a different pool
concept can be advantageous. Suppose we would like to prowial different pools for cutting planes for our
application instead of our default cutting plane pool. Ehpsols have to be declared in the cIB$ASTER and
we also provide two public functions returning pointerstege pools.

cl ass MYMASTER : public ABA MASTER {
publi c:
ABA_STANDARDPOOL<ABA CONSTRAI NT, ABA_VARI ABLE> *nmyCut Pool 1()
{

}
ABA_STANDARDPOCOL<ABA CONSTRAI NT, ABA_VARI ABLE> *mnyCut Pool 2()

{
}

private:
ABA_STANDARDPOOL<ABA CONSTRAI NT, ABA_VARI ABLE> *nyCut Pool 1_;
ABA_STANDARDPOOL<ABA CONSTRAI NT, ABA VARI ABLE> *nmyCut Pool 2_;

return myCut Pool 1_;

return myCut Pool 2_;

b

Now, instead of the default cutting plane pool we set up ouw fwoblem specific cut pools in the func-
tioni nitializeOptimn zati on(). Thisis done by using 0 as last argument of the fundtioht i al i ze-
Pool s(), which sets the size of the default cut pool to 0. The size®¥Hriable pool is chosen arbitrarily. Then,
we allocate the memory for our pools. For simplification, wpose that the size of each cut pool is 1000.

void MYMASTER: :initializeOptimzation()
{
// initialize the constraints and vari abl es
initializePool s(constraints, variables, 3*variables.nunber(), 0);

my Cut Pool 1_
my Cut Pool 2_

}

new ABA STANDARDPOOL<ABA CONSTRAI NT, ABA VARI ABLE>(thi's, 1000);
new ABA_STANDARDPOOL<ABA CONSTRAI NT, ABA VARI ABLE>(this, 1000);

The following redefinition of the functioeepar at e() shows how constraints can be separated from and added
to our pools instead of the default cut pool. If a pointer tooalgs specified as an argument of the function
const r ai nt Pool Separ ati on(), then constraints are regenerated from this pool instedleoflefault cut
pool. By specifying a constraint pool as the second arguighte functionraddCons() the constraints are added

to this pool instead of the default cut pool. As the memimst er _ of the base clasaBA_SUB is a pointer to an
object of the clasé&\BA MASTER we require an explicit cast to call the member functiog€ut Pool 1() and

my Cut Pool 2() of the class\wMASTER.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

5.2 Advanced Features 57

int MYSUB:: separate()
{
ABA BUFFER<ABA CONSTRAI NT*> newCut s(master , 100);
int nCuts = constraintPool Separation(0, ((MYMASTER*) master _)->nyCut Pool 1());
if (I'nCuts) {
nCuts = mySepar at el(newCuts);
if (nCuts) nCuts = addCons(newCuts, ((MYMASTER*) nmaster_)->myCut Pool 1());

}
if (!'nCuts) {
nCuts = constraint Pool Separation(0, ((MYMASTER*) master_)->myCut Pool 2());
if (!'nCuts) {
nCuts = nySeparat e2(newCuts);
if (nCuts) nCuts = addCons(newCuts, ((MYMASTER*) nmaster_)->myCut Pool 2());

}
}

return nCuts;
}

Using application specific variable pools can be done in aalogous way with the two functions
vari abl ePool Separ ati on() andaddVars().

5.2.2 Pool without Multiple Storage of Iltems

One of the data structures using up very large parts of theaneare the pools for constraints and variables.
Limiting the size of the pool has two side effects. First, jpg@paration or pricing is less powerful with a small
pool. Second, the branch-and-bound tree might be procegtiededuced speed, since subproblems cannot be
initialized with the constraint and variable system of tathér node.

On the other hand it can be observed that the same constraiatiable is generated several times in the course of
the optimization. This could be avoided by scanning conajeéhe pool before separating or pricing from scratch.
But, if direct separation or pricing are fast, such a sthatan be less advantageous.

ThereforeABACUS provides the template clagd8A NONDUPLPQOOL that avoids storing the same constraint
or variable more than once in a pool. More precisely, whertem is inserted in such a pool, the inserted item
is compared with the already available items. If it is algeptesent in the pool, the inserted item is deleted and
replaced by the already available item.

In order to use this pool, you have to set up your own pool adamed in Section5.2.1 Instead of a
ABA STANDARDPQOOL you have to use now aABA NONDUPLPQOCL. For constraints or variables that are in-
serted in a pool of the template cla&88BA NONDUPLPOCL, the virtual functiondhashKey, name, andequal

of the base clasBBA_ CONVAR have to be redefined. These functions are used in the coroparisa new item
and the items that are already stored in the pool. For théslefahese functions we refer to the reference manual.

5.2.3 Constraints and Variables

We discussed the concept of expanding and compressingraionstand variables already in Sectidr?.4

This feature can be activated for a specific constraint dakle class if the virtual dummy functiorxpand()
andconpr ess() are redefined. Here we give an example for constraints, keantbe applied to variables
analogously. We discussed the expanded and compresseat fafrthe subtour elimination constraints already in
Section4.2. The nodes defining the subtour elimination constraint argained in the buffenodes_. When the
constraint is expanded each node of the subtour eliminatiostraint is marked.

voi d SUBTOUR: : expand()

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

58 Using ABACUS

i f(expanded()) return;
mar ked_ = new bool [graph_->nNodes() + 1];
int nGraph = graph_->nNodes();
for (int v = 1; v <= nGaph; v++)
mar ked [v] = fal se;
i nt nNodes = nodes_. size();
for (int v = 0; v < nNodes; v++)
mar ked_[nodes_[Vv]] = true;

}

For the compression of the constraint only the allocated amgris deleted.

voi d SUBTOUR: : conpress()
{

if (!expanded()) return;
del ete nmarked_;

}

5.2.3.1 Constraints

Often, the definition of constraint specific expanded andpressed formats provides already sufficiently efficient
running times for the generation of the row format, the cotapon of the slack of a given LP-solution, or the
check if the constraint is violated.

If nevertheless further tuning is required, then the fuomdigenRow() andsl ack() can be redefined. The
function

virtual int genRow(ABA ACTI VE<ABA VARI ABLE, ABA CONSTRAI NT> *vari abl es,
ABA_ROW &r ow) ;

stores the row format associated with the variablevsati abl es in r ow and returns the number of nonzero
coefficients stored inow.
The function

virtual doubl e sl ack(ABA ACTI VE<ABA VARI ABLE, ABA CONSTRAI NT> *vari abl es,
doubl e *x);

returns the slack of the vectarassociated with the variable sedr i abl es. Instead of redefining the function
vi ol at ed() due to performance issues, the functminack() should be redefined because this function is
called from the functiowvi ol at ed() and uses most of the joint running time.

5.2.3.2 Variables

The equivalents of the clag®8A VARI ABLE to the functiongenRow() andsl| ack() of the classABA CON-
STRAI NT are the functiongenCol unrm() andr edCost () . Also for these two functions a redefinition due to
performance reasons can be considered if the expansiopfeesion concept is not sufficient or cannot be applied.

The function

virtual int genCol um(ABA_ ACTI VE<ABA CONSTRAI NT, ABA VARI ABLE> *constraints,
ABA COLUWN &col);

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

5.2 Advanced Features 59

stores the column format of the variable associated witlctmstraint setonst r ai nt s in the argumentol
and returns the number of nonzero coefficients storeabin.

The function

virtual doubl e redCost(ABA _ACTI VE<ABA CONSTRAI NT, ABA VARI ABLE> *constraints,
doubl e *y);

returns the reduced cost of the variable corresponding ¢odiial variablesy of the active constraints
constraints. As a redefinition of the virtual member functiah ack() of the classABA_ CONSTRAI NT
might speed up the functiowi ol at ed(), also a redefinition of the functionedCost () can speed up the
functionvi ol at ed() of the classABA VARI ABLE.

5.2.4 Infeasible Linear Programs

As long as we do not generate variables dynamically, a sibigmmocan be immediately fathomed if the LP-
relaxation is infeasible. However, if not all variables active we have to check if the addition of an inactive
variable can restore the feasibility. An infeasibility caither be detected when the linear program is set up, or
later by the LP-solver (se€ [ii95]).

If fixed and set variables are eliminated, it might happenmiie row format of a constraint is generated in the
initialization of the linear program that a constraint hasa left hand side but can never be satisfied due to its
right hand side. In this case, the function

virtual int initMkeFeas(ABA BUFFER<ABA | NFEASCON*> &i nf easCon,
ABA BUFFER<ABA VARI ABLE*> &newvar s,
ABA POOL<ABA VARI ABLE, ABA CONSTRAI NT> **pool);

is called. The default implementation always returns 1 tlidate that no variables could be added to restore
feasibility. If it might be possible that in our applicatitime addition of variables could restore the feasibilitgrth
this function has to be redefined in a derived class.

The bufferi nf easCon stores pointers to objects storing the infeasible comgsaind the kind of infeasibility.
The new variables should be added to the bufiewVar s, and if the variables should be added to an other pool
than the default variable pool, then a pointer to this poolusth be assigned tbpool . If variables have been
added that could restore the feasibility for all infeasit@straints, then the function should return 0, otherwise i
should return 1.

If an infeasible linear program is detected by the LP-solrem the function
virtual int makeFeasible();

is called. The default implementation of the virtual dumnaydtion does nothing except returning 1 in order
to indicate that the feasibility cannot be restored. Otli@swan iteration of the dual simplex method has to be
emulated according to the algorithm outlined Im[95]. When the function is called it is guaranteed that the
current basis is dual feasible. Exactly one of the membeaabtasi nf easVar _ ori nf easCon_ of the class
ABA SUB is nonnegative. If nf easVar _ is nonnegative, then it holds the number of an infeasiblélte,

if i nf easCon_ is nonnegative, then it holds the number of an infeasiblekslariable. The arrapl nvRow_
stores the row of the basis inverse corresponding to thagitite variable (only basic variables can be infeasible).
Then the inactive variables have to be scanned like in thetiompr i ci ng() . Variables that might restore the
feasibility have to be added by the functiaddCons() . If no such candidate is found the subproblem can be
fathomed.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

60 Using ABACUS

5.2.5 Other Enumeration Strategies

With the parameteEnumner at i onSt r at egy in the file. abacus the enumeration strategies best-first search,
breadth-first search, depth-first search, and a divingesiyatan be controlled (see Sectibr2.2§. Another
problem specific enumeration strategy can be implementeddsfining the virtual function

virtual int enunerationStrategy(ABA SUB *sl1, ABA SUB *s2);

which compares the two subproblesis ands2 and returns 1 if the subproblesi should be processed before
s2, returns—1 if the subproblens2 should be processed befaé, and returns 0 if the two subproblems have
the same precedence in the enumeration.

We provide again an implementation of the depth-first sesfietiegy as an example for a reimplementation of the
functionenuner ati onStrat egy() .

int MYMASTER: : enuner ati onStrategy(ABA SUB *s1, ABA SUB *s2)
{

if(sl->level() > s2->level()) return 1;

if(sl->level () < s2->level()) return -1;

return O,

}

In the default implementation of the depth-first searchtstpawe do not return 0 immediately if the two subprob-
lems have the same level in the enumeration tree, but weheallittual function

int ABA_MASTER : equal SubConpar e(ABA SUB *s1, ABA SUB *s2);

which return 0 if both subproblems have not been generategtiyg a binary variable. Otherwise, that subprob-
lem has higher priority where the branching variable is gsghé upper bound, i.e., it returns 1 if the branching
variable ofs1 is set to the upper boungs1 if the branching variable a$2 is set to the upper bound, and 0 oth-
erwise. Other strategies for resolving equally good sutipros for the built-in enumeration strategies depth-first
search and best-first search can be implemented by a reefioftthis virtual function. Moreover, this function
can also be generalized for other enumeration strategies.

5.2.6 Selection of the Branching Variable
The default branching variable selection strategy can begéd by the redefinition of the virtual function
i nt ABA SUB:: sel ect Branchi ngVari abl e(i nt &vari abl e);
in a class derived from the clag®8A SUB. If a branching variable is found it has to be stored in theuargnt

var i abl e and the function should return 0. If the function fails to featbranching variable, it should return 1.
Then, the subproblem is automatically fathomed.

Here we present an example where the first fractional varisbthosen as branching variable. In general, this is
not a very good strategy.

i nt MYSUB: : sel ect Branchi ngVari abl e(i nt &vari abl e)

{
for (int i =0; i < nVar(); i++)
if (fracPart(xVal _[i]) > master_->nmmachi neEps()) {
variable = i;
return O;

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

5.2 Advanced Features 61

}

return 1;

}

The functionf r acPar t (doubl e x) returns the absolute value of the fractional park of

5.2.7 Using other Branching Strategies

Although branching on a variable is often an adequate glydf@ branch-and-cut algorithms, it is in general
useless for branch-and-price algorithms. But also for ¢neand-cut algorithms other branching strategies, e.g.,
branching on a constraint can be interesting alternatives.

For the implementation of different branching strategieshave introduced the concept of branching rules in the
classABA BRANCHRULE (see Sectiod.2.7.3. The virtual function

i nt ABA SUB:: gener at eBr anchRul es(ABA BUFFER<ABA BRANCHRULE*> &rul es);

returns O if it can generate branching rules and stores fdr sabproblem, that should be generated, a branching
rule in the bufferr ul es. If no branching rules can be generated, this function nstlrand the subproblem is
fathomed. The default implementation of the functgmmer at eBr anchRul es() generates two rules for two
new subproblems by branching on a variable. These rulegpresented by the class&BA SETBRANCHRULE

for binary variables andBA_BOUNDBRANCHRULE for integer variables, which are derived from the abstriag<
ABA_ BRANCHRULE. Moreover, we provide also rules for branching on constsafdiBA CONBRANCHRULE),

and for branching by setting an integer variable to a fixedesgh\BA VALBRANCHRULE). Other branching rules
have to be derived from the clag®A BRANCHRULE. The default branching strategy can be replaced by the
redefinition of the virtual functiogener at eBr anchRul es() in a class derived from the clasB8A SUB.

5.2.7.1 Branching on a Variable

The default branching strategy AABACUS is branching on a variable. Different branching variable
selection strategies can be chosen in the parameter file $seton 5.2.2. If a problem specific
branching variable selections strategy should be impléadent is not required to redefine the function
ABA SUB: : gener at eBr anchRul e(), but a redefinition of the function

int ABA SUB::sel ect Branchi ngVari abl e(int &vari abl e)

is sufficient. If a branching variable is found it should berst in the function argumentari abl e and
sel ect Branchi ngVari abl e() should return 0, otherwise it should return 1.

If no branching variable is found, the subproblem is fathdme

5.2.7.2 Branching on a Constraint

As all constraints used iIMBACUS, also branching constraints have to be inserted in a pook ftihction
ABA POOL: :insert () returns a pointer to the pool slot the constraint is storeithan is required in the con-
structor ofABA CONBRANCHRULE. Although the default cut pool can be used for the branchmstraints, an
extra pool for branching constraints is recommended, tsxéitst no redundant work in the pool separation is
performed, and second the branching constraint pool sHmildynamic such that all branching constraints can
be inserted. This pool for the branching constraints shbalddded to your derived master class. It is sufficient
that thesi ze of the branching pool is only a rough estimation. If the btang pool is dynamic, it will increase
automatically if required.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

62 Using ABACUS

cl ass MYMASTER : ABA MASTER {
ABA_STANDARDPOOL<ABA CONSTRAI NT, ABA VARI ABLE> *br anchi ngPool _;
}

MYMASTER: : MYMASTER(const char *pr obl enNane)
ABA NASTER(pr obl emNane, true, false)

{
branchi ngPool _ = new ABA STANDARDPOOL<ABA CONSTRAI NT, ABA VARI ABLE>(t hi s,
si ze,
true);
}
MYMASTER: : ~MYMASTER()
{
del et e branchi ngPool _;
}

The constraint branching rules have to be generated in tieifun MYSUB: : gener at eBr anchRul es() . It
might be necessary to introduce a new class derived fromléss ABA CONSTRAI NT for the representation
of your branching constraint. For simplification we assureeehthat your branching constraint is also of type
MYCONSTRAI NT. Each constraint is added to the branching pool.

If the generation of branching constraints failed, you nigito resort to the standard branching on variables.

i nt MYSUB: : gener at eBr anchRul es(ABA BUFFER<ABA BRANCHRULE* > &r ul es)
{
if (/* branching constraints can be found */) {
ABA POOLSLOT<ABA CONSTRAI NT, ABA VARI ABLE> *pool Sl ot ;

/* generate the branching rule for the first new subprobl em */

MYCONSTRAI NT *constraintl = new MYCONSTRAI NT(...);
pool Sl ot = ((MYMASTER *) nmster_)->branchi ngPool _->i nsert(constraintl);
rul es. push(new ABA CONBRANCHRULE(nast er , pool Slot);

/* generate the branching rule for the second new subprobl em */
MYCONSTRAI NT *constraint2 = new MYCONSTRAI NT(...);

pool Sl ot = ((MYMASTER *) master _)->branchi ngPool ->insert(constraint?2);
rul es. push(new ABA CONBRANCHRULE(naster , pool Slot);

return O;

el se
return ABA SUB:: generateBranchRul es(rules); // resort to standard branching

}

Moreover, a branching constraint should be locally valid aat dynamic. This has to be specified when calling the
constructor of the base clas8A CONSTRAI NT. Of course, the subproblem defined by the branching constrai
is not available at the time when the branching constraimgfeiserated. However, any locally valid constraint
requires an associated subproblem in the constructorefdrer, the (incorrect) subproblem in which the branching
constraint is generated should be usa@ACUS will modify the associated subproblem later in the congbuc
of the subproblem generated with the constraint branchiteg r

When the subproblem generated by the branching constraaatiisted at the beginning of its optimization the
branching constraint is not immediately added to the lippgagram and the active constraints, but it is inserted

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

5.2 Advanced Features 63

into the buffer for added constraints similarly as cuttitgnes are added (see Sect®g.16.

5.2.7.3 Problem Specific Branching Rules

A problem specific branching rule is introduced by the deidvaof a new clasé &YyBRANCHRULE from the base
classABA BRANCHRULE. As example we show how a branching rule for setting a vagisiits lower or upper
bound is implemented. This example has some small diffeetactheABACUS classABA SETBRANCHRULE.

cl ass MYBRANCHRULE : public ABA BRANCHRULE {
public:
MYBRANCHRULE(ABA MASTER *naster, int variable, ABA FSVARSTAT:: STATUS st at us);
vi rtual ~MYBRANCHRULE() ;
virtual int extract(ABA_SUB *sub);

private:
i nt variable ; // the branching variable
ABA FSVARSTAT: : STATUS status_; /1 the status of the branching variable

H

The constructor initializes the branching variable andsitgus ABA_FSVARSTAT: : Set ToLower Bound or
ABA FSVARSTAT: : Set ToUpper Bound).

MYBRANCHRULE: : MYBRANCHRULE(ABA MASTER * nast er,
int variabl e,
ABA_FSVARSTAT: : STATUS st at us)
ABA BRANCHRULE(nast er),
vari abl e_(vari abl e),
status_(status)

{1}

MYBRANCHRULE: : ~MYBRANCHRULE()
{1}

The pure virtual functiorext r act () of the base claséBA_BRANCHRULE has to be defined in every new
branching rule. This function is called when the subproblsractivated at the beginning of its optimization.
During the activation of the subproblem a copy of the finalstaint and variable system of the father subproblem
is made. The functioext r act () should modify this system according to the branching rule.

In our example we first check if setting the branching vagatduses a contradiction. In this case we refuim
order to indicate that the subproblem can be fathomed imaelgli Otherwise we set the branching variable and
returnO.

i nt MYBRANCHRULE: : extract (ABA_SUB *sub)

{
i f (sub->fsVarStat(variable)->contradiction(status_))
return 1;
sub->fsVar St at (vari able_)->status(status_);
return O;
}

As a second example for the design of a branching rule we sbenttre constraint branching rule ABACUS is
implemented. After inserted the branching constraint in@ plot the constraint branching rule can be constructed
with this pool slot.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

64 Using ABACUS

cl ass ABA CONBRANCHRULE : public ABA BRANCHRULE ({
publi c:
ABA CONBRANCHRULE(ABA MASTER * nast er,
ABA POOLSLOT<ABA CONSTRAI NT,
ABA VARI ABLE> *pool Sl ot) ;
virtual ~ABA CONBRANCHRULE() ;
virtual int extract(ABA SUB *sub);

private:
ABA_POOLSLOTREF<ABA CONSTRAI NT, ABA VARI ABLE> pool Sl ot Ref _;

b

ABA_CONBRANCHRULE: : ABA_CONBRANCHRULE(ABA_MASTER * nast er,
ABA POOLSLOT<ABA CONSTRAI NT, ABA VARI ABLE> *pool Sl ot)
ABA BRANCHRULE(nast er),
pool Sl ot Ref _(pool Sl ot)

{}

ABA_CONBRANCHRULE: : ~ABA_ CONBRANCHRULE()
{1}

In the functionext r act () the branching constraint is added to the subproblem. Thusldralways be done
with the functionABA SUB: : addBr anchi ngConstrai nt (). Since adding a branching constraint cannot
cause a contradiction, we always return O.

i nt ABA CONBRANCHRULE: : ext ract (ABA _SUB *sub)

i f (sub->addBranchi ngConstrai nt (pool SlotRef .slot())) {
master ->err() << "ABA CONBRANCHRULE: :extract(): addition of branching ";
master ->err() << "constraint to subproblemfailed." << endl;
exit(Fatal);

}

return O;

}

5.2.8 Strong Branching

In order to reduce the size of the enumeration tree, it is mapo to select “good” branching rules. We present
a framework for measuring the quality of the branching rulesst, we describe the basic idea and explain the
details later.

A branching step is performed by generating a set of bragchiles, each one defines a son of the current sub-
problem. We call such a set of branching rulesaanple For instance, if we branch on a single binary variable,
the corresponding sample consists of two branching rules,defining the subproblem in which the branching
variable is set to the upper bound, the other one the sutmroinl which the branching variable is set to the lower
bound. Instead of generating a single branching samplenibw possible to generate a set of branching samples
and selecting from this set the “best” sample for generatiegsons of the subproblem. In this evaluation process
for each branching rule of each branching sample a rank igpuoted. In the default implementation this rank
is given by performing a limited number of iterations of theatisimplex method for the first linear program of
the subproblem defined by the branching rule. For maxinonapiroblems we select that sample for which the

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

5.2 Advanced Features 65

maximal rank of its rules is minimal. For minimization prebis we select that sample for which the minimal rank
of its rules is maximal.

Both the computation of the ranks and the comparison of tles ikan be adapted to problem specific criteria.

5.2.8.1 Default Strong Branching

Strong branching can be turned on for the built-in branclstrgtegies that are controlled by the parameter
Br anchi ngSt r at egy of the configuration file. With the parametsBr anchi ngVar i abl eCandi dat es
the number of tested branching variables can be indicatedalso Sectiob.2.2§.

5.2.8.2 Strong Branching with Special Branching Variable 8lection

In order to use strong branching in combination with a prob$pecific branching variable selection strategy, it is
only necessary to redefine the virtual function

i nt ABA SUB:: sel ect Branchi ngVari abl eCandi dat es(ABA BUFFER<i nt > &candi dat es)

in the problem specific subproblem class. In the buffandi dat es the indices of the variables that should
be tested as branching variables are collected. If at lesstcandidate is found, the function should rettisn
otherwise0.

ABACUS tests all candidates by solving (partially) the first linpaogram of all potential sons and selects the
branching variable as previously explained.

5.2.8.3 Ranking Branching Rules

In the default version the rank of a branching rule is comghiiie the functionl pRankBr anchi ngRul e() .
The rank can be determined differently by redefining theugirfunction

doubl e ABA_SUB: : r ankBr anchi ngRul e(ABA_BRANCHRULE *br anchRul e)

that returns a floating point number associated with the oditke br anchRul e.

5.2.8.4 Comparing Branching Samples

After a rank to each rule of each branching sample has be@nasgsy the functiom ankBr anchi ngRul e()
all branching samples are compared and the best one isesklethis comparison is performed by the virtual
function

i nt ABA SUB: : conpar eBr anchi ngSanpl eRanks(ABA ARRAY<doubl e> &r ankl,
ABA_ARRAY<doubl e> &rank?2)

that compares the ranksank 1 of all rules of one branching sample with the ramksk 2 of the rules of another
branching sample. It returrisif the ranks stored imank1 are betterQ if both ranks are equal, andl if the
ranks stored im ank?2 are better.

For maximization problems in the default versiorcafmpar eBr anchi ngSanpl eRanks() the arrayr ank1
is better if its maximal entry is less than the maximal entfyr ank2 (min-max criteria). For minimization
problemsr ank1 is better if its minimal entry is greater than the minimalrgrdf r ank2 (max-min criteria).

Problem specific orders of the ranks of branching samplebeamplemented by redefining the virtual function
conpar eBr anchi ngSanpl eRanks() .

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

66 Using ABACUS

5.2.8.5 Selecting Branching Samples

If the redefinition of the functiowonpar eBr anchi ngSanpl e() is not adequate for a problem specific selec-
tion of the branching sample, then the virtual function

int ABA SUB: : sel ect Best Branchi ngSanpl e(i nt nSanpl es,
ABA BUFFER<ABA BRANCHRULE*> **sanpl es)

can be redefined. The number of branching samples is givermdynteger numbenSanpl es, the array

sanpl es stores pointers to buffers storing the branching rules efshmples. The function should return the
number of the best branching sample.

5.2.8.6 Strong Branching with other Branching Rules

As explained in Sectiob.2.7other branching strategies than branching on variablebearmosen by redefining
the virtual function

i nt ABA_SUB: : gener at eBr anchRul es(ABA_ BUFFER<ABA BRANCHRULE*> &rul es);
in the problem specific subproblem class. Instead of geingrammediately a single branching sample and storing
it in the bufferr ul es it is possible to generate first a set of samples and seletttsm@est one by calling the

function

i nt ABA SUB: : sel ect Best Branchi ngSanpl e(i nt nSanpl es,
ABA_BUFFER<ABA_ BRANCHRULE*> **sanpl es).

For problem specific branching rules that are not alreadyiged by ABACUS, but derived from the base class
ABA_BRANCHRULE, it is necessary to redefine the virtual function

voi d ABA BRANCHRULE: : ext ract (ABA LPSUB *I p)

if the ranks of the branching rules are computed by solvieditist linear program of the potential sons/aB A-
CUS does in its default version. Similar as the function

i nt ABA BRANCHRULE: : ext ract (SUB *sub)
(see Sectio®.2.7.3 modifies the subproblem according to the branching rukeyitiual function
voi d extract (ABA LPSUB *1 p)

should modify the linear programming relaxation in ordeevaluate the branching rule.

In addition the virtual function
voi d ABA BRANCHRULE: : unextract (ABA_LPSUB *I p)

must also be redefined. It should undo the modifications oflittear programming relaxation performed by
extract (ABA LPSUB *I p).

5.2.9 Activating and Deactivating a Subproblem

Entry points at the beginning and at the end of the subproldptimization are provided by the functions
activate() anddeacti vate().

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

5.2 Advanced Features 67

5.2.10 Calling ABACUS Recursively

The separation or pricing problem in a branch-and-boundrilgn can again be a mixed integer optimization
problem. In this case, it might be appropriate to solve thibfem again with an application &BACUS. The
pricing problem of a solver for binary cutting stock probkene.g., is under certain conditions a general mixed
integer optimization problem/BJN94]. The following example shows how this part of the functfm ci ng()
could look like for the binary cutting stock problem. Firgte construct an object of the clasBPFORVAT, stor-

ing the pricing problem formulated as a mixed integer opation problem, then we initialize the solver of the
pricing problem. The clagdl P is derived from the clas8BA MASTER for the solution of general mixed integer
optimization problems (the classeBFORVMAT andM P are not part of théABACUS kernel but belong to a not
publicly availableABACUS application). After the optimization we retrieve the vabfeéhe optimal solution.

LPFORVAT knapsackProbl em(rmaster _, nOrigVar_, 1 + nSosCons_, &opt Sense,
origQObj , I Bound, uBound, varType, constraints);

M P *knapsackSol ver = new M P(&knapsackProbl em "CSP-Pricer");
knapsackSol ver->optim ze();

opt KnapsackVal ue = knapsackSol ver - >pri mal Bound() ;

5.2.11 Selecting the LP-Method

Before the linear programming relaxation is solved, theurairfunction

ABA_LP:: METHOD ABA_SUB: : chooselLpMet hod(i nt nVar Renpved, int nConRenoved,
i nt nVar Added, int nConAdded)

is called in each iteration of the cutting plane algorithfrapproximate solving is disabled (the default). If the
usage of the approximate solver is enabled (by setting thempeter SolveApprox to true in the configuration file
. abacus), the virtual functionABA_SUB: : sol veAppr oxNow() is called first. If this function returns true
the LP method is set tABA LP: : Appr oxi mat e (if the current situation in the cutting plane algorithm doet
require an exact solution, e.g. to prepare branching).

The parameters of the functi®dBA_SUB: : chooselLpMet hod refer to the number of removed and added vari-
ables and constraints. If a linear programming relaxatiooukl be solved with a strategy different from the
default strategy, then this virtual function must be redsfiin the classwSUB. According to the criteria of
our new application the functionhooseLpMet hod() must returnABA_LP: : Barri er AndCr ossover,
ABA LP::BarrierNoCrossover, ABA LP::Primal, or ABA LP::Dual. The LP methods
ABA LP: :Barrier AndCrossover andABA LP: : Barri er NoCrossover are provided only for com-
patibility with older versions o0ABACUS and custom solver interfaces as the current interface apgats the
methodsABA _LP: : Pri mal andABA_LP: : Dual (andABA_LP: : Appr oxi nat e, see above).

5.2.12 Generating Output

We recommend to use also for problem specific output the-luittutput and error streams via the member
functionsout () anderr () of the classABA GLOBAL:

master ->out() << "This is a nmessage for the output stream" << endl;
master _->err() << "This is a nessage for the error stream" << endl;

For messages output from members of the ci&S MASTER and its derived classes dereferencing the pointer to
the master can be omitted:

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

68 Using ABACUS

out() << "This is a nessage for the output streamfroma nmaster class." << endl;
err() << "This is a message for the error streamfroma nmaster class." << endl;

The functionsout () anderr () can receive optionally an integer number as argument githegamount of
indentation. One unit of indentation is four blanks.

The amount of output can be controlled by the param@tgr_evel in the file. abacus (see Sectiorb.2.26.
If some output should be generated although it is turnedooféfcertain output level at this point of the program,
then it can be turned temporarily on.

int MYSUB:: nyFunction()

{
if (master _->outlLevel () == ABA MASTER: : Li near Program mnmaster _->out().on();
master ->out() << "This output appears only for output |evel ";
master_->out() << "‘LinearPrograni." << endl;
if (master_->outLevel () == ABA MASTER : Linear Program master_->out().off();
}

5.2.13 Memory Management

The complete memory management of data allocated in merabetiéns of application specific classes has to
be performed by the user, i.e., memory allocated in such etitmalso has to be deallocated in an application
specific function. However, there are some exceptions. As 88 a constraint or a variable is added to a pool its
memory management is passeddBACUS. This also holds if the constraint or variable is added toa path

the functionsABA_SUB: : addCons() or ABA_SUB: : addVar s() . Constraints and variables are allocated in
problem specific functions, but deallocated by the fram&wor

Another exception are branching rules added to a subproblBot this is only relevant for applications that
add a problem specific branching rule. If variables are fixedat by logical implications, then objects of the
classABA_FSVARSTAT are allocated. Also for these objects the further memoryagament is performed by
the framework.

In order to save memory a part of the data members of a sulgmotdn be accessed only when the subproblem is
currently being optimized. These data members are listddlre5.1

Member Description

tail OFf _ tailing off manager

lp_ linear programming relaxation
addVar Buf fer _ buffer for adding variables
addConBuf fer_ buffer for adding constraints

renoveVar Buf f er _ | buffer for removing variables

renoveConBuf f er _ | buffer for removing constraints

xVal _ values of the variables in the last solved ABA_LP
yVal _ values of the dual variables in the last solved ABA_LP

Table 5.1: Activated members 6BA SUB.

5.2.14 Eliminating Constraints

In order to keep the number of active constraints within aenaté size active constraints can be eliminated by set-
ting the built-in parameteConst r ai nt El i m nat i onMbde to Basi ¢ or NonBi ndi ng (see Sectio®.2.2§.
Other problem specific strategies can be implemented byingag the virtual function

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

5.2 Advanced Features 69

voi d MYSUB: : conEl i m nat e(ABA BUFFER<i nt > & enove)

{
for (int i =0; i < nCon(); i++)
if (/* constraint i should be elimnated */)
renove. push(i);
}

within the subproblem of the new application.

The functionconEl i mi nat e() is called within the cutting plane algorithm. Moreover, weyide an even
more flexible method for the elimination of constraints bg fonctionsr enoveCon() andr enmoveCons(),
which can be called from any function within the cutting @anethod. The functions

voi d ABA SUB::renoveCon(int i);
voi d ABA SUB::renpoveCons(ABA BUFFER<i nt > &r enove);

which remove the constraintor the constraints stored in the buffeenove, respectively.

Both constraints removed by the functionnEl i mi nat e() and by explicitly calling the functionenove()
are not removed immediately from the active constraintstaadinear program, but buffered, and the updates are
performed at the beginning of the next iteration of the agtplane method.

5.2.15 Eliminating Variables

Similarly to the constraint elimination, variables can bémaated either by setting the parameter
Vari abl eEl i m nati onMbde to ReducedCost or by redefining the virtual functiomar El i nmi nat e()
according to the needs of our application.

void ABA_SUB:: varEl i nm nat e(ABA_BUFFER<i nt > &r enove)

{
for (int i =0; i < nVar(); i++)
if (/* variable i should be elim nated)
renove. push(i);
}

By analogy to the removal of constraints we provide fundiom remove variables within any function of the
cutting plane algorithm. The functions

void ABA SUB::renoveVar(int i);
voi d ABA SUB: : renoveVar s(ABA BUFFER<i nt > &renove) ;

which remove the variablie or the variables stored in the buffeenove, respectively.

Like eliminated constraints eliminated variables are énffl and the update is performed at the beginning of the
next iteration of the cutting plane algorithm.

5.2.16 Adding Constraints/Variables in General

The functionssepar at e() andpri ci ng() provide interfaces where constraints/variables are lysgeher-
ated in the cutting plane or column generation algorithm.rédwer, to provide a high flexibility we allow the
addition and removal of constraints and variables withiy subroutine of the cutting plane or column generation
algorithm as we have already pointed out.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

70 Using ABACUS

Note, while constraints or variables added with the functamldCons() oraddVar s() are usually allocated
by the user, they are deleted B BACUS. They musihot be deleted by the user (see Sectton.13.

The sizes of the buffers that store the constraints/vagabking added can be controlled by the parameters
Max ConBuf f er ed andMaxVar Buf f er ed in the parameter fileabacus. At the start of the next iteration the
bestMaxConAdd constraints and the beshxVar Add variables are added to the subproblem. This evaluation
of the buffered items is only possible if a rank has been §ipedior each item in the functiorsddCons() and
addVar s() , respectively.

Moreover, we provide further features for the addition atiag planes with the functioaddCons() :

virtual int addCons(ABA BUFFER<ABA CONSTRAI NT*> &constraints,
ABA POOL<ABA CONSTRAI NT, ABA VARI ABLE> *pool = 0,
ABA BUFFER<bool > *keepl nPool = O,
ABA BUFFER<doubl e> *rank = 0);

The bufferconst r ai nt s holds the constraints being added. All other argumentsatieral or ignored if they
are 0. If the argumemiool is not 0, then the constraints are added to this pool instetteaefault pool. If the
flag (*keepl nPool) [i] istrue for thei -th added constraint, then this constraint will even beeston the
pool if it is not added to the active constraints. In order é¢firte an order of the buffered constraintsank has
to be specified for each constraint in the functamdCons() .

As constraints can be added with the functamdCons () , the function

virtual int addVars(ABA BUFFER<ABA VARl ABLE*> &vari abl es,
ABA_POOL<ABA VARI ABLE, ABA CONSTRAI NT> *pool = 0,
ABA BUFFER<bool > *keepl nPool = 0,
ABA BUFFER<doubl e> *rank = 0);

can be used for a flexible addition of variables to the bufiex straightforward way.

The functionpri ci ng() handles non-liftable constraints correctly (see Secti@3.12. However, if variables
are generated within another part of the cutting plane @lgurand non-liftable constraints are present, then run-
time errors or wrong results can be produced ABACUS is compiled in the safe mode PDABACUSSAFE)

this situation is recognized and the program stops with eor enessage. If in an application both non-liftable
constraints are generated and variables are added ouisidiertctionpr i ci ng() , then the user has to remove
non-liftable constraints explicitly to avoid errors.

5.2.16.1 Activation of a Subproblem

After a subproblem becomes active the virtual functéart i vat e() is called. Its default implementation in
the classABA_SUB does nothing but it can be redefined in the derived di&¢SUB. In this function application
specific data structures that are only required for an astiproblem can be set up, e.g., a graph associated with
the subproblem:

voi d MYSUB: : acti vate()
{}

5.2.16.2 Deactivation of a Subproblem

The virtual functiondeact i vat e() is the counterpart of the functicact i vat e() . Itis called at the end of
the optimization of a subproblem and again its default imaetation does nothing. In this function, e.g., memory
allocations performed in the functi@ct i vat e() can be undone:

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

5.2 Advanced Features 71

voi d MYSUB: : deacti vat e()
{}

5.2.17 Fixing and Setting Variables by Logical Implications
Variables can by fixed and set by logical implications by fatleg the virtual functions

void MYSUB: : fi xByLogl np(ABA BUFFER<i nt > &vari abl es,
ABA_BUFFER<ABA_FSVARSTAT*> &st at us)

{}
and

voi d MYSUB: : set ByLogl np(ABA_BUFFER<i nt > &vari abl es,
ABA BUFFER<ABA FSVARSTAT*> &st at us)

{}

The buffersvar i abl es hold the variables being fixed or set, respectively, and tHfeis st at us the statuses
they are fixed or set to, respectively. The following pieceade gives a fragment of an implementation of the
functionf i xByLogl np() .

voi d MYSUB: : fi xByLogl np(ABA_BUFFER<i nt > &vari abl es,
ABA BUFFER<ABA FSVARSTAT*> &st at us)

{
for (int i =0; i < nvVar(); i++)
if (/* condition for fixing i to lower bound holds */) {
vari abl es. push(i);
stat us. push(new ABA_ FSVARSTAT(mast er_, ABA FSVARSTAT: : Fi xedToLower Bound)) ;
}
else if (/* condition for fixing i to upper bound holds */) {
vari abl es. push(i);
stat us. push(new ABA FSVARSTAT(naster , ABA FSVARSTAT: : Fi xedToUpper Bound)) ;
}
}

Setting variables by logical implications can be impleneentinalogously by replacingFi' xedTo” with
“Set To".

5.2.18 Loading an Initial Basis

By default, the barrier method is used for the solution of fingt linear program of the subproblem. How-
ever, a basis can be also loaded, and then, the LP-method ecatdordingly selected with the function
chooselLpMet hod() (see Sectiorb.2.1]). The variable and slack variable statuses can be iniidlin the
constructor of the root node like in the following example.

MYSUB: : MYSUB(ABA_MASTER *nast er)
ABA _SUB(master, 50.0, 0.0, 100.0)
{
ABA LPVARSTAT: : STATUS | Stat;
for (int i =0; i <nVar(); i++) {
| Stat = /* one of ABA LPVARSTAT: : At Lower Bound, ABA LPVARSTAT: : Basi c,

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

72 Using ABACUS

or ABA LPVARSTAT: : At Upper Bound */;
| pvarStat (i)->status(l Stat);
}
ABA SLACKSTAT: : STATUS sSt at ;
for (int i =0; i <nCon(); i++) {
sStat = /* one of ABA SLACKSTAT: : Basi c or ABA SLACKSTAT: : NonBasi cZero */;
slackStat (i)->status(sStat)
}
}

5.2.19 Integer Objective Functions

If all objective function values of feasible solutions hamieger values, then a subproblem can be fathomed earlier
because its dual bound can be rounded up for a minimizatimigam, or down for a maximization problem, respec-
tively. This feature can be controlled by the paramélgr| nt eger of the parameter file (see Sectibr?.2§.

This feature can depend on the specific problem instanceed¥er, if variables are generated dynamically, it is
even possible that this attribute depends on the currectiyeavariable set. Therefore, we provide the function

voi d ABA MASTER: : obj I nt eger (bool switchedOn);

with which the automatic rounding of the dual bound can bee&dron (ifswi t chedOn is t rue) or off (if
swi tchedOnisf al se).

Helpful for the analysis if all objective function values all feasible solutions are integer with respect to the
currently active variable set of the subproblem might beftinetion

bool ABA SUB::obj Al l I nteger();

that returng r ue if all active variables of the subproblem are discrete aefdt thbjective function coefficients are
integer, and returnisal se otherwise.

If the set of active variables is static, i.e., no variablese generated dynamically, then the function
obj Al I I nt eger () could be called in the constructor of the root node of the esration tree and according to
the result the flag of the master can be set:

MYSUB: : MYSUB(ABA_MASTER *mast er)
ABA_SUB(master, 50.0, 0.0, 100.0)

{

mast er _->obj | nt eger (obj Al l I nteger());

}

By default, we assume that the objective function valuegasible solutions can also have noninteger values.

5.2.20 An Entry Point at the End of the Optimization

While the virtual function ni ti al i zeOpti m zati on() is called at the beginning of the optimization and
can be redefined for the initialization of application sfiealata (e.g., the variables and constraints), the virtual
functiont er mi nat eQpt i m zat i on() is called at the end of the optimization. Again, the defaulpliemen-
tation does nothing and a redefined version can be used fa.gisualizing the best feasible solution on the
screen.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

5.2 Advanced Features 73

5.2.21 Output of Statistics

At the end of the optimization a solution history and someegahstatistics about the optimization are output.
Problem specific statistics can be output by redefining titealifunctionout put () of the classABA_MASTER

in the classWWMASTER. The default implementation of the functiowt put () does nothing. Of course, appli-
cation specific output can be also generated in the funttawmi nat eQpt i mi zat i on(), but then this output
appears before the solution history and some other seatidfithe functionout put () is used, problem specific
statistics are output between the general statistics andatlue of the optimum solution.

5.2.22 Accessing Internal Data of the LP-Solver

The classABA _SUB has the member functioABA LPSUB *| p() that allows a direct access of the data of
the linear program solved within the subproblem. If the menfanctions of the clas8BA LPSUB and its base
classABA _LP are not sufficient to retrieve a specific information, a dimacess of the data of the LP-Solvers is
possible.

The data retrieved from your LP-solver in this direct way tmabe interpreted very carefully. Since variables
might be automatically eliminated the actual linear progsabmitted to the LP-solver might differ from the linear
programming relaxation. Only if LP-data is accessed thinaing member functions of the cla8BA LPSUB the
“real” linear programming relaxation is obtained.

Warning: Do not modify the data of the LP-solver using the pointershie internal data structures and the
functions of the solver interface. A correct modificatiortloé LP-data is only guaranteed by the member functions
of the classABA _SUB.

5.2.22.1 Accessing Internal Data of the LP-solver
Internal data of the solver is retrieved with the function
Gsi Sol verInterface* ABA OSIIF::osiLP();

that returns a pointer to the OsiSolverinterface objedtitenages the interaction with the LP-solver.

Since the linear programming relaxation of a subproblenegghed independently from the LP-solver an explicit
cast to the clas8BA LPSUBCSI is required:

Csi Sol verInterface* Lplnterface = ((ABA LPSUBCSI *) | p())->o0siLP();

The classABA LPSUBCSI is derived from the classésBA LPSUB andABA COSI | F.

5.2.23 Problem Specific Fathoming Criteria

Sometimes structural problem specific information can kaxlder fathoming a subproblem. Such criteria can
be implemented by redefining the virtual functidBA SUB: : except i onFat hon() . This function is called
before the separation or pricing is performed. If this fimttreturns al se (as the default implementation in the
base clas®\BA SUB does), we continue with separation or pricing. Otherwilsiéréturnst r ue, the subproblem

is fathomed.

5.2.24 Enforcing a Branching Step

ABACUS enforces a branching step if a tailing off effect is obsen@ther problem specific criteria for branching
instead of continuing the cutting plane or column genenagilgorithm can be specified by redefining the function

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

74 Using ABACUS

ABA SUB: : excepti onBranch() . This criterion is checked before the separation or priggngerformed. If
the function returns r ue, a branching step is performed. Otherwise, we continue thigtseparation or pricing.
The default implementation of the base clag&\ SUB always returng al se.

5.2.25 Advanced Tailing Off Control

ABACUS automatically controls the tailing off effect according tbe parameterstai | O f NLps and
Tai | O f Per cent of the configuration file abacus. However, sometimes it turns out that certain solutions
of the LP-relaxations should be ignored in the tailing offitol. The function gnor el nTai | i ngOf f () can

be used to control better the tailing off effect. If this ftioa is called, the next LP-solution is ignored in the
tailing-off control. Callingi gnorel nTai | i ngOf f () can, e.g., be considered in the following situation: If
only constraints that are required for the integer prograrmgrformulation of the optimization problem are added
then the next LP-value could be ignored in the tailing-offittol. Only “real” cutting planes should be consid-
ered in the tailing-off control (this is only an example stgy that might not be practical in many situations, but
sometimes turned out to be efficient).

5.2.26 System Parameters

The setting of several parameters heavily influences theimgriime. Good candidates are the modification of the
enumeration strategy with the paramefaiuner at i onSt r at egy, the control of the tailing off effect with the
parameter§ai | O f NLps andTai | Of f Per cent , an adaption of the skipping method for the cut generation
with the parameterSki pFact or andSki pByNode, and the parameters specific to the used LP-solver.

Here we present a complete list of the parameters that can dmkfied for the fine tuning of the algo-
rithm in the file . abacus. Almost all parameters can be modified with member functiohghe class
ABA_MASTER. Usually, these member functions have the same name as tamegtar, but the first letter is
a lower case letter. The parameters specific to the LP-saarrbe set by redefining the virtual function
ABA_ MASTER: : set Sol ver Par anet er s(), see Sectiorb.2.27for details.

Warning: The integer numbers used in the parameter files must not @xtheesalue off NT_MAX given in the
file <l'i m ts. h>. The default values are correct for platforms represerttiegtypei nt with 32 bits (usually
2147483647 on machines using theomplement).

5.2.26.1 EnumerationStrategy

This parameter controls the enumeration strategy in thechrand-bound algorithm.

Valid settings:

Best Fi r st best-first search

Br eadt hFi r st breadth-first search

Dept hFi r st depth-first search

Di veAndBest depth-first search until the first feasible solution is found

then best-first search

Default value:Best Fi r st

5.2.26.2 Guarantee

The branch-and-bound algorithm stops as soon as a primaldband a global dual bound are known such
that it can be guaranteed that the value of an optimum soluscat mostGuar ant ee percent better than

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

5.2 Advanced Features 75

the primal bound. The value 0.0 means determination of aimopt solution. If the program terminates
with a guarantee greater than 0, then the status of the miassBA MASTER: : Guar ant ee instead of
ABA_NMASTER: : Opti mal .

Valid settings:

A nonnegative floating point number.

Default value:0. 0

5.2.26.3 MaxLevel

This parameter indicates the maximal level that should Behred in the enumeration tree. Instead of performing
a branching operation any subproblem having levexLevel is fathomed. If the value oaxLevel is 1,
then no branching is done, i.e., a pure cutting plane alyoris performed. If the maximal enumeration level is
reached, the master of the optimization receives the sk&tutevel in order to indicate that the problem does
not necessarily terminate with an optimum solution.

Valid settings:

A positive integer number.

Default value:999999

5.2.26.4 MaxCpuTime

This parameter indicates the maximal CPU time that may bé bgehe optimization process. If the CPU time
exceeds this value, then the master of the optimizationweséhe statuvax CpuTi ne in order to indicate that the
problem does not necessarily terminate with an optimumtisoluln this case, the real CPU time can exceed this
value since we check the used CPU time only in the main loope€titting plane algorithm. Under the operating
system UNIX a more exact check can be done with the comrhamd t , which kills the process if the maximal
CPU time is exceeded, whereas our CPU time control “soféyininates the run, i.e., the branch-and-bound tree
is cleaned, all relevant destructors are called, and thediriput is generated.

Valid settings:

A string in the formath{h}: nm ss, where the first number represents the hours, the second
one the minutes, and the third one the seconds. Note, itiiethe string is converted to seconds.
Therefore, its value must be less tHadT _MAX seconds.

Default value:99999: 59: 59

5.2.26.5 MaxCowTime

This parameter indicates the maximal elapsed time (watkdiione) that may be used by the process. If the elapsed
time exceeds this value, then the master of the optimizatioaives the statugax CowTi ne in order to indicate
that the problem does not necessarily terminate with amupti solution. In this case, the real elapsed time can
exceed this value since we check the elapsed time only in #ie lmop of the cutting plane algorithm.

Valid settings:

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

76 Using ABACUS

A string in the formath{h}: nm ss, where the first number represents the hours, the second
one the minutes, and the third one the seconds. Note, itiiethe string is converted to seconds.
Therefore, its value must be less tHadT _MAX seconds.

Default value:99999: 59: 59

5.2.26.6 Objinteger

If this parameter i$ r ue, then we assume that all feasible solutions have integectiag function values. In this
case, we can fathom a subproblem in the branch-and-boundthlg already when the gap between the solution
of the linear programming relaxation and the primal bouridss than 1.

Valid settings:

fal seortrue

Default valueif al se

5.2.26.7 TailOffNLps

This parameter indicates the number of linear programsidered in the tailing off analysis (see parameter
Tai | O f Per cent).

Valid settings:

An integer number. If this number is nonpositive, then thiéngoff control is turned off.

Default value:0

5.2.26.8 TailOffPercent

This parameter indicates the minimal change in percentebttjective function value between the solution of
Tai | O f NLps successive linear programming relaxations in the subpmlalptimization which is required such
that we do not try to stop the cutting plane algorithm and fore a branching step.

Valid settings:

A nonnegative floating point number.

Default value:0. 0001

5.2.26.9 DelayedBranchingThreshold

This number indicates how often a subproblem should be pck o the set of open subproblems before a
branching step is executed. The value 0 means that we bremukdiately at the end of the first optimization,
if the subproblem is not fathomed. We try to keep the subgroidt nDor mant Rounds untouched, i.e., other
subproblems are optimized if possible before we turn batke@mptimization of this subproblem.

Valid settings:

A positive integer number.
Default value:0

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

5.2 Advanced Features 77

5.2.26.10 MinDormantRounds

The minimal number of iterations we try to keep a subproblemmént if delayed branching is applied.

Valid settings:

A positive integer number.

Default value: 1

5.2.26.11 OutputLevel

We can control the amount of output during the optimizatignhis parameter.

For the parameter valuedubpr obl emandLi near Pr ogr ama seven column output is generated with the
following meaning:

#sub total number of subproblems

#open current number of open subproblems

current the number of the currently optimized subproblem
#iter number of iterations in the cutting plane algorithm
ABA LP value of the LP-relaxation

dual global dual bound

pri mal primal bound

Valid settings:

Si | ent No output.

Statistics Output of the result and some statistics at the end of the
optimization.

Subpr obl em Additional one-line output after the first solved ABA_LP
of the root node and at the end of the optimization of each
subproblem.

Li near Program Additional one-line output after the solution of a linear
program.

Ful | Detailed output in all phases of the optimization.

Default value:Ful |

5.2.26.12 LogLevel

We can control the amount of output written to the log file iB #ame way as the output to the standard output
stream.

Valid settings:

See paramete@ut put Level . If the LogLevel is notSil ent two log files are created.
While the file with the name of the problem instance and thersida . | og contains the output
written to ABA_ MASTER: : out () (filtered according théogLevel), the all messages written to
ABA MASTER: : err () are also written to the file with the name of the problem ins¢éaand the
extension error. | og.

Default value:Si | ent

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

78 Using ABACUS

5.2.26.13 PrimalBoundInitMode

This parameter controls the initialization of the primalbd. The mode§pt i numandOpt i nunOne are useful
for tests.

Valid settings:
None The primal bound is initialized with “infinity” for mini-

mization problems and “minus infinity” for maximization
problems, respectively.

Opti mum The primal bound is initialized with the value of an op-
timum solution, if it can be read from the file with the
name of the paramet€pt i munti | eNane.

Opt i mumOne The primal bound is initialized with the value of an op-
timum solution plus one for minimization problems, and
the value of an optimum solutions minus one for maxi-
mization problems. This is only possible if the value of
an optimum solution can be read from the file with the
name given by the paramet®pt i nunti | eNane.

Default value: None

5.2.26.14 PricingFrequency

This parameter indicates the number of iterations betwweratiditional pricing steps in the cutting plane phase
for algorithms performing both constraint and variablegyation. If this number is 0, then no additional pricing
is performed.

Valid settings:

A nonnegative integer number.

Default value:0

5.2.26.15 SkipFactor

This parameter indicates the frequency of cutting planevanidble generationskipping!factor in the subproblems
according to the paramet8ki ppi ngMbde. The value 1 means that cutting planes and variables areajede
in every subproblem independent from the skipping mode.

Valid settings:

A positive integer number.

Default value:l

5.2.26.16 SkippingMode

This parameter controls the skipping mode, i.e., if comstsaor variables are generated in a subproblem.

Valid settings:

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

5.2 Advanced Features 79

Ski pByNode Generate constraints and variables only every
Ski pFact or processed node.

Ski pByLevel Generate constraints and variables only every
Ski pFact or level in the branch-and-bound tree.

Default value:Ski pByNode

5.2.26.17 FixSetByRedCost

Variables are fixed and set by reduced cost criteria if ang ibrthis parameter i r ue. The default setting is
f al se, as fixing or setting variables to 0 can make the pricing gokihtractable in branch-and-price algorithms.

Valid settings:

fal seortrue

Default valueif al se

5.2.26.18 PrintLP

If this parameter i r ue, then the linear program is output every iteration. Thisilyaiseful for debugging.

Valid settings:

fal seortrue

Default valueif al se

5.2.26.19 MaxConAdd

This parameter determines the maximal number of constraidtied to the linear programming relaxation per
iteration in the cutting plane algorithm.

Valid settings:

A nonnegative integer number.

Default value:100

5.2.26.20 MaxConBuffered

After the cutting plane generation tMax ConAdd best constraints are selected from all generated conistthmt
are kept in a buffer. This parameter indicates the size eftibffer.

Valid settings:

A nonnegative integer number.

Default value:100

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

80 Using ABACUS

5.2.26.21 MaxVarAdd

This parameter determines the maximal number of varialaldedhto the linear programming relaxation per itera-
tion in the cutting plane algorithm.

Valid settings:

A nonnegative integer number.

Default value:100

5.2.26.22 MaxVarBuffered

After the variable generation tiax Var Add best variables are selected from all generated variakdesith kept
in a buffer. This parameter indicates the size of this buffer

Valid settings:

A nonnegative integer number.

Default value:100

5.2.26.23 Maxlterations

The parameter limits the number of iterations of the cutfitame phase of a single subproblem.

Valid settings:

A nonnegative integer number el if unlimited.

Default value:- 1

5.2.26.24 EliminateFixedSet
Fixed and set variables are eliminated from the linear pnoggubmitted to the LP-solver if this parameterisie

and the variable is eliminable. By default, a variable isngliable if it has not been basic in the last solved linear
program.

Valid settings:

fal seortrue

Default valuef al se

5.2.26.25 NewRootReOptimize

If the root of the remaining branch-and-bound tree changestlais node is not the active subproblem, then we
reoptimize this subproblem, if this parametet isue. The reoptimization might provide better criteria for figin
variables by reduced costs.

Valid settings:

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

5.2 Advanced Features 81

fal seortrue

Default valueif al se

5.2.26.26 OptimumFileName
This parameter indicates the name of a file storing the valf® optimum solutions. Each line of this file consists

of a problem name and the value of the corresponding optinalatien. This is the only optional parameter.
Having the optimum values of some instances at hand can pauseful in the testing phase.

Valid settings:

A string.

Default value: This parameter is commented out in the fdlbacus.

5.2.26.27 ShowAverageCutDistance

If this parameter i¢ r ue, then the average Euclidean distance of the fractionatisaldrom the added cutting
planes is output every iteration of the cutting plane phase.

Valid settings:

fal seortrue

Default valueif al se

5.2.26.28 ConstraintEliminationMode

The parameter indicates the method how constraints arénelied in the cutting plane algorithm.

Valid settings:

None No constraints are eliminated.

NonBi ndi ng The non-binding dynamic constraints are eliminated.

Basi ¢ The dynamic constraints with basic slack variables are
eliminated.

Default value:Basi ¢

5.2.26.29 ConElimEps

The parameter indicates the tolerance for the eliminatf@onstraints by the methddonBi ndi ng.

Valid settings:

A nonnegative floating point number.

Default value:0. 001

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

82 Using ABACUS

5.2.26.30 ConElimAge

The number of iterations an elimination criterion for a doaisit must be satisfied until the constraint is eliminated
from the active constraints.

Valid settings:

A nonnegative integer.

Default value:l

5.2.26.31 VariableEliminationMode

This parameter indicates the method how variables arerai®d in a column generation algorithm.

Valid settings:

None No variables are eliminated.

ReducedCost Nonbasic dynamic variables that are neither fixed nor set
and for which the absolute value of the reduced costs ex-
ceeds the value given by the paramé&fer El i nEps are
removed.

Default value:ReducedCost

5.2.26.32 VarElimEps

This parameter indicates the tolerance for the eliminatiorariables by the methodeducedCost .

Valid settings:

A nonnegative floating point number.

Default value:0. 001

5.2.26.33 VarElimAge

The number of iterations an elimination criterion for a ahle must be satisfied until the variable is eliminated
from the active variables.

Valid settings:

A nonnegative integer.

Default value:1l

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

5.2 Advanced Features 83

5.2.26.34 VbcLog

This parameter indicates if a log-file of the enumeratior seould be generated, which can be read by the VBC-
tool [Lei95]. The VBC-tool is a utility for the visualization of the breln-and-bound tree.

Valid settings:

None No file for the VBC-Tool is generated.

File The output is written to a file with the name
<nanme>. <pi d>. t r ee. <nanme> is the problem name
as specified in the constructor of the cl&8A MASTER
and<pi d> is the process id.

Pi pe The control instructions for the VBC-Tool are written to
the global output stream. Each control instuction starts
with a $ sign. If the standard output of &BACUS
application is piped through the VBC-Tool, lines starting
with a $ sign are regarded as control instructions, all other
lines written to a text window.

Default value:None

5.2.26.35 NBranchingVariableCandidates

This number indicates how many candidates for branchingabi®s should be tested according to the
Br anchi ngStr at egy. If this number is 1, a single variable is determined (if plole3 that is the branch-
ing variable. If this number is greater than 1 each candigatested and the best branching variable is selected,
i.e., for each candidate the two linear programs of potestins are solved. The variable for which the minimal
change of the two objective function values is maximal issid as branching variable.

Valid settings:

Positive integer number.

Default value: 1

5.2.26.36 DefaultLpSolver

This parameter determines the LP-solver that should beeappér default for each subproblem. Please note that
these are the solvers supported by @pen Sol ver | nterface and hence byABACUSNevertheless not
all of these solvers may be suitable for solving LP relaxetio

Valid settings:

Cbc
dp
CPLEX
DyLP
Fort MP
GLPK

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

84 Using ABACUS

MOSEK

OsL

SoPl ex
SYMPHONY
Vol
XPRESS MP

Default value:Cl p

5.2.26.37 SolveApprox

If set to true usage of the Volume Algorithm to solve LP retéxas is enabled. This parameter only enables
usage of the approximate solver in general. Whether or nat@fspLP relaxation is solved exact or approximate
is determined by the functioABA_MASTER: : sol veAppr oxNow() .

Valid settings:

F

Default value: o r an example reimplementation of this fiorcsee the filé spsub. win theexanpl e directory
of the ABACUS source codef al seortruefal se

5.2.27 Solver Parameters

Setting parameters for specific LP-solvers is done by redefin the virtual function
ABA MASTER: : set Sol ver Par anet er s(Csi Sol verl nterface* interface, bool

sol ver | sAppr ox) . The parameteri nterface is a generic pointer to an object of type
GCsi Sol ver I nterface, it has to be typecast to a pointer to a specific solver intetfaVia this pointer
all the internals of the solver can be accessed. The paraseterer | sAppr ox is true if the solver for which
parameters are set is approximate, i.e. the Volume Algoritiio set the primal column pivot algorithm for Clpi
to "steepest”, for example, one would do:

bool MYNMASTER: : set Sol ver Par anet er s(Gsi Sol ver I nterface*interface, bool sol verl sApprox)
{

Gsi O pSol verinterface* clplf = dynam c_cast<Gsi Cl pSol verlnterface*> (interface);

C pSi npl ex* cl p_sinplex = clplf->getMdel Ptr();

Cl pPri mal Col umSt eepest st eepest P;

cl p_si npl ex- >set Pri nmal Col utmPi vot Al gori t hn{ st eepest P);

return true;

}

For a more complex reimplementation of this function seefithé¢ spmast er . win theexanpl e directory of
the ABACUS source code.

5.2.28 Parameter Handling

ABACUS provides a concept for the implementation of applicatiorapeeter files, which is very easy to use.
In these files it is both possible to overwrite the values ohpeeters already defined in the filabacus and to
define extra parameters for the new application.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

5.2 Advanced Features 85

The format for parameter files is very simple. Each line cimistthe name of a parameter separated by an arbitrary
number of whitespaces from its value. Both parameter nardegparameter value can be an arbitrary character
string. A line may have at most 1024 characters. Empty limesatlowed. All lines starting with a ‘#’ are
considered as comments.

The following lines give an example for the parameter fiflg/par anet er s.

#

First, we overwite two paraneters fromthe file .abacus.
#

Enuner ati onStrat egy Dept hFi r st

Qut put Level Li near Program

#

#

Here are the paranmeters of our new application.

#

#

Qur application has two different separation strategies
Al" calls all separators in each iteration

'Hi erarchical’ follows a hierarchy of the separators

#

SeparationStrategy All

#

The paraneter MaxNodesPerCut linmits the number of nodes invol ved
in a cutting plane that is defined by a certain subgraph.

#

MaxNodesPer Cut 1000

Here, we suppose that the cldEVASTER has two members that are initialized from the parameter file.

cl ass MYMASTER : public ABA MASTER {
/* public and protected nmenbers */
private:
enum SEPSTRAT { Al |, Hi erachi cal };
ABA STRI NG separationStrategy_;
i nt maxNodesPer Cut _;
/* other private nenbers */

b

The parameter file can be read by redefining the virtual fongtini ti al i zePar anmet er s(), which does
nothing in its default implementation.

Parameter files having our format can be read by the funcBBA GLOBAL: : r eadPar aneters(),
which inserts all parameters in a table. Then, the parasietan be extracted from the ta-
ble with the functionsABA GLOABAL: : assi gnPar anet er (), ABA GLOABAL: : fi ndParameter (),
ABA_GLOABAL: : get Par anet er () which are overloaded in different ways.

For our application, the code could look like
void MYMASTER :initializeParaneters()
{

readPar anmet er s(". nyparaneters");

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

86 Using ABACUS

/* termnate the programif the paraneters are not found
in the table (which was filled by readParanters()) */

const char* SeparationStrategy[]={"All","Hi erachical"};
separati onStrat egy_=(SEPSTRAT)
fi ndParanet er (" SeparationStrategy", 2, SeparationStrategy);

/* allow only val ues between 1 and 5000; */
assi gnPar anet er (maxNodesPer Per Cut _, " MaxNodesPerCut", 1, 5000);

}

Parameters of the base cla®BA MASTER that are redefined in the filemypar anet er s do not have to be
extracted explicitly, but are initialized automaticallfNote, the parameters specified in the filabacus are
read in the constructor of the clas8A MASTER, but an application specific parameter file is read when the
optimization starts (functioABA_MASTER: : opti m ze()).

A branch-and-cut optimization can be performed even witheading the file abacus. This can be achieved by
setting the 8th parameter of the constructoABA_MASTERtof al se. In this caseABACUS starts with default
settings for the parameters, which can be overwritten byuhetion ABA GLOBAL: : i nsert Paranet er ().

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

5.3 Using the ABACUS Templates 87

5.3 Using the ABACUS Templates

ABACUS also provides several basic data structures as templamssekeral fundamental types and some
ABACUS classes the templates are instantiated already in theylibiebabacus. a. However, if you want to
use one of theABACUS templates for one of your classes then you have to instariti@t templates for these
classes yourself.

Moreover, in order to keep the library small, we instantidtee templates only for those types which are required
in the kernel of theABACUS system. Therefore, it can happen that the linker compldinstaundefined symbols.
In this case you have to instantiate these templates, too.

ABACUS allows implicit or explicit template instantiation. Impit template instantiation is the more convenient
way. The compiler automatically instantiates a templatemiequired. Its disadvantage is that it increases the
compile time and (depending on the compiler) also the size@fenerated code. For explicit template instantia-
tion the templates have to be collected manually in file artithis file has to be compiled separately. Note, some
compilers do not support explicit template instantiatiother compilers perform the explicit template instantiati
automatically even if the implicit instantiation is seledt Currently, we recommend explicit template instardrati
for the GNU-compiler 2.7.x and the SGI compiler and implteinplate instantiation for the GNU-compiler 2.8.x,
the SUN compiler and the MS Visual C++ compiler.

For instance, you want to use ABA ARRAY template for your clasBlYCONSTRAI NT and the fundamental type
unsi gned i nt, for which we have no instantiations in the librdriybabacus. a. Then you can instantiate
explicitly the corresponding templates in a fitgar r ay. cc.

/1

/1 This is the file nyarray.cc.

/1

#i ncl ude "abacus/array.h" // the header of the class ABA ARRAY

#i ncl ude "abacus/array.inc" // the menber functions of the class ABA ARRAY
tenpl ate cl ass ABA ARRAY<MYCONSTRAI NT>;

tenpl ate cl ass ABA ARRAY<unsi gned i nt>;

/1 end of file nyarray.cc

The fileryar r ay. cc should be compiled and linked together with your files anditirary | i babacus. a. In
the file in which you are using the array templates only thedfileay. h should be included.

For more information on templates we refer to the documimtaif the templates for the GNU compiterWe
prefer the method using the g++ compiler flaigno-i npli ci t -t enpl at es.

Ihttp://funnelweb.utcc.utk.edu/ harp/gnu/gec-2.7.6/@8.htm#SEC101

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

88

Using ABACUS

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

Chapter 6

Reference Manual

The reference manual covers only those classes and clasbaersemhich are relevant for the user. Therefore,
the declarations of the classes in this chapter contain @slybset of the actual members, e.g., private members
are usually not documented here. For some classes the cogyrucor and/or assignment operator have not
been defined, but the default copy constructor and/or assghoperator are not correct. In this case we declare
this function and/or this operator as a private member afléss such that its invalid usage is detected already at
compile time. In this reference manual this is documenteiddiyding the copy constructor and/or assignment op-
erator in the private part of a function. Even if there are=ottrivate members of the class they are not documented
here.

This reference manual is automatically compiled from thesefiles ofABACUS. The advantage of this method
is that we can always provide an up to date version of theeefer manual in future releases of the software. The
major drawback of this procedure is that the lack of ordetheffunctions in the current source files is reflected
in the reference manual. In particular, there is a often femifhce of the order of the member functions in the
header of a class and in the documentation. For this reas@dded HTML links in the declaration part of the
class which point to other classes and to the descriptioniseotlass members. For a listing of all functions in
lexicographical order we refer to the index.

At the end of the reference manual a list of all preprocesagsfis given.

6.1 Application Base Classes

In order to implement aMBACUS application problem specific classes have to be derived ftwnclasses
ABA_NMASTER and ABA_SUB. ABACUS provides already some non-abstract classes derived frerléisses
ABA CONSTRAI NT andABA VARI ABLE, but if there is application specific structure to be exgldjtclasses
also have to be derived froABA VARI ABLE andABA CONSTRAI NT.

Some other classes are included in this section becauseathelpase classes of the application base classes
ABA_ MASTER, ABA_SUB, ABA_CONSTRAI NT andABA_VARI ABLE. The classABA_ABACUSROOT is a base
class of every class of the system. The claB&\ G.OBAL is a base class of the clad8A MASTER. Com-

mon features of constraints and variables are embeddedeirldssABA CONVAR, from which the classes
ABA_CONSTRAI NT andABA_VARI ABLE are derived.

90 Reference Manual

6.2 ABA_ABACUSROOT Class Reference

base class of all other classes of ABACUS
#i ncl ude <abacusroot. h>
Inheritance diagram for ABA_ABACUSROOT::

Public Types

e enumEXITCODES{ Ok, Fatal}

This enumeration defines the codes used be the furetig

Public Member Functions

« virtual ~ABA_ABACUSROOT ()
« virtual void exit (enumEXITCODEScode) const

terminates the program and returnsedeto the environment from which the program was called.

e const chak onOff (bool value)

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.2 ABA_ABACUSROQOT Class Reference 91

converts a boolean variable to the stringm" and"off".

« doublefracPart(double x) const

6.2.1 Detailed Description
base class of all other classes of ABACUS

Definition at line 81 of file abacusroot.h.

6.2.2 Member Enumeration Documentation

6.2.2.1 enumABA_ABACUSROOT::EXITCODES
This enumeration defines the codes used be the funekif).

Parameters:
Ok The program terminates without error.

Fatal A severe error occurred leading to an immediate terminaifdhe program.

Enumeration values:
Ok

Fatal

Definition at line 95 of file abacusroot.h.

6.2.3 Constructor & Destructor Documentation

6.2.3.1 virtual ABA_ABACUSROOT:: ~ABA_ABACUSROOT () [Vi rtual]

The destructor is only implemented since it should be virfuraction.

6.2.4 Member Function Documentation

6.2.4.1 virtual void ABA_ABACUSROQOT::exit (enum EXITCODES code const [virtual]

terminates the program and retuomleto the environment from which the program was called.

We overload the functioexit() that in a debugger a break point can be easily set within timstfon in order
to investigate the error. We also observed that for someneiasan be impossible to set a break point within
a template. Here this functiaexit() was quite helpful during the debugging process.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

92 Reference Manual

Exception handling could substitute many calls to the fiamoexit(). However, in version 2.6.3 of the GNU
/ compiler only a prototypical implementation of exceptioandling is available. As soon as a the GNU
compiler provides a stable implementation of exceptiordhiag we will use this technique in future releases
of this software.

Parameters:
code The exit code given to the environment.

6.2.4.2 double ABA_ ABACUSROOT::fracPart (doublex) const

Returns:
The absolute value of the fractional part of the vatukg.qg., it holdgracPart(2.33) == 0.33 anftacPart(-1.77)
==0.77.

Parameters:
x The value of which the fractional part is computed.

6.2.4.3 const char ABA_ABACUSROOT::onOff (bool value)

converts a boolean variable to the stririge" and"off".

Returns:
"on" if valueis true
"off" otherwise

Parameters:
value The boolean variable being converted.

The documentation for this class was generated from theviolg file:

¢ Include/abacusbacusroot.h

6.3 ABA_GLOBAL Class Reference

class stores global data (e.g., a zero tolerance, an outpans a table with system parameters) und functions
operating with this data.

#i ncl ude <gl obal . h>
Inheritance diagram for ABA_GLOBAL.::

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.3 ABA_GLOBAL Class Reference 93

| ABA_ABACUSROOT|

T

| ABA_GLOBAL |

T

| ABA_MASTER |

Public Member Functions

* ABA_GLOBAL (double eps=1.0e-4, double machineEps=1.0e-7, doubietyfiL.0e32)

The constructor initializes our filtered output and error stream with the stashdutput streancoutand the standard
error streamcerr.

« virtual ~ABA_GLOBAL ()
The destructor.

« virtual ABA_OSTREAM & out (int nTab=0)

Returns a reference to the output stream associated with this global obfjectvaiting nTab (default value 0)
tabulators on this stream. This tabulator is not the normal tabulator butistsef four blanks.

* virtual ABA_OSTREAM & err (int nTab=0)
Behaves like the functiaout() except that the global error stream is used instead of the global outymats.

 doubleeps() const
* void eps(double e)

This version of the functioeps()sets the zero tolerance.

» doublemachineEpg) const
« void machineEpgdouble e)

This version of the functiomachineEps(3ets the machine dependent zero tolerance.

« doubleinfinity () const

Provides a floating point value of “infinite” size. Especially, we assume nénity() is the lower andnfinity() is
the upper bound of an unbounded variable in the linear program.

« void infinity (double x)

This version of the functioimfinity() sets the “infinite value”. Please note that this value might be different from the
value the LP-solver uses internally. You should make sure that the veduehere is always greater than or equal
to the value used by the solver.

« boolisInfinity (double x) const

* boolisMinuslInfinity (double x) const

« boolequal(double x, double y) const

« boolisinteger(double x) const

« boolisInteger(double x, double eps) const
* virtual charenter(istream &in)

Displays the string { ENTER} on the global output stream and waits for a character on the input stieaeng., a
keystroke ifn == cin.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

94 Reference Manual

« void readParametefsonst chasfileName)
Opens the parameter fifdeName reads all parameters, and inserts them in the parameter table.

« void insertParametdconst chaxname, const charvalue)

« int getParametgconst chakname, int ¶m)

* int getParametgconst chaxname, unsigned int ¶m)

« int getParametgconst chaxname, double ¶m)

« int getParametgconst chakname ABA_STRING ¶m)

* int getParametgconst chaxname, bool ¶m)

« int getParametgconst chaxname, char ¶m)

« void assignParametéint ¶m, const charname, int minVal, int maxVal)

« void assignParametéunsigned ¶m, const chaname, unsigned minVal, unsigned maxVal)

SeeABA_GLOBAL::assignParamefgior description.

« void assignParametédouble ¶m, const chaname, double minVal, double maxVal)
SeeABA_GLOBAL::assignParamefeior description.

« void assignParametébool ¶m, const chainame)
SeeABA_GLOBAL::assignParamefgfor description.

 void assignParametefABA_STRING ¶m, const chaxname, unsigned nFeasible=0, const char
«feasible[]=0)

* void assignParametéchar ¶m, const chaname, const chaifeasible=0)

« void assignParameté¢int ¶m, const chatrname, int minVal, int maxVal, int defVal)

« void assignParametéunsigned ¶m, const chaname, unsigned minVal, unsigned maxVal, unsigned
defVal)

SeeABA_GLOBAL::assignParamefgfor description.

« void assignParametédouble ¶m, const chaname, double minVal, double maxVal, double defval)
SeeABA_GLOBAL::assignParamefgfor description.

« void assignParametébool ¶m, const chamame, bool defVal)
SeeABA_GLOBAL::assignParamefefior description.

» void assignParamete(ABA_STRING ¶m, const charname, unsigned nFeasible, const char
«feasible[], const chardefVal)

« void assignParametéchar ¶m, const chaname, const chaifeasible, char defval)

« int findParametefconst chakxname, unsigned nFeasible, constifgasible)

« int findParametefconst charxname, unsigned nFeasible, const ckeasible[])

SeeABA_GLOBAL::findParametgfor description.

« int findParametefconst chakxname, const chatfeasible)
SeeABA_GLOBAL::findParametgfor description.

Private Member Functions

* ABA GLOBAL (constABA_GLOBAL &rhs)
e constABA_GLOBAL & operator=constABA_GLOBAL &rhs)

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.3 ABA_GLOBAL Class Reference 95

Private Attributes

ABA_OSTREAM out_
ABA_OSTREAM err_
 doubleeps_

» doublemachineEps_

The machine dependent zero tolerance, which is used to , e.qg., toddktdgfing point value is 0.

« doubleinfinity_
e charx tab_
ABA_HASH< ABA_STRING, ABA_STRING > paramTable_

Friends

» ostream &operatox < (ostream &out, consABA_GLOBAL &rhs)

6.3.1 Detailed Description
class stores global data (e.g., a zero tolerance, an outeains a table with system parameters) und functions
operating with this data.

Definition at line 58 of file global.h.

6.3.2 Constructor & Destructor Documentation

6.3.2.1 ABA_GLOBAL::ABA_ GLOBAL (double eps=1. Oe- 4, double machineEps= 1. Oe- 7, double
infinity = 1. 0e32)

The constructor initializes our filtered output and erroeain with the standard output streaoutand the standard
error streancerr.

Parameters:
eps The zero-tolerance used within all member functions of aisjevshich have a pointer to this global object
(default valuel.Oe-4).

machineEps The machine dependent zero tolerance (default vaAle-7).

infinity All values greater thamfinity are regarded as “infinite big”, all values less thenfinity are regarded
as “infinite small” (default valud..0e32). Please note that this value might be different froenvialue
the LP-solver uses internally. You should make sure thav#hee used here is always greater than or
equal to the value used by the solver.

6.3.2.2 virtual ABA_GLOBAL:: ~ABA_GLOBAL () [virtual]

The destructor.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

96 Reference Manual

6.3.2.3 ABA_GLOBAL::ABA_GLOBAL (const ABA_GLOBAL & rhs) [pri vat e]

6.3.3 Member Function Documentation

6.3.3.1 void ABA_GLOBAL:assignParameter (char & param const charx name const charx feasible
char defVal)

SeeABA_GLOBAL::assignParametgfor description.

Parameters:
param The variablgparamreceives the value of the parameter.

name The name of the parameter.
feasible A string containing all feasible settings.fdasibleis zero, then all settings are allowed.

defVal The default value that is used when the paramter is not fouitaei parameter table.

6.3.3.2 void ABA_GLOBAL:assignParameter ABA_STRING & param, const charx nhame unsigned
nFeasible const charx feasiblg], const char x defVal)

SeeABA_GLOBAL::assignParametgfor description.

Parameters:
parameter The variableparameterreceives the value of the parameter.

name The name of the parameter.
nFeasible The number of feasible settings.rFeasibleis equal to zero, then all settings are allowed.
feasible The settings for the parameter to be considered as feaMbigt be an array ofiFeasiblestrings.

defVal The default value that is used when the paramter is not foutitel parameter table.

6.3.3.3 void ABA_GLOBAL.::assignParameter (bool ¶m const charx name bool defVal)

SeeABA_GLOBAL::assignParametgfor description.

6.3.3.4 void ABA_GLOBAL:assignParameter (double ¶m, const charx name double minVal,
double maxVal, double defVal)

SeeABA_GLOBAL::assignParametgfor description.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.3 ABA_GLOBAL Class Reference 97

6.3.3.5 void ABA_GLOBAL.::assignParameter (unsigned ¶m const charx name unsignedminVal,
unsignedmaxVal, unsigneddefVal)

SeeABA_GLOBAL::assignParametgfor description.

6.3.3.6 void ABA_GLOBAL:assignParameter (int & param const charx name int minVal, int maxVal,
int defval)

SeeABA_GLOBAL::assignParametgfor description.

Parameters:
parameter The variableparameterreceives the value of the parameter.

name The name of the parameter.

minVal The value of the parameter is considered as infeasiblesfiéss thaminVal
maxVal The value of the parameter is considered as infeasiblesfliirger thai€maxVal
defVal The default value that is used when the paramter is not foutitei parameter table.

6.3.3.7 void ABA_GLOBAL::assignParameter (char & param const charx name const charx feasible=
0)

SeeABA_GLOBAL::assignParametgfor description.

Parameters:
param The variablgparamreceives the value of the parameter.

name The name of the parameter.
feasible A string consisting of all feasible charactersfdésibleis zero, then all characters are allowed.

6.3.3.8 void ABA GLOBAL:assignParameter ABA_STRING & param, const charx nhame unsigned
nFeasible= 0, const charx feasiblg] = 0)

SeeABA_GLOBAL::assignParametgfor description.

Parameters:
param The variableparametereceives the value of the parameter.

name The name of the parameter.

nFeasible The number of feasible settings.rFeasibleis equal to zero, then all values are allowed. 0 is the
default value.

feasible If nFeasibleis greater zero, the this are the settings for the parametee tonsidered as feasible.
Must be an array ofiFeasiblestrings.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

98 Reference Manual

6.3.3.9 void ABA_GLOBAL.::assignParameter (bool ¶m const charx name

SeeABA_GLOBAL::assignParametgfor description.

6.3.3.10 void ABA_ GLOBAL:assignParameter (double ¶m const charx name double minVal,
double maxVal)

SeeABA_GLOBAL::assignParametgfor description.

6.3.3.11 void ABA_GLOBAL::assignParameter (unsigned &aram, const charx name unsignedminVal,
unsignedmaxVal)

SeeABA_GLOBAL::assignParametgfor description.

6.3.3.12 void ABA_GLOBAL::assignParameter (int & param const charx name int minVal, int maxVal)

Searches for the parameteamein the parameter table.

If no parametenameis found and no default value of the parameter is given, tbgnam terminates with an error
messages. The program terminates also with an error mei$shgealue of a parameter is not within a specified
feasible region. Depending on the type of the parameterqsilfe region can be an interval (specifiedrinVal
andmaxVa) or can be given by a set of feasible settings (given by a numiEeasibleand a pointefeasibleto the
feasible values.

This function is overloaded in two ways. First, this funatis defined for different types of the argument
parameter second, for each such type we have both versions, with ahdwutia default value of the parameter.

Parameters:
param The variableparametereceives the value of the parameter.

name The name of the parameter.
minVal The value of the parameter is considered as infeasiblesfi@ss thaminVal
maxVal The value of the parameter is considered as infeasiblesfi@rger thamaxVal

6.3.3.13 virtual char ABA_GLOBAL::enter (istream & in) [virtual]

Displays the string { ENTER} on the global output stream and waits for a character onrpatistreanin, e.g.,
a keystroke ifin == cin.

Returns:
The character read from the input stream.

Parameters:
in The input stream the character should be read from.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.3 ABA_GLOBAL Class Reference 99

6.3.3.14 void ABA_GLOBAL::eps (doublee) [inli ne]

This version of the functioeps()sets the zero tolerance.

Parameters:
e The new value of the zero tolerance.

Definition at line 439 of file global.h.

6.3.3.15 double ABA GLOBAL:eps () const [i nl i ne]

Returns:
The zero tolerance.

Definition at line 434 of file global.h.

6.3.3.16 bool ABA_GLOBAL::equal (doublex, doubley) const [i nli ne]

Returns:
true If the absolute difference afandy is less than the machine dependent zero tolerance,
false otherwise.

Parameters:
x The first value being compared.

y The second value being compared.

Definition at line 484 of file global.h.

6.3.3.17 virtualABA_ OSTREAM & ABA_ GLOBAL::err (int nTab=0) [virtual]

Behaves like the functioaut() except that the global error stream is used instead of tHebtmutput stream.

Returns:
A reference to the global error stream.

Parameters:

nTab The number of tabulators which should be written to the dleb@r stream. The default value is 0.

6.3.3.18 int ABA_GLOBAL::findParameter (const char x name const charx feasiblg

SeeABA_GLOBAL::findParametédrfor description.

6.3.3.19 int ABA_GLOBAL:findParameter (const char « name unsignednFeasible const char

feasibld])

SeeABA_GLOBAL::findParametdrfor description.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

100 Reference Manual

6.3.3.20 int ABA_GLOBAL::findParameter (const char x« name unsignednFeasible const int x feasible

Searches for the parameteamein the parameter table.

If no parametenameis found the program terminates with an error messages. fbigegm terminates also with an
error message if the value of a parameter is not within a digénf feasible settings. This function is overloaded
and can be used for different types of parameters such agimtalued, char valued and string parameters.

Returns:
The index of the matched feasible setting.

Parameters:
name The name of the parameter.

nFeasible The number of feasible settings.
feasible The settings for the parameter to be considered as feabbigt. be an array ofiFeasiblestrings.

6.3.3.21 int ABA_GLOBAL::getParameter (const charx name char & param)

6.3.3.22 int ABA_GLOBAL::getParameter (const charx name bool & param)

6.3.3.23 int ABA_GLOBAL::getParameter (const charx name ABA_STRING & param)

6.3.3.24 int ABA_GLOBAL::getParameter (const charx hame double & param)

6.3.3.25 int ABA_GLOBAL::getParameter (const charx name unsigned int & param)

6.3.3.26 int ABA_GLOBAL::getParameter (const charx name int & param)

Searches for the parameteamein the parameter table.

This function is overloaded for different types of the arguntparameter See also the functioressignParameter
andfindParametemwith enhanced functionality.

Returns:
0 If the parameter is found,
1 otherwise.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.3 ABA_GLOBAL Class Reference 101

Parameters:
name The name of the parameter.

parameter The variableparameterreceives the value of the parameter, if the function ret@rrgtherwise it
is undefined.

6.3.3.27 void ABA_GLOBAL::infinity (double x) [inline]

This version of the functioimfinity() sets the “infinite value”. Please note that this value mightlifferent from

the value the LP-solver uses internally. You should make thet the value used here is always greater than or
equal to the value used by the solver.

Parameters:
X The new value representing “infinity”.

Definition at line 459 of file global.h.

6.3.3.28 double ABA_GLOBAL::infinity () const [i nli ne]

Provides a floating point value of “infinite” size. Espegtalve assume thainfinity() is the lower andnfinity() is
the upper bound of an unbounded variable in the linear progra

Returns:
A very large floating point number. The default valudrdinity() is 1.0e32.

Definition at line 454 of file global.h.

6.3.3.29 void ABA_GLOBAL:insertParameter (const charx name const charx value)

Inserts a parameter in the parameter table.

If the parameter already is in the table, the value is oveisvri

Parameters:
name The name of the parameter.

value The literal value of the parameter.

6.3.3.30 bool ABA_GLOBAL::isInfinity (double x) const [i nli ne]

Returns:
true If xis regarded as “infinite” large,
false otherwise.

Parameters:
X The value compared with “infinity”.

Definition at line 464 of file global.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

102 Reference Manual

6.3.3.31 bool ABA_GLOBAL::isInteger (doublex, double epg const
Returns:

true If the valuex differs at most byepsfrom an integer value,
false otherwise.

6.3.3.32 bool ABA_GLOBAL::isInteger (doublex) const [i nli ne]
Returns:

true If the valuex differs at most by the machine dependent zero tolerance &imteger value,
false otherwise.

Definition at line 490 of file global.h.

6.3.3.33 bool ABA_GLOBAL::isMinuslInfinity (double x) const [i nli ne]
Returns:

true If x is regarded as infinite small;}
false otherwise.

Parameters:
X The value compared with “minus infinity”.

Definition at line 474 of file global.h.

6.3.3.34 void ABA_GLOBAL::machineEps (doublee) [i nli ne]
This version of the functiomachineEps($ets the machine dependent zero tolerance.

Parameters:
e The new value of the machine dependent zero tolerance.

Definition at line 449 of file global.h.

6.3.3.35 double ABA_GLOBAL::machineEps () const [i nl i ne]

Provides a machine dependent zero tolerance.

The machine dependent zero tolerance is used, e.g., td ¢effvating point value is 0. This value is usually less
thaneps() which provides, e.g., a safety tolerance if a constrainidated.

Returns:
The machine dependent zero tolerance.

Definition at line 444 of file global.h.

6.3.3.36 consABA_GLOBAL & ABA_GLOBAL::operator= (const ABA _GLOBAL & rhs) [privat e]

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.3 ABA_GLOBAL Class Reference 103

6.3.3.37 virtualABA_OSTREAM & ABA_GLOBAL::out (int nTab=0) [virtual]

Returns a reference to the output stream associated wétgtbbal object after writingnTab (default value 0)
tabulators on this stream. This tabulator is not the noratallator but consists of four blanks.

Returns:
A reference to the global output stream.

Parameters:
nTab The number of tabulators which should be written to the dlobgut stream. The default value is O.

6.3.3.38 void ABA_GLOBAL::readParameters (const char« fileName

Opens the parameter fifkeName reads all parameters, and inserts them in the parameter tab

A parameter file may have at most 1024 characters per line.

Parameters:
fileName The name of the parameter file.

6.3.4 Friends And Related Function Documentation

6.3.4.1 ostream& operatok < (ostream & out, constABA_GLOBAL & rhs) [friend]

The output operator writes some of the data members to art strgam.

Returns:
A reference to the output stream.

Parameters:
out The output stream.

rhs The object being output.

6.3.5 Member Data Documentation

6.3.5.1 doubleABA GLOBAL:eps_ [private]

A zero tolerance.

Definition at line 411 of file global.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

104 Reference Manual

6.3.5.2 ABA_OSTREAM ABA_GLOBAL:err_ [pri vat e]

The global error stream.
Definition at line 407 of file global.h.

6.3.5.3 doubleABA_GLOBAL:infinity_ [private]

An “infinite” big number.

Definition at line 423 of file global.h.

6.3.5.4 doubleABA_GLOBAL::machineEps_ [pri vat e]

The machine dependent zero tolerance, which is used tq t@tgst if a floating point value is 0.
This value is usually less thaps , which represents, e.g., a safety tolerance if a constiaintlated.

Definition at line 419 of file global.h.

6.3.5.5 ABA_OSTREAM ABA_GLOBAL:out_ [private]
The global output stream.

Definition at line 403 of file global.h.

6.3.5.6 ABA_HASH <ABA_STRING, ABA_STRING > ABA_GLOBAL::paramTable_ [pri vat €]

Definition at line 428 of file global.h.

6.3.5.7 chawx ABA_GLOBAL:tab_ [private]

A string used as tabulator in the functiomst() anderr().
Definition at line 427 of file global.h.

The documentation for this class was generated from thevioil file:

¢ Include/abacuglobal.h

6.4 ABA_MASTER Class Reference

Class ABA_MASTER is the central object of the framework. Thest important tasks of the class ABA_-
MASTER is the management of the implicit enumeration. Meegpit provides already default implementations
for constraints, cutting planes, and variables pools.

#i ncl ude <naster. h>
Inheritance diagram for ABA_MASTER::

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.4 ABA_MASTER Class Reference 105

| ABA_ABACUSROOT|

T

| ABA_GLOBAL |

T

| ABA_MASTER |

Public Types

e enumSTATUS{
Optimal Error, OutOfMemory Unprocessed
ProcessingGuaranteedViaxLevel MaxCpuTime

MaxCowTime ExceptionFathonh
* enumOUTLEVEL {

Silent Statistics SubproblemLinearProgram

Full }
* enumENUMSTRAT { BestFirst BreadthFirstDepthFirst DiveAndBest}
¢ enumBRANCHINGSTRAT{ CloseHalf CloseHalfExpensiv

This enumeration defines the two currently implemented branching vadelgetion strategies.

e enumPRIMALBOUNDMODE { NoPrimalBoundOptimum OptimumOné&
This enumeration provides various methods for the initialization of the primahd.

* enumSKIPPINGMODE{ SkipByNode SkipByLevel}
e enumCONELIMMODE { NoConElim NonBinding Basic}

This enumeration defines the ways for automatic constraint elimination dtivegutting plane phase.

* enumVARELIMMODE { NoVarElim, ReducedCost
This enumeration defines the ways for automatic variable elimination durincollnenn generation algorithm.

« enumVBCMODE { NoVhbg, File, Pipe}
This enumeration defines what kind of output can be generated for t6d@BL.

e enumOSISOLVER{
Cbg, Clp, CPLEX, DyLP,
FortMP, GLPK, MOSEK, OSL,
SoPlex SYMPHONY, Vol, XPRESS_MPB
This enumeration defines which solvers can be used to solve thelLRtretes

Public Member Functions
« ABA_MASTER (const charsxproblemName, bool cutting, bool pricinghABA_ OPTSENSE::SENSE

optSense=ABA_OPTSENSE::Unknown, double eps=1.0e-4pldomachineEps=1.0e-7, double infin-
ity=1.0e30, bool readParamFromFile=true)

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

106 Reference Manual

virtual ~ABA_MASTER ()
The destructor.

STATUS optimize()
ENUMSTRAT enumerationStratedy const
void enumerationStrategENUMSTRAT strat)

This version of the functioenumerationStrategy¢hanges the enumeration strategy.

virtual int enumerationStrateggonstABA_SUB xs1, consABA_SUB xs2)

Analyzes the enumeration strategy set in the parameter file { .abacustalts the corresponding comparison
function for the subproblemsl and s2 This function should be redefined for application specific enumeration
strategies.

bool guaranteed)

Can be used to check if the guarantee requirements are fulfilled, i.e.jffaeedce between upper bound and the
lower bound in respect to the lowerBound is less than this guarantee vaperdant.

doubleguaranted)
void printGuarante€)
bool check()

Can be used to control the correctness of the optimization if the value optimawm solution has been loaded.

bool knownOptimum(double &optVal)

Opens the file specified with the parameter { OptimumFileName} in the coafiigufile { .abacus} and tries to find
a line with the name of the problem instance (as specified in the construA@/fMASTER) as first string.

virtual void output()

bool cutting() const

bool pricing () const

constABA_OPTSENSE« optSens€) const

ABA_HISTORY x history() const

ABA_OPENSUB: openSul() const

ABA_STANDARDPOOL< ABA CONSTRAINT, ABA_VARIABLE > x conPool() const
ABA STANDARDPOOL< ABA CONSTRAINT, ABA VARIABLE > x cutPool() const
ABA STANDARDPOOL< ABA_ VARIABLE , ABA_CONSTRAINT > * varPool() const
ABA_SUB x root() const

ABA_SUB x rRoot() const

STATUS statug) const

constABA_STRING * problemNam¢) const

constABA _COWTIMER x totalCowTime() const

bool solveApprox() const

constABA_CPUTIMER x totalTime() const

constABA_CPUTIMER % IpTime () const

constABA_CPUTIMER x* IpSolverTime() const

constABA CPUTIMER x separationTimé) const

constABA_CPUTIMER * improveTime() const

constABA_ CPUTIMER x pricingTime() const

constABA CPUTIMER % branchingTime) const

int nSub() const

int nLp () const

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.4 ABA_MASTER Class Reference 107

int highestLevel) const
int nNewRoot() const
int nSubSelecte¢) const
void printParameterg§

Writes all parameters of the class ABA_MASTER together with their values tgdbal output stream.

BRANCHINGSTRAT branchingStratedy const
void branchingStrateg{BRANCHINGSTRAT strat)
OSISOLVER defaultLpSolvef) const

void defaultLpSolve(OSISOLVERosiSolver)

ABA LPMASTEROSI* IpMasterOsi) const

int nBranchingVariableCandidat€sconst

void nBranchingVariableCandidatéist n)

This version of the functionbranchingVariableCandidatesgts the number of tested branching variable candi-
dates.

doublerequiredGuarante@ const
void requiredGuarante@louble g)
This version of the functiorequiredGuarantee¢hanges the guarantee specification.

int maxLevel() const
void maxLevel(int ml)

This version of the functiomaxLevel()changes the maximal enumeration depth.

constABA_STRING & maxCpuTimg() const
void maxCpuTimgconstABA_STRING &t)
constABA_STRING & maxCowTime() const

The functiormaxCowTime()

void maxCowTime(constABA_STRING &t)
This version of the functiomaxCowTime()set the maximal wall-clock time for the optimization.

bool objinteger() const
void objinteger(bool b)

This version of functiolmbjinteger()sets the assumption that the objective function values of all feasible solutions
are integer.

int tailOffNLp () const
The functiortailOffNLp().

void tailOffNLp (int n)
doubletailOffPercent() const

The functiortailOffPercent()

void tailOffPercent(double p)
This version of the functiotailOffPercent()sets the minimal change of the dual bound for the tailing off analysis.

OUTLEVEL outLevel() const
void outLevel(OUTLEVEL mode)

The version of the functiooutLevel()sets the output mode.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

108 Reference Manual

OUTLEVEL logLevel() const
void logLevel (OUTLEVEL mode)

This version of the functiologLevel() sets the output mode for the log-file.

bool delayedBranchingint nOpt_) const
void dbThresholdint threshold)

Sets the number of optimizations of a subproblem until sons are creafBIANSUB::branching()

int dbThreshold) const

int minDormantRound§) const

void minDormantRoundént nRounds)

PRIMALBOUNDMODE pbMode() const

void ppMode(PRIMALBOUNDMODE mode)

int pricingFreq() const

void pricingFreq(int)
This version of the functiopricingFreq()sets the number of linear programs being solved between two additional
pricing steps.

int skipFacton) const
void skipFactor(int f)

This version of the functioskipFactor()sets the frequency for constraint and variable generation.

void skippingMode(SKIPPINGMODEmMode)
This version of the functioskippingMode()sets the skipping strategy.

SKIPPINGMODE skippingMod€) const
CONELIMMODE conElimMode() const
void conElimMode(CONELIMMODE mode)
VARELIMMODE varElimMode () const
void varElimMode(VARELIMMODE mode)
doubleconElmEpY() const

void conElimEps(double eps)
doublevarElimEps() const

void varElimEps(double eps)

int varElimAge() const

void varElimAge(int eps)

int conElimAge() const

void conElimAge(int eps)
boolfixSetByRedCosf) const

void fixSetByRedCos(bool on)

bool printLP () const

void printLP (bool on)

int maxConAdd() const

void maxConAdd(int max)

Sets the maximal number of constraints that are added in an iteration ofitieg-plane algorithm.

int maxConBuffered) const
void maxConBufferedint max)

Changes the maximal number of constraints that are buffered in an itarafithe cutting plane algorithm.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.4 ABA_MASTER Class Reference 109

int maxVarAdd() const
void maxVarAdd(int max)

Changes the maximal number of variables that are added in an iteratitrecfubproblem optimization.

int maxVarBuffered) const
void maxVarBufferedint max)
Changes the maximal number of variables that are buffered in an iterafitire subproblem optimization.

int maxlterationg) const
void maxlterationgint max)

Changes the default value for the maximal number of iterations of the optiomizz a subproblem.

bool eliminateFixedSef) const
void eliminateFixedSefbool turnOn)

This version of the functioeliminateFixedSet(¢an be used to turn the elimination of fixed and set variables on or
off.

bool newRootReOptimizé) const

void newRootReOptimizébool on)
constABA_STRING & optimumFileName) const
void optimumFileNaméconst chaxname)

bool showAverageCutDistandg const

void showAverageCutDistand&ool on)

Turns the output of the average distance of the added cuts from the fralc$imintion on or off.

VBCMODE vbcLog() const
void vbcLog (VBCMODE mode)
virtual boolsetSolverParametef®siSolverinterfaceinterface, bool solverlsApprox)

bounds

In order to embed both minimization and maximization protgen this system we work internally with primal
bounds, i.e., a value which is worse than the best knownispl(dften a value of a feasible solution), and dual
bounds, i.e., a bound which is better than the best knownisnluPrimal and dual bounds are then interpreted
as lower or upper bounds according to the sense of the ogtiarz

doublelowerBound() const

doubleupperBound) const

doubleprimalBound() const

void primalBound(double x)
This version of the functioprimalBound()sets the primal bound t® and makes a new entry in the solution
history. Itis an error if the primal bound gets worse.

* doubledualBound() const
* void dualBound(double x)

This version of the functiodualBound()sets the dual bound toand makes a new entry in the solution history.

boolbetterDualdouble x) const
bool primalViolated(double x) const
bool betterPrimal(double x) const
boolfeasibleFound) const

We use this function ,e.g., to adapt the enumeration strategy DitleAndBest-Strategy

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

110 Reference Manual

Static Public Attributes

* static const chax STATUS _[]

Literal values for the enumerators of the corresponding enumeratian fiipe order of the enumerators is preserved.
(e.g., { STATUS[0]=="Optimal"}).

* static const chatr OUTLEVEL_[]

Literal values for the enumerators of the corresponding enumeratian fiipe order of the enumerators is preserved.
(e.g., { OUTLEVEL[0]=="Silent"}).

« static const chax ENUMSTRAT_[]

Literal values for the enumerators of the corresponding enumeratian fHipe order of the enumerators is preserved.
(e.g., { ENUMSTRAT[0]=="BestFirst"}).

« static const char BRANCHINGSTRAT _[]

Literal values for the enumerators of the corresponding enumeratian fifpe order of the enumerators is preserved.
(e.g., { BRANCHINGSTRAT[0]=="CloseHalf"}).

* static const chat PRIMALBOUNDMODE_ []

Literal values for the enumerators of the corresponding enumeratian fiipe order of the enumerators is preserved.
(e.g., { PRIMALBOUNDMODE[0]=="None"}).

« static const chax SKIPPINGMODE []

Literal values for the enumerators of the corresponding enumeratian fHipe order of the enumerators is preserved.
(e.g., { SKIPPINGMODE[0]=="None"}).

« static const chax CONELIMMODE_[]

Literal values for the enumerators of the corresponding enumeratian fiipe order of the enumerators is preserved.
(e.g., { CONELIMMODE[0]=="None"}).

* static const chat VARELIMMODE_ []

Literal values for the enumerators of the corresponding enumeratian fipe order of the enumerators is preserved.
(e.g., { VARELIMMODE[0]=="None"}).

« static const chax VBCMODE_[]

Literal values for the enumerators of the corresponding enumeratian fHipe order of the enumerators is preserved.
(e.g., { VBCMODE[0]=="None"}).

* static const chat OSISOLVER_[]
Array for the literal values for possible Osi solvers.

Protected Member Functions

« virtual void initializePools(ABA_BUFFER< ABA_CONSTRAINT % > &constraints,ABA_BUFFER<
ABA VARIABLE x > &Variables, int varPoolSize, int cutPoolSize, bool dyne@utPool=false)

« virtual void initializePools(ABA_BUFFER< ABA_CONSTRAINT * > &constraints,ABA_BUFFER<
ABA_CONSTRAINT *x > &cuts, ABA_ BUFFER< ABA_ VARIABLE x > &Variables, int varPoolSize,
int cutPoolSize, bool dynamicCutPool=false)

Is overloaded such that also a first set of cutting planes can be insiettethe cutting plane pool.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.4 ABA_ MASTER Class Reference 111

« void initializeOptSenséABA_ OPTSENSE::SENSEense)

Can be used to initialize the sense of the optimization in derived classes, if shi®hlaeen already performed when
the constructor of ABA_MASTER has been called.

* int bestFirstSearcfconstABA SUB xs1, consABA SUB xs2) const
« virtual int equalSubComparngonstABA_SUB xs1, constABA SUB xs2) const

Is called from the functiobestFirstSearch@nd from the functiomlepthFirstSearch(j the subproblemslands2
have the same priority.

* int depthFirstSearc{tonstABA_SUB xs1, consABA_SUB xs2) const
Implements the depth first search enumeration strategy, i.e., theahlepr with maximurtevelis selected.

« int breadthFirstSeargtonstABA_SUB xs1, consABA_SUB xs2) const
Implements the breadth first search enumeration strategy, i.e., tipeahibm with minimuntevelis selected.

« int diveAndBestFirstSearditonstABA _SUB xs1, consABA_SUB xs2) const

Performs depth-first search until a feasible solution is found, then thelsgaocess is continued with best-first
search.

« virtual void initializeParameter§

Is only a dummy. This function can be used to initialize parameters of deriseses and to overwrite parameters
read from the file { .abacus} by the function ().

« virtual ABA_SUB x firstSub()=0
« virtual void initializeOptimization()
The default implementation ofitializeOptimization()does nothing.

« virtual void terminateOptimizatiof)
The default implementation términateOptimization(@oes nothing.

Private Member Functions

 void _initializeParameter§

Reads the parameter-file { .abacus}, which is searched in the diregteey by the environment variable ABACUS_-
DIR, and calls the virtual functiornitializeParameters(vhich can initialize parameters of derived classes and
overwrite parameters of this class.

* void _createLpMaster§
 void _deleteLpMaster§
 void _initializeLpParameter§
 void _setDefaultLpParametefs
Initializes the LP solver specific default Parameters if they are not read fle parameter-file { .abacus}.

e void _printLpParameter§

¢ void _outputLpStatistic$)

* ABA_SUB x select()

e intinitLP ()

« void writeTreelnterfacéconst chakinfo, bool time=true) const
« void treelnterfaceNewNod@BA_SUB xsub) const

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

112 Reference Manual

Adds the subproblersubto the stream storing information for graphical output of the enumeration ifréeis
logging is turned on.

« void treelnterfacePaintNodgnt id, int color) const

« void treelnterfaceLowerBoun(tiouble Ib) const

« void treelnterfaceUpperBoundouble ub) const

« void treelnterfaceNodeBoundgt id, double Ib, double ub)

Updates the node information in the node with nunitdsy writing the lower boundb and the upper boundb to
the node.

 void newSub(int level)
* void countLp()

Increments the counter for linear programs and should be called in eptitmization call of the LP-relaxation.

* void newFixed(int n)
Increments the counter of the number of fixed variables. by

« void addCongint n)

Increments the counter for the total number of added constrainis by

* void removeCongint n)
Increments the counter for the total number of removed constraints by

* void addVarg(int n)

Increments the counter for the total number of added variables by

* void removeVargint n)
Increments the counter for the total number of removed variables by

e ABA_FIXCAND x fixCand() const

* void rRoot(ABA_SUB xnewRoot, bool reoptimize)

* void status(STATUS stat)

« void rootDualBounddouble x)

« void theFuturg)

« ABA MASTER (constABA_MASTER &rhs)

* constABA_MASTER & operator<(constABA_MASTER &rhs)

Private Attributes

e ABA_STRING problemName_

e boolreadParamFromFile_

« ABA_OPTSENSE optSense_

e ABA SUB x root_

e ABA_SUB * rRoot_

 ABA_OPENSUB: openSub_

e ABA_HISTORY = history_

« ENUMSTRAT enumerationStrategy

*« BRANCHINGSTRAT branchingStrategy
« int nBranchingVariableCandidates_

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.4 ABA_MASTER Class Reference 113

The number of candidates that are evaluated for branching on variables

* OSISOLVER defaultLpSolver_

* ABA_LPMASTEROSIx* IpMasterOsi_

* ABA_STANDARDPOOL< ABA_CONSTRAINT, ABA_VARIABLE > x conPool_
* ABA_STANDARDPOOL< ABA_CONSTRAINT, ABA_VARIABLE > x cutPool_
* ABA_STANDARDPOOL< ABA_VARIABLE , ABA_CONSTRAINT > * varPool_
 doubleprimalBound_

 doubledualBound_

* doublerootDualBound_

e ABA_ FIXCAND x fixCand_

* boolcutting_

* boolpricing_

* bool solveApprox_

 int nSubSelected_

The number of subproblems already selected from the list of openchieprs.

« VBCMODE VbcLog_
Ouput for the Tree Interface is generated depending on the value of tlédbiea

* ostreamx treeStream_
 doublerequiredGuarantee__

The guarantee in percent which should be reached when the optimiztdjm s

e int maxLevel_

¢ ABA_STRING maxCpuTime_
e ABA_STRING maxCowTime_
* boolobjinteger_

true, if all objective function values of feasible solutions are assumed to be integer

e int tailOffNLp_
 doubletailOffPercent

e intdbThreshold_

 int minDormantRounds__

The minimal number of rounds, i.e., number of subproblem optimiztesubproblem is dormant, i.e., it is not
selected from the set of open subproblem if its statD®isnant if possible.

e OUTLEVEL outLevel
e OUTLEVEL logLevel_
* PRIMALBOUNDMODE pbMode_
e int pricingFreq_
* int skipFactor_
The frequency constraints or variables are generated depending akifyging mode.

» SKIPPINGMODE skippingMode_

Either constraints are generated only evesiipFactor_subproblem $kipByNodg only everyskipFactor_level
(SkipByLeve).

 boolfixSetByRedCost_
e boolprintLP_

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

114 Reference Manual

int maxConAdd_

The maximal number of added constraints per iteration of the cutting pliyogigom.

int maxConBuffered_
int maxVarAdd_

The maximal number of added variables per iteration of the column g&aerralgorithm.

int maxVarBuffered
int maxIterations__

The maximal number of iterations of the cutting plane/column generatiomitdgoin the subproblem.

bool eliminateFixedSet_
bool newRootReOptimize_

If trug, then an already earlier processed node is reoptimized if it become®theoot of the remaining tree.

ABA_STRING optimumFileName_
The name of a file storing a list of optimum solutions of problem instances.

bool showAverageCutDistance
If truethen the average distance of the added cutting planes is output every itesdtioe cutting plane algorithm.

CONELIMMODE conElimMode_

The way constraints are automatically eliminated in the cutting plane algorithm.

VARELIMMODE varElimMode_
The way variables are automatically eliminated in the column generation algorith

doubleconElimEps_

The tolerance for the elimination of constraints by the mNdeBinding/

doublevarElimEps_

The tolerance for the elimination of variables by the mB#elucedCost

int conElimAge_

The number of iterations an elimination criterion must be satisfied until atcminscan be removed.

int varElimAge_
The number of iterations an elimination criterion must be satisfied until a briean be removed.

STATUS status_
ABA_COWTIMER totalCowTime_
ABA_CPUTIMER totalTime_
ABA_CPUTIMER IpTime_
ABA_CPUTIMER IpSolverTime_
ABA_CPUTIMER separationTime_
ABA_CPUTIMER improveTime_

The timer for the cpu time spent in the heuristics for the computation of feaslbteoss.
ABA_CPUTIMER pricingTime_

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.4 ABA_MASTER Class Reference 115

« ABA_CPUTIMER branchingTime_
e intnSub_

e intnLp_

* int highestLevel

e int nFixed_

¢ int NAddCons_

e intnRemCons_

e int nAddVars_

e int NnRemVars_

 int nNewRoot_

Friends

 classABA_SUB
* classABA_FIXCAND

6.4.1 Detailed Description
Class ABA_MASTER is the central object of the framework. Thest important tasks of the class ABA_-

MASTER is the management of the implicit enumeration. Meegpit provides already default implementations
for constraints, cutting planes, and variables pools.

Definition at line 76 of file master.h.

6.4.2 Member Enumeration Documentation

6.4.2.1 enumABA_MASTER::BRANCHINGSTRAT
This enumeration defines the two currently implementeddiring variable selection strategies.

Parameters:
CloseHalf Selects the variable with fractional part closesh .

CloseHalfExpensiveSelects the variable with fractional part close)td (within some interval around.5)
and has highest absolute objective function coefficient.

Enumeration values:
CloseHalf

CloseHalfExpensive

Definition at line 175 of file master.h.

6.4.2.2 enumABA_MASTER::CONELIMMODE
This enumeration defines the ways for automatic constrimtreation during the cutting plane phase.

Parameters:
NoConElim No constraints are eliminated.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

116

Reference Manual

NonBinding Nonbinding constraints are eliminated.

Basic Constraints with basic slack variable are eliminated.

Enumeration values:
NoConElim

NonBinding

Basic

Definition at line 233 of file master.h.

6.4.2.3 enumABA_MASTER:ENUMSTRAT

Enumeration values:
BestFirst

BreadthFirst
DepthFirst
DiveAndBest

Definition at line 158 of file master.h.

6.4.2.4 enumABA_MASTER::OSISOLVER

This enumeration defines which solvers can be used to sadléthelaxations.

Enumeration values:
Chc

Clp

CPLEX
DyLP
FortMP
GLPK
MOSEK
OoSsL

SoPlex
SYMPHONY
Vol
XPRESS_MP

Definition at line 280 of file master.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.4 ABA_ MASTER Class Reference 117

6.4.2.5 enumABA_MASTER:OUTLEVEL

This enumeration defines the different output levels:

Parameters:
Silent No output at all.

Statistics No output during the optimization, but output of final stttis.

SubproblemIn addition to the previous level also a single line of outpftier every subproblem optimization.
LinearProgram In addition to the previous level also a single line of outgftiér every solved linear program.
Full Tons of output.

Enumeration values:
Silent

Statistics
Subproblem
LinearProgram
Full

Definition at line 131 of file master.h.

6.4.2.6 enumABA_MASTER::PRIMALBOUNDMODE

This enumeration provides various methods for the in&tlon of the primal bound.

The modedOptimalPrimalBoundand OptimalOnePrimalBoundtan be useful in the testing phase. For these
modes the value of an optimum solution must stored in the filengby the parameter { OptimumFileName} in
the parameter file.

Parameters:
NoPrimalBound The primal bound is initialized with-oo for maximization problems ansb for minimiza-
tion problems, respectively.

OptimalPrimalBound The primal bound is initialized with the value of the optimgiution.

OptimalOnePrimalBound The primal bound is initialized with the value of optimum siwdn minus 1 for
maximization problems and with the value of the optimum sotuplus one for minimization problems,
respectively.

Enumeration values:
NoPrimalBound

Optimum
OptimumOne

Definition at line 202 of file master.h.
6.4.2.7 enumABA_MASTER::SKIPPINGMODE

The way nodes are skipped for the generation of cuts.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

118 Reference Manual

Parameters:
SkipByNode Cuts are only generated in every { SkipFactor} subprobleinere { SkipFactor} can be con-
trolled with the parameter file { .abacus}.

SkipByLevel Cuts are only generated in every { SkipFactor} level of tharaeration tree.

Enumeration values:
SkipByNode

SkipByLevel

Definition at line 218 of file master.h.

6.4.2.8 enumABA_MASTER:STATUS

The various statuses of the optimization process.

Parameters:
Optimal The optimization terminated with an error and without réagtone of the resource limits. If there
is a feasible solution then the optimal solution has beenptded.

Error An error occurred during the optimization process.
UnprocessedThe initial status, before the optimization starts.
Processing The status while the optimization is performed.

Guaranteed If not the optimal solution is determined, but the requiredmntee is reached, then the status is
Guaranteed

MaxLevel The status, if subproblems are ignored since the maximumeration level is exceeded.
MaxCpuTime The status, if the optimization terminates since the marinepu time is exceeded.
MaxCowTime The status, if the optimization terminates since the marinnall-clock time is exceeded.

ExceptionFathom The status, if at least one subproblem has been fathomeddaugdo a problem specific
criteria determined in the functiohBA_SUB::exceptionFathom()

Enumeration values:
Optimal

Error
OutOfMemory
Unprocessed
Processing
Guaranteed
MaxLevel
MaxCpuTime
MaxCowTime

ExceptionFathom

Definition at line 109 of file master.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.4 ABA_MASTER Class Reference 119

6.4.2.9 enumABA_MASTER:VARELIMMODE
This enumeration defines the ways for automatic variabieieéition during the column generation algorithm.

Parameters:
NoVarElim No variables are eliminated.

ReducedCostvariables with high absolute reduced costs are eliminated.

Enumeration values:
NoVarElim

ReducedCost

Definition at line 249 of file master.h.

6.4.2.10 enumABA_MASTER::'VBCMODE

This enumeration defines what kind of output can be genefatéde VBCTOOL.

Parameters:
None No output for the tree interface.

File Output for the tree interface is written to a file.
Pipe Output for the tree interface is pipe to the standard output.

Enumeration values:
NoVbc

File
Pipe

Definition at line 266 of file master.h.

6.4.3 Constructor & Destructor Documentation

6.4.3.1 ABA_MASTER::ABA_MASTER (const char x problemName bool cutting, bool pricing,
ABA_OPTSENSE::SENSEoptSense= ABA_OPTSENSE: : Unknown, doubleeps=1. Oe- 4,
double machineEps=1. Oe- 7, doubleinfinity = 1. 0e30, bool readParamFromFile=t r ue)

The constructor.

Parameters:
problemNameThe name of the problem being solved. Must not be a O-pointer.

cutting If true, then cutting planes can be generated if the funcliBA_ SUB::separate(js redefined.
pricing If true, then inactive variables are priced in, if the funct®BA_SUB::pricing()is redefined.

optSenseThe sense of the optimization. The default valuABA_ OPTSENSE::UnknownIf the sense is
unknown when this constructor is called, e.qg., if it is regahf a file in the constructor of the derived
class, then it must be initialized in the constructor of tee\kd class.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

120 Reference Manual

eps The zero-tolerance used within all member functions of aisjevhich have a pointer to this master (de-
fault valuel.0e-4).

machineEps The machine dependent zero tolerance (default vale-7).

infinity All values greater thamfinity are regarded as “infinite big”, all values less tharfinity are regarded
as “infinite small” (default valud.0e30).

readParamFromFile If true, then the parameter file .abacus is read, otherwis@anameters are initialized
with default values (defauttue).

The membergprimalBound_anddualBound_stay uninitialized since this can only be done when the sehep-
timization (minimization or maximization) is known. Thetialization is performed automatically in the function
optimize()

6.4.3.2 virtual ABA_MASTER:: ~ABA_MASTER () [virtual]

The destructor.

6.4.3.3 ABA_MASTER::ABA_MASTER (const ABA_MASTER & rhs) [private]

6.4.4 Member Function Documentation

6.4.4.1 void ABA MASTER:: createLpMasters () [pri vat e]

6.4.4.2 void ABA_MASTER:: deleteLpMasters () [pri vat e]

6.4.4.3 void ABA_MASTER::_initializeLpParameters () [pri vat e]

6.4.4.4 void ABA_MASTER:: initializeParameters () [pri vat e]

Reads the parameter-file { .abacus}, which is searched indifextory given by the environment variable
ABACUS_DIR, and calls the virtual functiomitializeParameters(which can initialize parameters of derived
classes and overwrite parameters of this class.

All parameters are first inserted together with their valines parameter table in the functioseadParameters()
If the virtual dummy functionnitializeParameters()s redefined in a derived class and also reads a parameter file
with the functionreadParameters(then already inserted parameters can be overwritten.

After all parameters are input we extract with the funcssignParameter@ll parameters. Problem specific
parameters should be extracted in a redefined versionitiaizeParameters()extracted from this table

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.4 ABA_ MASTER Class Reference 121

6.4.4.5 void ABA_MASTER:: outputLpStatistics () [pri vat e]

Prints the LP solver specific statistics.

This function is implemented in the filpif.cc.

6.4.4.6 void ABA_MASTER:: printLpParameters () [pri vate]

Prints the LP solver specific parameters.

This function is implemented in the filpif.cc.

6.4.4.7 void ABA_MASTER::_setDefaultLpParameters () [pri vat e]

Initializes the LP solver specific default Parameters if/taee not read from the parameter-file { .abacus}.

This function is implemented in the filpif.cc.

6.4.4.8 void ABA_MASTER::addCons (intn) [inline, private]

Increments the counter for the total number of added cansirby n.

Definition at line 2016 of file master.h.

6.4.4.9 void ABA_MASTER:addVars (intn) [inline, private]

Increments the counter for the total number of added vagbyn.

Definition at line 2026 of file master.h.

6.4.4.10 int ABA MASTER::bestFirstSearch (constABA_ SUB x* s1, constABA SUB x s2) const
[protect ed]

Implements the best first search enumeration.

If the bounds of both subproblems are equal, then the sulgnsbare compared with the function
equalSubCompare()

Returns:
-1 If subproblensl1has a worse dual bound thag i.e., if it has a smaller dual bound for minimization or a
larger dual bound for maximization problems.
1 If subproblenms2has a worse dual bound thafh
0 If both subproblems have the same priority in the enuntaratirategy.

Parameters:
s1 A subproblem.

s2 A subproblem.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

122 Reference Manual

6.4.4.11 bool ABA_MASTER::betterDual (doublex) const

Returns:
true If x is better than the best known dual bound.
false otherwise.

Parameters:
X The value being compared with the best know dual bound.

6.4.4.12 bool ABA_MASTER::betterPrimal (doublex) const

Can be used to check if a value is better than the best knowaphound.

Returns:
true If x is better than the best known primal bound,
false otherwise.

Parameters:
X The value compared with the primal bound.

6.4.4.13 void ABA_MASTER::branchingStrategy BRANCHINGSTRAT strat) [i nli ne]

Changes the branching strategy.

Parameters:
strat The new branching strategy.

Definition at line 2266 of file master.h.

6.4.4.14 ABA MASTER::BRANCHINGSTRAT ABA MASTER::branchingStrategy () const
[inline]

Returns:
The branching strategy.

Definition at line 2261 of file master.h.

6.4.4.15 consABA _CPUTIMER x ABA_MASTER::branchingTime () const [i nli ne]

Returns:
A pointer to the timer measuring the cpu time spent in finding selecting the branching rules.

Definition at line 2001 of file master.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.4 ABA_MASTER Class Reference 123

6.4.4.16 int ABA_MASTER::breadthFirstSearch (constABA_SUB « s1, constABA_SUB x s2) const
[protect ed]

Implements the breadth first search enumeration strategythe subproblem with minimutavelis selected.

If both subproblems have the sahegel the smaller one is the one which has been generated ebdiethe one
with the smalleiid.

Returns:
-1 If subproblens1has higher priority,
0 if both subproblems have equal priority,
1 otherwise.

Parameters:
s1 The first subproblem.

s2 The second subproblem.

6.4.4.17 bool ABA_MASTER::check ()

Can be used to control the correctness of the optimizatiteifzalue of the optimum solution has been loaded.

This is done, if a file storing the optimum value is specifiedhwihe parameter { OptimumFileName} in the
configuration file { .abacus}.

Returns:
true If the optimum solution of the problem is known and equhké primal bound,
false otherwise.

6.4.4.18 void ABA_MASTER::conElimAge (intepg [i nli ne]

Changes the age for the elimination of constraints.

Parameters:
eps The new age.

Definition at line 2246 of file master.h.

6.4.4.19 int ABA_MASTER::conElimAge () const [i nli ne]

Returns:
The age for the elimination of constraints.

Definition at line 2241 of file master.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

124 Reference Manual

6.4.4.20 void ABA_MASTER::.conElimEps (doubleepg [i nli ne]

Changes the tolerance for the elimination of constraintgbyslack criterion.

Parameters:
eps The new tolerance.

Definition at line 2216 of file master.h.

6.4.4.21 double ABA MASTER::conElimEps () const [i nl i ne]

Returns:
The zero tolerance for the elimination of constraints bydlaek criterion.

Definition at line 2211 of file master.h.

6.4.4.22 void ABA_MASTER::conElimMode (CONELIMMODE modg [inline]

Changes the constraint elimination mode.

Parameters:
mode The new constraint elimination mode.

Definition at line 2196 of file master.h.

6.4.4.23 ABA_MASTER::CONELIMMODE ABA_MASTER::conElimMode () const [i nli ne]

Returns:
The mode for the elimination of constraints.

Definition at line 2191 of file master.h.

6.4.4.24 ABA_STANDARDPOOL < ABA_CONSTRAINT , ABA_VARIABLE > x
ABA_MASTER::conPool () const [i nline]

Returns:
A pointer to the default pool storing the constraints of thelfem formulation.

Definition at line 1937 of file master.h.

6.4.4.25 void ABA_MASTER::countLp () [inline, private]

Increments the counter for linear programs and should bedcal each optimization call of the LP-relaxation.

Definition at line 2006 of file master.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.4 ABA_MASTER Class Reference 125

6.4.4.26 ABA_STANDARDPOOL < ABA_CONSTRAINT , ABA_VARIABLE > x
ABA MASTER::cutPool () const [inline]

Returns:
A pointer to the default pool for the generated cutting ptane

Definition at line 1942 of file master.h.

6.4.4.27 bool ABA_MASTER::cutting () const [i nli ne]

Returns:
true If cutting has been set tsue in the call of the constructor of the class ABA_MASTER, iig€gutting
planes should be generated in the subproblem optimization.
false otherwise.

Definition at line 1952 of file master.h.

6.4.4.28 int ABA_MASTER::dbThreshold () const [i nl i ne]

Returns:
The number of optimizations of a subproblem until sons aeated. For further detatails we refer to
dbThreshold(int)

Definition at line 2366 of file master.h.

6.4.4.29 void ABA_MASTER::dbThreshold (intthreshold [i nli ne]

Sets the number of optimizations of a subproblem until soag@ated irABA_SUB::branching()

If this value is 0, then a branching step is performed at tlteadrthe subproblem optimization as usually if the
subproblem can be fathomed. Otherwise, if this value isttrpositive, the subproblem is put back for a later
optimization. This can be advantageous if in the meantinuel @oitting planes or primal bounds can be generated.
The number of times the subproblem is put back without briaggcis indicated by this value.

Parameters:
threshold The new value of the delayed branching threshold.

Definition at line 2361 of file master.h.

6.4.4.30 void ABA_MASTER::defaultLpSolver (OSISOLVER osiSolve) [i nli ne]

Changes the default Lp solver.

Parameters:
osiSolver The new solver.

Definition at line 2276 of file master.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

126 Reference Manual

6.4.4.31 ABA_MASTER:OSISOLVER ABA_MASTER::defaultLpSolver () const [i nl i ne]

Returns:
The Lp Solver.

Definition at line 2271 of file master.h.

6.4.4.32 bool ABA_MASTER::delayedBranching (intnOpt) const

Returns:
true If the number of optimizationsOptof a subproblem exceeds the delayed branching threshold,
false otherwise.

Parameters:
nOpt The number of optimizations of a subproblem.

6.4.4.33 int ABA_MASTER::depthFirstSearch (constABA_SUB x s1, constABA_SUB x s2) const
[protect ed]

Implements the depth first search enumeration strategythieesubproblem with maximuievelis selected.

If the level of both subproblems are equal, then the subprobl are compared with the function
equalSubCompare()

Returns:
-1 If subproblenslhas higher priority,
0 if both subproblems have equal priority,
1 otherwise.

Parameters:
sl The first subproblem.

s2 The second subproblem.

6.4.4.34 int ABA_MASTER::diveAndBestFirstSearch (constABA_SUB x s1, constABA _SUB % s2) const
[protect ed]

Performs depth-first search until a feasible solution isithithen the search process is continued with best-first
search.

Returns:
-1 If subproblensl1has higher priority,
0 if both subproblems have equal priority,
1 otherwise.

Parameters:
s1 The first subproblem.

s2 The second subproblem.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.4 ABA_ MASTER Class Reference 127

6.4.4.35 void ABA_MASTER::dualBound (doublex)
This version of the functiodualBound()sets the dual bound toand makes a new entry in the solution history.
It is an error if the dual bound gets worse.

Parameters:
X The new value of the dual bound.

6.4.4.36 double ABA MASTER::dualBound () const [i nl i ne]

Returns:
The value of the dual bound, i.e., tapperBound(for a maximization problem and tHewerBound()for a
minimization problem, respectively.

Definition at line 1902 of file master.h.

6.4.4.37 void ABA_MASTER::eliminateFixedSet (booturnOn) [i nli ne]

This version of the functioeliminateFixedSet@an be used to turn the elimination of fixed and set variabte® o
off.

Parameters:
turnOn The elimination is turned on turnOnis true, otherwise it is turned off.

Definition at line 2156 of file master.h.

6.4.4.38 bool ABA_MASTER::eliminateFixedSet () const[i nl i ne]

Returns:
true Then we try to eliminate fixed and set variables from itnedlr program.
false Fixed or set variables are not eliminated.

Definition at line 2151 of file master.h.

6.4.4.39 virtual int ABA_MASTER::enumerationStrategy (const ABA_SUB x s1, constABA_SUB x* s2)
[virtual]

Analyzes the enumeration strategy set in the parameter fédddgcus} and calls the corresponding comparison
function for the subproblemsl ands2 This function should be redefined for application specifiaraeeration
strategies.

Returns:
1 If s1has higher priority thas2
0 if s2has higher priority it returns-1 , and if both subproblems have equal priority

Parameters:
sl A pointer to subproblem.

s2 A pointer to subproblem.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

128 Reference Manual

6.4.4.40 void ABA_MASTER::enumerationStrategy ENUMSTRAT strat) [i nl i ne]
This version of the functioenumerationStrategyfhanges the enumeration strategy.

Parameters:
strat The new enumeration strategy.

Definition at line 2256 of file master.h.

6.4.4.41 ABA_MASTER:ENUMSTRAT ABA_MASTER:.enumerationStrategy () const [i nl i ne]

Returns:
The enumeration strategy.

Definition at line 2251 of file master.h.

6.4.4.42 virtual int ABA_MASTER::equalSubCompare (constABA_SUB x s1, constABA_SUB x s2)
const [protected, virtual]

Is called from the functiotestFirstSearch(@nd from the functiordepthFirstSearch(jf the subproblems1 and
s2have the same priority.

If both subproblems were generated by setting a binary biighen that subproblem has higher priority of which
the branching variable is set to upper bound.

This function can be redefined to resolve equal subproblemmsrding to problem specific criteria. As the root
node is compared with itself and has no branching rule, we kainsert the first line of this function.

Parameters:
sl A subproblem.

s2 A subproblem.

Returns:
0 If both subproblems were not generated by setting a vasiablthe branching variable of both subproblems
is set to the same bound.
1 If the branching variable of the first subproblem ist seh®upper bound.
-1 If the branching variable of the second subproblem istestte upper bound.

6.4.4.43 bool ABA_ MASTER::feasibleFound () const

We use this function ,e.g., to adapt the enumeration styatetipe DiveAndBest-Strategy

This function is only correct if any primal bound better th@ns/minus infinity corresponds to a feasible solution.

Returns:
true If a feasible solution of the optimization problem hagib found.
false otherwise.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.4 ABA_MASTER Class Reference 129

6.4.4.44 virtual ABA_SUB«x ABA_MASTER::firstSub () [protected, pure virtual]

Returns:
Should return a pointer to the first subproblem of the optatidn, i.e., the root node of the enumeration tree.
This is a pure virtual function since a pointer to a probleracsiic subproblem should be returned, which is
derived from the clasBBA_SUB.

6.4.4.45 ABA_FIXCAND x ABA_MASTER:fixCand () const [inline, private]
returns a pointer to the object storing the variables whiehcandidates for being fixed.
Definition at line 1932 of file master.h.

6.4.4.46 void ABA_MASTER::fixSetByRedCost (boobn) [i nli ne]

Turns fixing and setting variables by reduced cost on or off.

Parameters:
on If true, then variable fixing and setting by reduced cost is turneddsherwise it is turned of.

Definition at line 2066 of file master.h.

6.4.4.47 bool ABA_MASTER::fixSetByRedCost () const[i nl i ne]

Returns:
true Then variables are fixed and set by reduced cost criteria
false Then no variables are fixed or set by reduced costieriter

Definition at line 2061 of file master.h.

6.4.4.48 double ABA MASTER::guarantee ()

Can be used to access the guarantee which can be given farghleriown feasible solution.

It is an error to call this function if the lower bound is zeboit the upper bound is nonzero.

Returns:
The guarantee for best known feasible solution in percent.

6.4.4.49 bool ABA_MASTER::guaranteed ()

Can be used to check if the guarantee requirements areddlfile., the difference between upper bound and the
lower bound in respect to the lowerBound is less than thisaqniae value in percent.

If the lower bound is zero, but the upper bound is nonzero,ammct give any guarantee.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

130 Reference Manual

Warning:
A guarantee for a solution can only be given if the pricinggbem is solved exactly or no column generation
is performed at all.

Returns:
true If the guarantee requirements are fulfilled,
false otherwise.

6.4.4.50 int ABA_MASTER::highestLevel () const [i nli ne]

Returns:
The highest level in the tree which has been reached dur@iptplicit enumeration.

Definition at line 2046 of file master.h.

6.4.4.51 ABA_HISTORY x ABA_MASTER::history () const [i nli ne]

Returns:
A pointer to the object storing the solution history of thisatch and cut problem.

Definition at line 1922 of file master.h.

6.4.4.52 consABA CPUTIMER x ABA_MASTER::improveTime () const [inli ne]

Returns:
A pointer to the timer measuring the cpu time spent in theikges for the computation of feasible solutions.

Definition at line 1991 of file master.h.

6.4.4.53 virtual void ABA_MASTER::initializeOptimizatio n () [protected, virtual]

The default implementation afitializeOptimization()Jdoes nothing.

This virtual function can be used as an entrance point toparsome initializations aftesptimize()is called.
6.4.4.54 void ABA_MASTER::initializeOptSense ABA_OPTSENSE::SENSEsensg [pr ot ect ed]

Can be used to initialize the sense of the optimization invedrclasses, if this has not been already performed
when the constructor of ABA_MASTER has been called.

Parameters:
senseThe sense of the optimizatioABA_OPTSENSE::Minor ABA_OPTSENSE::Mak

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.4 ABA_MASTER Class Reference 131

6.4.4.55 virtual void ABA_MASTER::initializeParameters () [protected, virtual]

Is only a dummy. This function can be used to initialize pagters of derived classes and to overwrite parameters
read from the file { .abacus} by the function ().

6.4.4.56 virtual void ABA_MASTER::initializePools (ABA_BUFFER < ABA_CONSTRAINT
x > & constraints ABA_BUFFER< ABA_CONSTRAINT x > & cuts ABA_BUFFER <
ABA_VARIABLE =« > & Variables int varPoolSizeint cutPoolSize bool dynamicCutPoolk
false) [protected, virtual]

Is overloaded such that also a first set of cutting planes eanderted into the cutting plane pool.

Parameters:
constraints The constraints of the problem formulation are insertechandonstraint pool. The size of the
constraint pool equals the numberaoinstraints

cuts The constraints that are inserted in the cutting plane ptioe number of constraints in the buffer must
be less or equal than the size of the cutting plane potitoolSize

variables The variables of the problem formulation are inserted invidméable pool.

varPoolSizeThe size of the pool for the variables. If more variables aldea the variable pool is automati-
cally reallocated.

cutPoolSizeThe size of the pool for cutting planes.

dynamicCutPool If this argument is true, then the cut is automatically wzdted if more constraints are
inserted tharcutPoolSize Otherwise, non-active constraints are removed if the peobmes full. The
default value is false.

6.4.4.57 virtual void ABA_MASTER::initializePools (ABA_BUFFER< ABA_CONSTRAINT * > &
constraints ABA BUFFER < ABA VARIABLE x > & Variables int varPoolSizeint cutPoolSize
bool dynamicCutPookf al se) [protected, virtual]

Sets up the default pools for variables, constraints, attthgyplanes.

Parameters:
constraints The constraints of the problem formulation are insertechandonstraint pool. The size of the
constraint pool equals the numberaainstraints

variables The variables of the problem formulation are inserted invilméable pool.

varPoolSize The size of the pool for the variables. If more variables a@ea the variable pool is automati-
cally reallocated.

cutPoolSize The size of the pool for cutting planes.

dynamicCutPoolIf this argument is true, then the cut is automatically wzdked if more constraints are
inserted tharcutPoolSize Otherwise, non-active constraints are removed if the peobmes full. The
default value is false.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

132 Reference Manual

6.4.4.58 int ABA_MASTER:initLP () [pri vate]

6.4.4.59 bool ABA_MASTER::knownOptimum (double & optVal)

Opens the file specified with the parameter { OptimumFileNaimé¢he configuration file { .abacus} and tries to
find a line with the name of the problem instance (as specifi¢ide constructor of ABA_ MASTER) as first string.

Returns:
true If a line withproblemName has been found,
false otherwise.

Parameters:
optVal If the return value igrue, thenoptValholds the optimum value found in the line with the name of the
problem instance as first string. OtherwisptValis undefined.

6.4.4.60 void ABA_MASTER::logLevel OUTLEVEL modg [i nli ne]

This version of the functiotogLevel()sets the output mode for the log-file.

Parameters:
mode The new value of the output mode.

Definition at line 2356 of file master.h.

6.4.4.61 ABA_MASTER:OUTLEVEL ABA_MASTER::logLevel () const [i nli ne]

Returns:
The output mode for the log-file.

Definition at line 2351 of file master.h.

6.4.4.62 double ABA MASTER::lowerBound () const [i nl i ne]

Returns:
The value of the global lower bound.

Definition at line 1885 of file master.h.

6.4.4.63 ABA_LPMASTEROSI x ABA_MASTER::IpMasterOsi () const [i nl i ne]

Definition at line 739 of file master.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.4 ABA_MASTER Class Reference 133

6.4.4.64 consABA_CPUTIMER x ABA_MASTER::IpSolverTime () const [i nline]

Returns:
A pointer to the timer measuring the cpu time required by tResblver.

Definition at line 1981 of file master.h.

6.4.4.65 consABA CPUTIMER x ABA_MASTER::IpTime () const [inli ne]

Returns:
A pointer to the timer measuring the cpu time spent in membftise LP-interface.

Definition at line 1976 of file master.h.

6.4.4.66 void ABA_MASTER::maxConAdd (intmax) [inline]

Sets the maximal number of constraints that are added iregatiin of the cutting plane algorithm.

Parameters:
max The maximal number of constraints.

Definition at line 2086 of file master.h.

6.4.4.67 int ABA_MASTER::maxConAdd () const [inli ne]

Returns:
The maximal number of constraints which should be addedenyateration of the cutting plane algorithm.

Definition at line 2081 of file master.h.

6.4.4.68 void ABA_MASTER::maxConBuffered (intmax) [i nli ne]

Changes the maximal number of constraints that are buffarad iteration of the cutting plane algorithm.

Note:
This function changes only the default value for subprolsiéimat are activated after its call.

Parameters:
max The new maximal number of buffered constraints.

Definition at line 2096 of file master.h.

6.4.4.69 int ABA_MASTER:: maxConBuffered () const [i nli ne]

Returns:
The size of the buffer for generated constraints in the mgipplane algorithm.

Definition at line 2091 of file master.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

134 Reference Manual

6.4.4.70 void ABA_MASTER::maxCowTime (constABA_STRING & t) [i nline]

This version of the functiomaxCowTime(}et the maximal wall-clock time for the optimization.

Parameters:
t The new value of the maximal wall-clock time in the form { hhmmss}.

Definition at line 2311 of file master.h.

6.4.4.71 consABA_STRING & ABA_MASTER::maxCowTime () const [i nli ne]

The functionmaxCowTime()

Returns:
The maximal wall-clock time for the optimization.

Definition at line 2306 of file master.h.

6.4.4.72 void ABA_MASTER::maxCpuTime (constABA_STRING & t) [inline]

Sets the maximal usable cpu time for the optimization.

Parameters:
t The new value of the maximal cpu time in the form { "hh:mm:ss"}

Definition at line 2301 of file master.h.

6.4.4.73 consABA_STRING & ABA_MASTER::maxCpuTime () const [i nli ne]

Returns:
The maximal cpu time which can be used by the optimization.

Definition at line 2296 of file master.h.

6.4.4.74 void ABA_MASTER::maxlterations (intmax) [i nli ne]

Changes the default value for the maximal number of itenatiaf the optimization of a subproblem.

Note:
This function changes only this value for subproblems thatanstructed after this function call. For already
constructed objects the value can be changed with the am&BA_SUB::maxlIterations()

Parameters:
max The new maximal number of iterations of the subproblem ogation (-1 means no limit).

Definition at line 2126 of file master.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.4 ABA_MASTER Class Reference 135

6.4.4.75 int ABA_MASTER::maxIterations () const [i nl i ne]

Returns:
The maximal number of iterations per subproblem optimizafi1 means no iteration limit).

Definition at line 2121 of file master.h.

6.4.4.76 void ABA_MASTER::maxLevel (intml)

This version of the functiomaxLevel(changes the maximal enumeration depth.

If it is set to 1 the\ algorithm becomes a pure cutting plane algorithm.

Parameters:
max The new value of the maximal enumeration level.

6.4.4.77 int ABA_MASTER::maxLevel () const [i nli ne]

Returns:
The maximal depth up to which the enumeration should be padd. By default the maximal enumeration
depth isINT .

Definition at line 2291 of file master.h.

6.4.4.78 void ABA_MASTER:: maxVarAdd (int max) [i nli ne]

Changes the maximal number of variables that are added temtion of the subproblem optimization.

Parameters:
max The new maximal number of added variables.

Definition at line 2106 of file master.h.

6.4.4.79 int ABA_MASTER::maxVarAdd () const [i nli ne]

Returns:
The maximal number of variables which should be added in ¢henan generation algorithm.

Definition at line 2101 of file master.h.

6.4.4.80 void ABA_MASTER::maxVarBuffered (int max) [i nli ne]

Changes the maximal number of variables that are bufferad iteration of the subproblem optimization.

Note:
This function changes only the default value for subprolsidmat are activated after its call.

Parameters:
max The new maximal number of buffered variables.

Definition at line 2116 of file master.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

136 Reference Manual

6.4.4.81 int ABA_MASTER::maxVarBuffered () const [i nli ne]

Returns:
The size of the buffer for the variables generated in thernalgeneration algorithm.

Definition at line 2111 of file master.h.

6.4.4.82 void ABA_MASTER::minDormantRounds (intnRound9 [i nli ne]

Sets the number of rounds a subproblem should stay dormant.

Parameters:
nRounds The new minimal number of dormant rounds.

Definition at line 2376 of file master.h.

6.4.4.83 int ABA_MASTER::minDormantRounds () const [i nli ne]

Returns:
The maximal number of rounds, i.e., number of subproblermopations, a subproblem is dormant, i.e., itis
not selected from the set of open subproblem if its statD®isnant if possible.

Definition at line 2371 of file master.h.

6.4.4.84 void ABA_MASTER::nBranchingVariableCandidates(int n)

This version of the functiombranchingVariableCandidates§gts the number of tested branching variable candi-
dates.

Parameters:
n The new value of the number of tested variables for becomiagdhing variable.

6.4.4.85 int ABA_MASTER::nBranchingVariableCandidates () const [i nl i ne]

Returns:
The number of variables that should be tested for the seteofithe branching variable.

Definition at line 2281 of file master.h.

6.4.4.86 void ABA_MASTER::newFixed (intn) [inline, private]

Increments the counter of the number of fixed variables.by

Definition at line 2011 of file master.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.4 ABA_MASTER Class Reference 137

6.4.4.87 void ABA_MASTER::newRootReOptimize (boobn) [i nli ne]

Turns the reoptimization of new root nodes of the remainiramnbh and bound tree on or off.

Parameters:
on If true, new root nodes are reoptimized.

Definition at line 2166 of file master.h.

6.4.4.88 bool ABA_MASTER::newRootReOptimize () const[i nl i ne]

Returns:
true Then a new root of the remainifydree is reoptimized such that the associated reduced arstsecused
for the fixing of variables.
false A new root is not reoptimized.

Definition at line 2161 of file master.h.

6.4.4.89 void ABA_MASTER::newSub (intleve) [pri vat e]
Registers a new subproblem which is on Idesklin enumeration tree.

It is called each time a new subproblem is generated.

6.4.4.90 int ABA_MASTER:nLp ()const [inline]

Returns:
The number of optimized linear programs (only LP-relaxagio

Definition at line 2041 of file master.h.

6.4.4.91 int ABA_MASTER::nNewRoot () const [i nl i ne]

Returns:
The number of root changes of the remainingee.

Definition at line 2051 of file master.h.

6.4.4.92 int ABA_MASTER::nSub () const [i nli ne]

Returns:
The number of generated subproblems.

Definition at line 2036 of file master.h.

6.4.4.93 int ABA_MASTER::nSubSelected () const[i nl i ne]

Returns:
The number of subproblems which have already been selactertiie set of open subproblems.

Definition at line 2056 of file master.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

138 Reference Manual

6.4.4.94 void ABA_MASTER::objinteger (boolb) [inli ne]

This version of functiorobjinteger()sets the assumption that the objective function valued téasible solutions
are integer.

Parameters:
b The new value of the assumption.

Definition at line 2321 of file master.h.

6.4.4.95 bool ABA_MASTER::objinteger () const [i nli ne]

Returns:
true Then we assume that all feasible solutions have intebjective function values,
false otherwise.

Definition at line 2316 of file master.h.

6.4.4.96 ABA_ OPENSUB x« ABA MASTER::.0penSub () const [i nline]

Returns:
A pointer to the set of open subproblems.

Definition at line 1927 of file master.h.

6.4.4.97 consABA_MASTER & ABA_MASTER::operator= (const ABA_MASTER & rhs) [pri vat e]

6.4.4.98 STATUS ABA_MASTER::optimize ()

Performs the optimization by .

The status of the optimization.

6.4.4.99 void ABA_MASTER::optimumFileName (const char namée [i nl i ne]
Changes the name of the file in which the value of the optimulntiso is searched.

Parameters:
name The new name of the file.

Definition at line 2136 of file master.h.

6.4.4.100 consABA_STRING & ABA_MASTER::optimumFileName () const [i nli ne]

Returns:
The name of the file that stores the optimum solutions.

Definition at line 2131 of file master.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.4 ABA_MASTER Class Reference 139

6.4.4.101 consABA_OPTSENSEx ABA_MASTER::optSense () const [i nl i ne]

Returns:
A pointer to the object holding the optimization sense ofghablem.

Definition at line 1917 of file master.h.

6.4.4.102 void ABA_MASTER::outLevel OUTLEVEL modg [inline]

The version of the functionutLevel()sets the output mode.

Parameters:
mode The new value of the output mode.

Definition at line 2346 of file master.h.

6.4.4.103 ABA_ MASTER:OUTLEVEL ABA_MASTER::outLevel () const [i nli ne]

Returns:
The output mode.

Definition at line 2341 of file master.h.

6.4.4.104 virtual void ABA_MASTER::output () [virtual]

Does nothing but can be redefined in derived classes for bhgfare the timing statistics.

6.4.4.105 void ABA_MASTER::pbMode PRIMALBOUNDMODE modg [i nli ne]

Sets the mode of the primal bound initialization.

Parameters:
mode The new mode of the primal bound initialization.

Definition at line 2386 of file master.h.

6.4.4.106 ABA_MASTER::PRIMALBOUNDMODE ABA_MASTER::pbMode () const [i nli ne]

Returns:
The mode of the primal bound initialization.

Definition at line 2381 of file master.h.

6.4.4.107 bool ABA_MASTER::pricing () const [i nl i ne]

Returns:
true If pricing has been set to true in the call of the constructor of the @& MASTER, i.e., if a columns
should be generated in the subproblem optimization.
false otherwise.

Definition at line 1957 of file master.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

140 Reference Manual

6.4.4.108 void ABA_MASTER::pricingFreq (int f)

This version of the functiopricingFreq() sets the number of linear programs being solved betweendditianal
pricing steps.

Parameters:
f The pricing frequency.

6.4.4.109 int ABA_MASTER::pricingFreq () const [i nli ne]

Returns:
The number of linear programs being solved between two iaddit pricing steps. If no additional pricing
steps should be executed this parameter has to be set to Cdefdndt value of the pricing frequency is O.
This parameter does not influence the execution of priciagssivhich are required for the correctness of the
algorithm.

Definition at line 2391 of file master.h.

6.4.4.110 consABA_CPUTIMER x ABA_ MASTER::pricingTime () const [i nline]

Returns:
A pointer to the timer measuring the cpu time spent in pricing

Definition at line 1996 of file master.h.

6.4.4.111 void ABA_MASTER::primalBound (doublex)

This version of the functioprimalBound()sets the primal bound toand makes a new entry in the solution history.
Itis an error if the primal bound gets worse.

Parameters:
x The new value of the primal bound.

6.4.4.112 double ABA_MASTER::primalBound () const [i nli ne]

Returns:
The value of the primal bound, i.e., tl@verBound(for a maximization problem and thgperBound(Jor a
minimization problem, respectively.

Definition at line 1897 of file master.h.

6.4.4.113 bool ABA_MASTER::primalViolated (doublex) const

Can be used to compare a value with the one of the best knowraldniound.

If the objective function values of all feasible solutioms &teger, then we do not have to be so carefully.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.4 ABA_MASTER Class Reference 141

Returns:
true If x is not better than the best known primal bound,
false otherwise.

Parameters:
X The value being compared with the primal bound.

6.4.4.114 void ABA_MASTER::printGuarantee ()

Writes the guarantee nicely formated on the output streantiged with this object.

If no bounds are available, or the lower bound is zero, buugger bound is nonzero, then we cannot give any
guarantee.

6.4.4.115 void ABA_MASTER::printLP (bool on) [i nli ne]
Turns the output of the linear program in every iteration oofé

Parameters:
on If true, then the linear program is output, otherwise it is not otitpu

Definition at line 2076 of file master.h.

6.4.4.116 bool ABA_MASTER::printLP () const [i nl i ne]

Returns:
true Then the linear program is output every iteration ofshieproblem optimization.
false The linear program is not output.

Definition at line 2071 of file master.h.

6.4.4.117 void ABA_MASTER::printParameters ()

Writes all parameters of the class ABA_MASTER together whikirt values to the global output stream.

6.4.4.118 consABA_STRINGx ABA MASTER::problemName () const

Returns:
A pointer to the name of the instance being optimized (asipédn the constructor of this class).

6.4.4.119 void ABA_MASTER::removeCons (intn) [inline, private]

Increments the counter for the total number of removed caings byn.

Definition at line 2021 of file master.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

142 Reference Manual

6.4.4.120 void ABA_MASTER::removeVars (intn) [inline, private]
Increments the counter for the total number of removed bgabyn.
Definition at line 2031 of file master.h.
6.4.4.121 void ABA_MASTER::requiredGuarantee (doubleg)
This version of the functiorequiredGuarantee(@¢hanges the guarantee specification.
Parameters:
g The new guarantee specification (in percent). This must benaative value. Note, if the guarantee

specification is changed after a single node of the enurser&ree has been fathomed, then the overall
guarantee might differ from the new value.

6.4.4.122 double ABA MASTER::requiredGuarantee () const [i nl i ne]
The guarantee specification for the optimization.

Definition at line 2286 of file master.h.

6.4.4.123 ABA_SUB x« ABA_MASTER::root () const [inli ne]

Can be used to access the root node ofitiree.

Returns:
A pointer to the root node of the enumeration tree.

Definition at line 1907 of file master.h.

6.4.4.124 void ABA_MASTER::rootDualBound (doublex) [pri vat e]

Updates the final dual bound of the root node.

This function should be only called at the end of the root nookimization.

6.4.4.125 void ABA_MASTER::rRoot (ABA_SUB x newRoot bool reoptimizg [pri vat e]

Sets the root of the remainingtree tonewRoot

If reoptimizeis true a reoptimization of the subproblesmewRootis performed. This is controlled via a function
argument since it might not be desirable when we find a rieeot_during the fathoming of a complete subtree
ABA_SUB::FathomTheSubtree().

6.4.4.126 ABA_SUB x ABA_MASTER::rRoot () const [i nli ne]

Returns:
A pointer to the root of the remainingtree, i.e., the subproblem which is an ancestor of all opbprablems
and has highest level in the tree.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.4 ABA_MASTER Class Reference 143

Definition at line 1912 of file master.h.

6.4.4.127 ABA_SUBx ABA_MASTER:select() [pri vat e]

Returns a pointer to an open subproblem for further proogssi

If the set of open subproblems is empty or one of the criteriarly termination of the optimization (maximal
cpu time, maximal elapsed time, guarantee) is fulfiled @ismed.

6.4.4.128 consABA_CPUTIMER x ABA MASTER::separationTime () const [i nli ne]

Returns:
A pointer to the timer measuring the cpu time spent in the rsdijoa of cutting planes.

Definition at line 1986 of file master.h.

6.4.4.129 virtual bool ABA_MASTER::setSolverParameters QsiSolverinterface x interface, bool
solverlsApproy [virtual]

Set solver specific parameters. The default does nothing.

Returns:
true if an error has occured otherwise

6.4.4.130 void ABA_MASTER::showAverageCutDistance (boan) [i nli ne]
Turns the output of the average distance of the added cutstfre fractional solution on or off.

Parameters:
on If true the output is turned on, otherwise it is turned off.

Definition at line 2176 of file master.h.

6.4.4.131 bool ABA_MASTER::showAverageCutDistance () cat [i nli ne]

Returns:
true Then the average distance of the fractional solutiom fall added cutting planes is output every iteration
of the subproblem optimization.
false The average cut distance is not output.

Definition at line 2171 of file master.h.

6.4.4.132 void ABA_MASTER::skipFactor (intf)
This version of the functioskipFactor()sets the frequency for constraint and variable generation.

Parameters:
f The new value of the frequency.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

144 Reference Manual

6.4.4.133 int ABA_MASTER::skipFactor () const [i nl i ne]

Returns:
The frequency of subproblems in which constraints or véggbhould be generated.

Definition at line 2396 of file master.h.

6.4.4.134 ABA MASTER::SKIPPINGMODE ABA_MASTER::skippingMode () const [i nli ne]

Returns:
The skipping strategy.

Definition at line 2401 of file master.h.

6.4.4.135 void ABA_MASTER::skippingMode SKIPPINGMODE modg [i nli ne]
This version of the functioskippingMode(kets the skipping strategy.

Parameters:
mode The new skipping strategy.

Definition at line 2406 of file master.h.

6.4.4.136 bool ABA_MASTER::solveApprox () const [i nl i ne]

True, if an approximative solver should be used

Definition at line 1961 of file master.h.

6.4.4.137 void ABA_MASTER::status STATUS sta)) [i nline, private]
This version of the functiostatus()sets the status of the ABA_MASTER.

Definition at line 2146 of file master.h.

6.4.4.138 ABA_MASTER:: STATUS ABA_MASTER::status () const [i nli ne]

Returns:
The status of the ABA_MASTER.

Definition at line 2141 of file master.h.

6.4.4.139 void ABA_MASTER::tailOffNLp (int n) [i nli ne]

Sets the number of linear programs considered in the tailihgnalysis.

This new value is only relevant for subproblems activatettgriithe change of this value.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.4 ABA_MASTER Class Reference 145

Parameters:
n The new number of LPs for the tailing off analysis.

Definition at line 2331 of file master.h.

6.4.4.140 int ABA_MASTER::tailOffNLp () const [i nli ne]
The functiontail OffNLp().

Returns:
The number of linear programs considered in the tailing n#lgsis.

Definition at line 2326 of file master.h.

6.4.4.141 void ABA_MASTER::tailOffPercent (doublep)

This version of the functiotailOffPercent()sets the minimal change of the dual bound for the tailing oéflgsis.

This change is only relevant for subproblems activateddraitalling this function.

Parameters:
p The new value for the tailing off analysis.

6.4.4.142 double ABA_ MASTER::tailOffPercent () const [i nl i ne]
The functiontailOffPercent()

Returns:
The minimal change of the dual bound for the tailing off as&yn percent.

Definition at line 2336 of file master.h.

6.4.4.143 virtual void ABA_MASTER::terminateOptimization () [protected, virtual]

The default implementation eérminateOptimization(jloes nothing.

This virtual function can be used as an entrance point dfeeoptimization process is finished.

6.4.4.144 void ABA_MASTER::theFuture () [private]

6.4.4.145 consABA_COWTIMER x ABA MASTER::totalCowTime () const [i nli ne]

Returns:
A pointer to the timer measuring the total wall clock time.

Definition at line 1966 of file master.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

146 Reference Manual

6.4.4.146 consABA_CPUTIMER « ABA_ MASTER::totalTime () const [i nli ne]

Returns:
A pointer to the timer measuring the total cpu time for tharaation.

Definition at line 1971 of file master.h.

6.4.4.147 void ABA_MASTER::treelnterfaceLowerBound (dowble Ib) const [pri vat €]

Passes the new lower boulidto the Tree Interface.

6.4.4.148 void ABA_MASTER::treelnterfaceNewNode ABA_SUB x sub) const [pri vat e]

Adds the subproblersubto the stream storing information for graphical output of #nmumeration tree if this
logging is turned on.

6.4.4.149 void ABA_MASTER::treelnterfaceNodeBounds (inid, doublelb, doubleub) [pri vat e]

Updates the node information in the node with numkdoy writing the lower boundb and the upper boundb
to the node.

6.4.4.150 void ABA_MASTER::treelnterfacePaintNode (intid, int color) const [pri vat e]

Assigns thecolor to the subproblersubin the Tree Interface.

6.4.4.151 void ABA_MASTER::treelnterfaceUpperBound (double ub) const [pri vat €]

Passes the new upper bourtalto the Tree Interface.

6.4.4.152 double ABA_MASTER::upperBound () const [i nl i ne]

Returns:
The value of the global upper bound.

Definition at line 1891 of file master.h.

6.4.4.153 void ABA_MASTER::varElimAge (intepg [inline]

Changes the age for the elimination of variables by the redlgost criterion.

Parameters:
eps The new age.

Definition at line 2236 of file master.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.4 ABA_MASTER Class Reference 147

6.4.4.154 int ABA_MASTER::varElimAge () const [i nli ne]

Returns:
The age for the elimination of variables by the reduced catgron.

Definition at line 2231 of file master.h.

6.4.4.155 void ABA_MASTER::varElimEps (doubleepg [inli ne]

Changes the tolerance for the elimination of variables kyréauced cost criterion.

Parameters:
eps The new tolerance.

Definition at line 2226 of file master.h.

6.4.4.156 double ABA_MASTER::varElimEps () const [i nl i ne]

Returns:
The zero tolerance for the elimination of variables by thiuped cost criterion.

Definition at line 2221 of file master.h.

6.4.4.157 void ABA_MASTER::varElimMode (VARELIMMODE modg [i nli ne]

Changes the variable elimination mode.

Parameters:
mode The new variable elimination mode.

Definition at line 2206 of file master.h.

6.4.4.158 ABA_MASTER:VARELIMMODE ABA_MASTER:varElimMode () const [i nli ne]

Returns:
The mode for the elimination of variables.

Definition at line 2201 of file master.h.

6.4.4.159 ABA STANDARDPOOL < ABA VARIABLE , ABA_CONSTRAINT > x
ABA_MASTER::varPool () const [i nli ne]

Returns:
A pointer to the default pool storing the variables.

Definition at line 1947 of file master.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

148 Reference Manual

6.4.4.160 void ABA_MASTER::vbcLog YBCMODE modg [inli ne]

Changes the mode of output for the Vbc-Tool.

This function should only be called before the optimizatiols started with the function
ABA_MASTER::optimize()

Parameters:
mode The new mode.

Definition at line 2186 of file master.h.

6.4.4.161 ABA MASTER:VBCMODE ABA MASTER::vbcLog () const [inli ne]

Returns:
The mode of output for the Vbc-Tool.

Definition at line 2181 of file master.h.

6.4.4.162 void ABA_MASTER::writeTreelnterface (const cha x* info, bool time =t r ue) const
[private]

Writes the stringnfo to the stream associated with the Tree Interface.

A $is preceded if the output is written to standard out fottar pipelining. Iftimeis true a time string is written
in front of the information. The default value timeis true.

6.4.5 Friends And Related Function Documentation

6.4.5.1 friend classABA_FIXCAND [friend]

Definition at line 78 of file master.h.

6.4.5.2 friend classABA_SUB [fri end]

Definition at line 77 of file master.h.

6.4.6 Member Data Documentation

6.4.6.1 constchar ABA_ MASTER: BRANCHINGSTRAT_ [] [static]

Literal values for the enumerators of the correspondingreration type. The order of the enumerators is pre-
served. (e.g., { BRANCHINGSTRAT[0]=="CloseHalf"}).

Definition at line 181 of file master.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.4 ABA_MASTER Class Reference 149

6.4.6.2 BRANCHINGSTRAT ABA_MASTER::branchingStrategy [pri vat e]

The branching strategy.

Definition at line 1592 of file master.h.

6.4.6.3 ABA_CPUTIMER ABA_MASTER::branchingTime_ [pri vat €]

The timer for the cpu time spent in determining the branchines.

Definition at line 1843 of file master.h.

6.4.6.4 intABA_MASTER::conElimAge_ [pri vat e]

The number of iterations an elimination criterion must bsad until a constraint can be removed.

Definition at line 1804 of file master.h.

6.4.6.5 doubleABA MASTER::conElimEps_ [pri vate]

The tolerance for the elimination of constraints by the mdeBinding/

Definition at line 1794 of file master.h.

6.4.6.6 CONELIMMODE ABA_ MASTER::conElimMode_ [pri vat €]

The way constraints are automatically eliminated in théigiplane algorithm.

Definition at line 1784 of file master.h.

6.4.6.7 const char ABA MASTER::CONELIMMODE__ [] [static]

Literal values for the enumerators of the correspondingrestation type. The order of the enumerators is pre-
served. (e.g., { CONELIMMODE[O]=="None"}).

Definition at line 240 of file master.h.

6.4.6.8 ABA_STANDARDPOOL <ABA_CONSTRAINT , ABA_VARIABLE >x
ABA_MASTER::conPool_ [pri vat e]

The default pool with the constraints of the problem forntiola

Definition at line 1607 of file master.h.

6.4.6.9 ABA_STANDARDPOOL <ABA_ CONSTRAINT , ABA_VARIABLE >x ABA_MASTER::cutPool_
[private]

The default pool of dynamically generated constraints.

Definition at line 1612 of file master.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

150 Reference Manual

6.4.6.10 booABA MASTER::cutting_ [pri vat e]

If true, then constraints are generated in the optimization.

Definition at line 1636 of file master.h.

6.4.6.11 intABA _MASTER:.dbThreshold [pri vat e]

The number of optimizations of &BA_SUB until branching is performed.

Definition at line 1697 of file master.h.

6.4.6.12 OSISOLVER ABA_ MASTER::defaultLpSolver [pri vat e]

The default LP-Solver.

Definition at line 1601 of file master.h.

6.4.6.13 doubleABA MASTER::dualBound_ [pri vat e]

The best known dual bound.

Definition at line 1624 of file master.h.

6.4.6.14 boolABA MASTER::eliminateFixedSet_ [pri vat €]

If true, then nonbasic fixed and set variables are eliminated.

Definition at line 1764 of file master.h.

6.4.6.15 ENUMSTRAT ABA_MASTER::enumerationStrategy [pri vat €]

The enumeration strategy.

Definition at line 1588 of file master.h.

6.4.6.16 const char ABA_MASTER:ENUMSTRAT_[] [stati c]

Literal values for the enumerators of the correspondingreration type. The order of the enumerators is pre-

served. (e.g., { ENUMSTRAT[0]=="BestFirst"}).

Definition at line 163 of file master.h.

6.4.6.17 ABA_FIXCAND x ABA MASTER::fixCand_ [private]

The variables which are candidates for being fixed.

Definition at line 1632 of file master.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.4 ABA_MASTER Class Reference 151

6.4.6.18 boolABA MASTER::fixSetByRedCost_ [pri vat e]

If true, then variables are fixed and set by reduced cost criteria.

Definition at line 1733 of file master.h.

6.4.6.19 intABA_MASTER::highestLevel [pri vat e]

The highest level which has been reached in the enumeratien t

Definition at line 1855 of file master.h.

6.4.6.20 ABA_HISTORY x ABA_MASTER::history [pri vat e]

The solution history.

Definition at line 1584 of file master.h.

6.4.6.21 ABA_CPUTIMER ABA_MASTER::improveTime_ [privat e]
The timer for the cpu time spent in the heuristics for the cotation of feasible solutions.

Definition at line 1835 of file master.h.

6.4.6.22 OUTLEVEL ABA MASTER::logLevel [private]

The amount of output written to the log file.

Definition at line 1711 of file master.h.

6.4.6.23 ABA_LPMASTEROSI « ABA_MASTER::IpMasterOsi_ [pri vat e]

Definition at line 1603 of file master.h.

6.4.6.24 ABA CPUTIMER ABA_MASTER::IpSolverTime_ [pri vat €]

Definition at line 1826 of file master.h.

6.4.6.25 ABA_CPUTIMER ABA_MASTER::IpTime_ [pri vate]
The timer for the cpu time spent in the LP-interface.

Definition at line 1825 of file master.h.

6.4.6.26 intABA_ MASTER::maxConAdd_ [pri vate]

The maximal number of added constraints per iteration o€ttigng plane algorithm.

Definition at line 1742 of file master.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

152 Reference Manual

6.4.6.27 IntABA_MASTER::maxConBuffered_ [pri vat €]

The size of the buffer for generated cutting planes.

Definition at line 1746 of file master.h.

6.4.6.28 ABA_ STRING ABA_MASTER::maxCowTime_ [privat e]

The maximal available wall-clock time.

Definition at line 1680 of file master.h.

6.4.6.29 ABA_STRING ABA_MASTER:: maxCpuTime_ [private]

The maximal available cpu time.

Definition at line 1676 of file master.h.

6.4.6.30 intABA_ _MASTER::maxlterations_ [pri vat e]

The maximal number of iterations of the cutting plane/calugeneration algorithm in the subproblem.

Definition at line 1760 of file master.h.

6.4.6.31 intABA_MASTER:maxLevel [privat e]

The maximal level in enumeration tree.
Up to this level subproblems are considered in the enunegrati

Definition at line 1672 of file master.h.

6.4.6.32 intABA_MASTER:maxVarAdd_ [private]

The maximal number of added variables per iteration of thenon generation algorithm.

Definition at line 1751 of file master.h.

6.4.6.33 IntABA_MASTER::maxVarBuffered_ [pri vat e]

The size of the buffer for generated variables.

Definition at line 1755 of file master.h.

6.4.6.34 intABA_MASTER::minDormantRounds_ [pri vat €]

The minimal number of rounds, i.e., number of subproblennapttions, a subproblem is dormant, i.e., it is not
selected from the set of open subproblem if its statiBoignant if possible.

Definition at line 1703 of file master.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.4 ABA_MASTER Class Reference 153

6.4.6.35 IntABA_MASTER::nAddCons_ [pri vat €]

The total number of added constraints.

Definition at line 1863 of file master.h.

6.4.6.36 intABA_MASTER::nAddVars_ [private]

The total number of added variables.

Definition at line 1871 of file master.h.

6.4.6.37 intABA_MASTER::nBranchingVariableCandidates_ [pri vat e]
The number of candidates that are evaluated for branchivguaables.
Definition at line 1597 of file master.h.

6.4.6.38 boolABA MASTER::newRootReOptimize_ [pri vat €]

If true, then an already earlier processed node is reoptimizethédbmes the new root of the remainingee.

Definition at line 1769 of file master.h.

6.4.6.39 intABA _MASTER::nFixed_ [pri vate]

The total number of fixed variables.

Definition at line 1859 of file master.h.

6.4.6.40 IntABA_MASTER::nLp_ [private]

The number of solved LPs.

Definition at line 1851 of file master.h.

6.4.6.41 intABA_MASTER::nNewRoot_ [pri vat e]

The number of changes of the root of the remainjricee.

Definition at line 1879 of file master.h.

6.4.6.42 intABA_MASTER::nRemCons_ [pri vat e]

The total number of removed constraints.

Definition at line 1867 of file master.h.

6.4.6.43 intABA_ MASTER::nRemVars_ [privat e]
The total number of removed variables.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

154 Reference Manual

Definition at line 1875 of file master.h.

6.4.6.44 IntABA_MASTER::nSub_ [private]

The number of generated subproblems.

Definition at line 1847 of file master.h.

6.4.6.45 IntABA_MASTER::nSubSelected_ [pri vat e]

The number of subproblems already selected from the lispeh@ubproblems.

Definition at line 1650 of file master.h.

6.4.6.46 boolABA MASTER::objinteger_ [pri vat e]

true, if all objective function values of feasible solutions assumed to be integer.

Definition at line 1685 of file master.h.

6.4.6.47 ABA_OPENSUB: ABA_MASTER::0penSub_ [pri vat €]

The set of open subproblems.

Definition at line 1580 of file master.h.

6.4.6.48 ABA_STRING ABA_MASTER::optimumFileName_ [pri vat e]

The name of a file storing a list of optimum solutions of probl@stances.

Definition at line 1774 of file master.h.

6.4.6.49 ABA_OPTSENSE ABA_MASTER:0optSense_ [pri vat e]

The sense of the objective function.

Definition at line 1568 of file master.h.

6.4.6.50 const char ABA_MASTER::OSISOLVER_[] [static]

Array for the literal values for possible Osi solvers.

Definition at line 284 of file master.h.

6.4.6.51 OUTLEVEL ABA_MASTER:.outLevel_ [pri vat e]

The output mode.

Definition at line 1707 of file master.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.4 ABA_MASTER Class Reference 155

6.4.6.52 const char ABA_ MASTER::OUTLEVEL_ [] [static]

Literal values for the enumerators of the correspondingrestation type. The order of the enumerators is pre-
served. (e.g., { OUTLEVEL[0]=="Silent"}).

Definition at line 138 of file master.h.

6.4.6.53 PRIMALBOUNDMODE ABA MASTER::pbMode [pri vate]

The mode of the primal bound initialization.

Definition at line 1715 of file master.h.

6.4.6.54 boolABA_MASTER::pricing_ [private]

If true, then variables are generated in the optimization.

Definition at line 1640 of file master.h.

6.4.6.55 intABA_MASTER::pricingFreq_ [pri vate]

The number of solved LPs between two additional pricingstep

Definition at line 1719 of file master.h.

6.4.6.56 ABA_CPUTIMER ABA_MASTER::pricingTime_ [pri vat €]

The timer for the cpu time spent in pricing.

Definition at line 1839 of file master.h.

6.4.6.57 doubleABA_MASTER::primalBound_ [pri vat e]

The best known primal bound.

Definition at line 1620 of file master.h.

6.4.6.58 const char ABA_MASTER::PRIMALBOUNDMODE_ [] [static]

Literal values for the enumerators of the correspondingreration type. The order of the enumerators is pre-
served. (e.g., { PRIMALBOUNDMODE[0]=="None"}).

Definition at line 208 of file master.h.

6.4.6.59 boolABA MASTER::printLP_ [private]

If true, then the linear program is output every iteration.

Definition at line 1737 of file master.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

156 Reference Manual

6.4.6.60 ABA_STRING ABA_MASTER::problemName_ [pri vat €]
The name of the optimized problem.

Definition at line 1563 of file master.h.

6.4.6.61 boolABA_ MASTER:readParamFromFile_ [pri vat e]

Definition at line 1564 of file master.h.

6.4.6.62 doubleABA_ MASTER::requiredGuarantee_ [pri vat e]

The guarantee in percent which should be reached when tieipgtion stops.

If this value is0.0 , then the optimum solution is determined.

Definition at line 1666 of file master.h.

6.4.6.63 ABA_SUB« ABA MASTER:root_ [private]

The root node of the enumeration tree.

Definition at line 1572 of file master.h.

6.4.6.64 doubleABA MASTER::rootDualBound_ [pri vat €]

The best known dual bound at the end of the optimization ofdbénode.
Definition at line 1628 of file master.h.

6.4.6.65 ABA_SUBx ABA MASTER:rRoot_ [private]

The root node of the remaining enumeration tree.

Definition at line 1576 of file master.h.

6.4.6.66 ABA_CPUTIMER ABA_MASTER::separationTime_ [pri vat e]
The timer for the cpu time spent in the separation

Definition at line 1830 of file master.h.

6.4.6.67 boolABA_MASTER::showAverageCutDistance_ [pri vat €]

If truethen the average distance of the added cutting planes iatauery iteration of the cutting plane algorithm.
Definition at line 1779 of file master.h.

6.4.6.68 intABA_MASTER::skipFactor_ [privat e]

The frequency constraints or variables are generated dayean the skipping mode.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.4 ABA_MASTER Class Reference 157

Definition at line 1724 of file master.h.

6.4.6.69 SKIPPINGMODE ABA_ MASTER::skippingMode_ [pri vat €]

Either constraints are generated only evskipFactor_subproblem $kipByNodgonly everyskipFactor_level
(SkipByLevél

Definition at line 1729 of file master.h.
6.4.6.70 const char ABA_MASTER::SKIPPINGMODE_ [] [static]

Literal values for the enumerators of the correspondingrestation type. The order of the enumerators is pre-
served. (e.g., { SKIPPINGMODE[0]=="None"}).

Definition at line 224 of file master.h.

6.4.6.71 booABA_MASTER::solveApprox_ [pri vate]

If true, then an approximative solver is used to solve linear progra
Definition at line 1645 of file master.h.

6.4.6.72 STATUS ABA_MASTER::status_ [pri vat e]

The current status of the optimization.

Definition at line 1813 of file master.h.

6.4.6.73 const chat ABA_MASTER::STATUS [] [static]

Literal values for the enumerators of the correspondingreration type. The order of the enumerators is pre-
served. (e.g., { STATUS[0]=="Optimal'}).

Definition at line 117 of file master.h.
6.4.6.74 intABA_MASTER::tailOffNLp_ [pri vat €]

The number of LP-iterations for the tailing off analysis.

Definition at line 1689 of file master.h.

6.4.6.75 doubleABA MASTER::tailOffPercent_ [pri vat e]

The minimal change of the LP-value on the tailing off anaysi

Definition at line 1693 of file master.h.

6.4.6.76 ABA_COWTIMER ABA_MASTER::totalCowTime_ [pri vat e]

The timer for the total elapsed time.

Definition at line 1817 of file master.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

158 Reference Manual

6.4.6.77 ABA_CPUTIMER ABA_MASTER::totalTime_ [pri vat e]

The timer for the total cpu time for the optimization.

Definition at line 1821 of file master.h.

6.4.6.78 ostream ABA_MASTER::treeStream_ [pri vat €]

A pointer to the log stream for the VBC-Tool.

Definition at line 1659 of file master.h.

6.4.6.79 IintABA _MASTER:.varElimAge_ [private]

The number of iterations an elimination criterion must bgsiad until a variable can be removed.

Definition at line 1809 of file master.h.

6.4.6.80 doubleABA MASTER::varElimEps_ [pri vat e]

The tolerance for the elimination of variables by the mB@elucedCost

Definition at line 1799 of file master.h.

6.4.6.81 VARELIMMODE ABA MASTER::varElimMode [pri vat e]

The way variables are automatically eliminated in the calaneration algorithm.

Definition at line 1789 of file master.h.

6.4.6.82 const char ABA_MASTER::VARELIMMODE _ [] [static]

Literal values for the enumerators of the correspondingrestation type. The order of the enumerators is pre-
served. (e.g., { VARELIMMODE[0]=="None"}).

Definition at line 255 of file master.h.

6.4.6.83 ABA_STANDARDPOOL <ABA_VARIABLE , ABA_CONSTRAINT >x
ABA_MASTER::varPool_ [pri vat e]

The default pool with the variables of the problem formulati

Definition at line 1616 of file master.h.

6.4.6.84 VBCMODE ABA_MASTER::VbcLog_ [pri vat €]

Ouput for the Tree Interface is generated depending on tlie @ this variable.

Definition at line 1655 of file master.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.5 ABA_SUB Class Reference 159

6.4.6.85 const char ABA_ MASTER:VBCMODE_ [] [static]

Literal values for the enumerators of the correspondingresration type. The order of the enumerators is pre-
served. (e.g., { VBCMODE[0]=="None"}).
Definition at line 272 of file master.h.

The documentation for this class was generated from theviall file:

 Include/abacustaster.h

6.5 ABA_SUB Class Reference

class implements an abstract base class for a subprobléra ehtimeration, i.e., a node of théree.
#i ncl ude <sub. h>

Inheritance diagram for ABA_SUB::

| ABA_ABACUSROOT|

T

| ABA_SUB |

Public Types

e enumSTATUS({
UnprocessedActive, Dormant Processed

Fathomed
* enumPHASE{ Done Cutting Branching Fathoming}

The optimization of the subproblem can be in one of the following phases:.

Public Member Functions

* ABA_SUB (ABA_MASTER xmaster, double conRes, double varRes, double nnzRes diatbveRes=true,
ABA_BUFFER< ABA_POOLSLOT< ABA_CONSTRAINT, ABA_VARIABLE > x > xconstraints=0,
ABA_BUFFER< ABA_POOLSLOT< ABA_VARIABLE , ABA_CONSTRAINT > * > xvariables=0)

The constructor for the root node of the enumeration tree.

* ABA SUB (ABA_MASTER xmasterABA_SUB x«father, ABA_BRANCHRULE xbranchRule)
The constructor for non-root nodes of the enumeration tree.

* virtual ~ABA_SUB ()

* boolforceExactSolve() const
« int level () const

e intid () const

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

160 Reference Manual

STATUS statug) const

int nVar () const

int maxVar() const

int nCon() const

int maxCon() const
doublelowerBound() const
doubleupperBound) const
doubledualBound() const
void dualBound(double x)

Sets the dual bound of the subproblem, and if the subproblem is theadetaf the enumeration tree and the new
value is better than its dual bound, also the global dual bound is updatéedath error if the dual bound gets worse.

constABA_SUB x father() const

ABA _LPSUB x Ip () const

void maxlterationgint max)

ABA_ACTIVE < ABA_CONSTRAINT, ABA_VARIABLE > x actCon() const
ABA_ACTIVE < ABA_VARIABLE , ABA_CONSTRAINT > * actVar() const
ABA_CONSTRAINT * constraint(int i) const

ABA_SLACKSTAT =« slackStafint i) const

ABA VARIABLE x variable(int i) const

doublelBound(int i) const

void IBound(int i, double)

doubleuBound(int i) const

void uBound(int i, double u)

This version of the functionBound()sets thef local upper bound of a variable.

ABA_FSVARSTAT x* fsVarStat(int i) const
ABA_LPVARSTAT =« IpVarStat(int i) const
doublexVal (int i) const

doubleyVal (int i) const

bool ancestofconstABA_SUB xsub) const

ABA_ MASTER * masten() const

void removeVar§ABA BUFFER< int > &remove)

With functionremoveVars(yariables can be removed from the set of active variables.

void removeVar(int i)

doublennzReservé) const
boolrelativeReservé) const

ABA BRANCHRULE * branchRulg) const
bool objAllinteger()

If all variables areBinary or Integerand all objective function coefficients are integral, then all objective function
values of feasible solutions are integral. The functidpAllinteger()tests this condition for the current set of active
variables.

virtual void removeCongABA_ BUFFER< int > &remove)

Adds constraints to the buffer of the removed constraints, which will bewednat the beginning of the next iteration
of the cutting plane algorithm.

virtual void removeCor{int i)

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.5 ABA_SUB Class Reference 161

The following version of the functioremoveCon(Jadds a single constraint to the set of constraints which are
removed from the active set at the beginning of the next iteration.

« int addConBufferSpacg const

Can be used to determine the maximal number of the constraints which stidlecadded to the constraint buffer.

« int addVarBufferSpacé const

Can be used to determine the maximal number of the variables which stitlecadded to the variable buffer.

« int nDormantRound§) const

* void ignorelnTailingOff()

e virtual int addBranchingConstrainfABA_POOLSLOT< ABA_CONSTRAINT, ABA_VARIABLE >
xslot)

Adds a branching constraint to the constraint buffer such that it is autically added at the beginning of the cutting
plane algorithm.

Protected Member Functions

e virtual int addCons (ABA_BUFFER< ABA_CONSTRAINT x > &constraints, ABA_POOL<
ABA_CONSTRAINT, ABA_VARIABLE > xpool=0, ABA_BUFFER< bool > xkeeplnPool=0,
ABA BUFFER< double> xrank=0)

* virtual intaddCongABA_BUFFER< ABA_POOLSLOT< ABA_CONSTRAINT, ABA_VARIABLE > x
> &newCons)

e virtual int addVars (ABA_BUFFER< ABA VARIABLE « > &variables, ABA_POOL<
ABA_VARIABLE, ABA_CONSTRAINT > xpool=0, ABA BUFFER< bool > xkeeplnPool=0,
ABA_BUFFER< double> xrank=0)

* virtual int addVars(ABA_BUFFER< ABA_POOLSLOT< ABA_VARIABLE , ABA_CONSTRAINT > x
> &newVars)

* virtual int variablePoolSeparatidint ranking=0, ABA_POOL< ABA_VARIABLE , ABA_CONSTRAINT
> xpool=0, double minViolation=0.001)

e virtual int constraintPoolSeparation (int ranking=0, ABA_POOL< ABA_CONSTRAINT,
ABA_VARIABLE > xpool=0, double minViolation=0.001)

« virtual void activate()

Does nothing but can be used as an entrance point for problem spedifiations by a reimplementation in derived
classes.

« virtual void deactivatg)
Can be used as entrance point for problem specific deactivations afteulipecblem optimization.

« virtual int generateBranchRul¢ABA_BUFFER< ABA_BRANCHRULE * > &rules)
« virtual int branchingOnVariabléABA_BUFFER< ABA_BRANCHRULE * > &rules)

Generates branching rules for two new subproblems by selecting a Hiraposariable with the function
selectBranchingVariable()

« virtual int selectBranchingVariablgnt &variable)
« virtual int selectBranchingVariableCandida{@d€88A_BUFFER< int > &candidates)

Selects depending on the branching variable strategy given by the pamafnBranchingStrategy} in the file {
.abacus} candidates that for branching variables.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

162 Reference Manual

virtual int selectBestBranchingSampl@gnt nSamples, ABA_BUFFER< ABA BRANCHRULE x >
x+xsamples)

Evaluates branching samples (we denote a branching sample the sé&®tlefining all sons of a subproblem in the
enumeration tree). For each sample the ranks are determined with thédiumankBranchingSample()lhe ranks
of the various samples are compared with the functiompareBranchingSample()

virtual void rankBranchingSample (ABA_BUFFER< ABA_BRANCHRULE =« > &sample,
ABA_ARRAY < double> &rank)

Computes for each branching rule of a branching sample a rank with trati@uinrankBranchingRule()

virtual doublerankBranchingRuléABA_BRANCHRULE xbranchRule)
doublelpRankBranchingRuléABA_BRANCHRULE xbranchRule, int iterLimit=-1)

Computes the rank of a branching rule by modifying the linear programneliagation of the subproblem according
to the branching rule and solving it. This modifiction is undone after the solufitimedinear program.

virtual int compareBranchingSampleRar(kBA_ARRAY < double> &rank1l, ABA_ARRAY < double>
&rank2)
int closeHalfExpensivént &branchVar, ABA_VARTYPE:: TYPE branchVarType)

Selects a single branching variable of typeanchVarType with fractional part close td).5 and high absolute
objective function coefficient.

int closeHalfExpensivéABA_BUFFER< int > &variables,ABA_VARTYPE:: TYPE branchVarType)

This version of the functiocloseHalfExpensive@elects several candidates for branching variables of typ@ch-
VarType

int closeHalf(int &branchVar, ABA_ VARTYPE:: TYPE branchVarType)
Searches a branching variable of typeanchVarTypewith fraction as close t0.5 as possible.

int closeHalf(ABA_BUFFER< int > &branchVar,ABA_VARTYPE:: TYPE branchVarType)

Searches searches several possible branching variable obrgmehVarTypewith fraction as close t0.5 as pos-
sible.

int findNonFixedSefABA_BUFFER< int > &branchVar, ABA_VARTYPE:: TYPE branchVarType)

int findNonFixedSe(int &branchVar, ABA_VARTYPE:: TYPE branchVarType)

virtual int initMakeFeas(ABA_BUFFER< ABA_INFEASCON x > &infeasCon, ABA_BUFFER<
ABA_VARIABLE x > &newVars,ABA_POOL< ABA_VARIABLE , ABA_CONSTRAINT > sxpool)

The default implementation of the virtualtMakeFeas(Hloes nothing.

virtual int makeFeasiblé)
The default implementation afakeFeasible@loes nothing.

virtual boolgoodCol(ABA_COLUMN &col, ABA_ARRAY < double> &row, double x, double Ib, double
ub)

virtual void setByLogimp(ABA_BUFFER< int > &variable, ABA_BUFFER< ABA_FSVARSTAT x* >
&status)

The default implementation eétByLoglmp()does nothing.

virtual boolfeasible()=0
The pure virtual functiorieasible()checks for the feasibility of a solution of the LP-relaxation.

boolintegerFeasiblé)

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.5 ABA_SUB Class Reference 163

Can be used to check if the solution of the LP-relaxation is primally feasiblefié&mibility an integral value for all
binary and integer variables is sufficient.

« virtual boolprimalSeparatiol)

Is a virtual function which controls, if during the cutting plane phase a (plreaparation step or a pricing step
(dual separation) should be performed.

* virtual int separat€)
« virtual void conEliminate(ABA_BUFFER< int > &remove)

Can be used as an entry point for application specific elimination of conssrainredefinig it in derived classes.

« virtual void nonBindingConEliminaté ABA_BUFFER< int > &remove)
Retrieves the dynamic constraints with slack exceeding the value givengrémeter { ConElimEps}.

« virtual void basicConEliminatéABA_BUFFER< int > &remove)
« virtual void varEliminate(ABA_BUFFER< int > &remove)

Provides an entry point for application specific variable elimination that canirbplemented by redefining this
function in a derived class.

* void redCostVarEliminat¢ABA_BUFFER< int > &remove)
« virtual int pricing ()
« virtual intimprove(double &primalValue)
Can be redefined in derived classes in order to implement primal hewsrfstidinding feasible solutions.

« virtual ABA_SUB x generateSo(ABA_BRANCHRULE xrule)=0

Returns a pointer to an object of a problem specific subproblem derigattfre class ABA_SUB, which is generated
from the current subproblem by the branching reolée.

 boolboundCraslf) const

« virtual boolpausing()
 boolinfeasible()

* virtual void varRealloq(int newSize)

Reallocates memory that at meswSizevariables can be handled in the subproblem.

« virtual void conReallodint newSize)
Reallocates memory that at mestwSizeconstraints can be handled in the subproblem.

e virtual ABA_LP::METHOD chooselLpMethodint nVarRemoved, int nConRemoved, int nVarAdded, int
nConAdded)

« virtual booltailingOff ()

* bool betterDualdouble x) const

« virtual void selectVarg)

« virtual void selectCong)

« virtual int fixByRedCost(bool &newValues, bool saveCand)

« virtual void fixByLoglmp (ABA_BUFFER< int > &variable, ABA_BUFFER< ABA_FSVARSTAT * >
&status)

Should collect the numbers of the variables to be fixagitableand the respective statusesstatus

« virtual int fixAndSet(bool &newValues)

Tries to fix and set variables both by logical implications and reducedardstia.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

164 Reference Manual

« virtual int fixing (bool &newValues, bool saveCand=false)
« virtual int setting(bool &newValues)

Tries to set variables by reduced cost criteria and logical implicationsfliag(), but instead of global conditions
only locally valid conditions have to be satisfied.

« virtual int setByRedCosf)
« virtual void fathom(bool reoptimize)
« virtual boolfixAndSetTime()
e virtual intfix (int i, ABA_FSVARSTAT xnewStat, bool &newValue)
« virtual int set(int i, ABA_FSVARSTAT xnewStat, bool &newValue)
* virtual int set(int i, ABA_FSVARSTAT::STATUSnewStat, bool &newValue)
« virtual int set(int i, ABA_FSVARSTAT::STATUSnewStat, double value, bool &newValue)
« virtual doubledualRounddouble x)
« virtual doubleguarante€)
« virtual boolguaranteed)
« virtual boolremoveNonLiftableCon§
« virtual int prepareBranchin¢bool &lastlteration)
« virtual voidfathomTheSubTre@
* virtual int optimize()
« virtual void reoptimize()
« virtual void initializeVars(int maxVar)
« virtual voidinitializeCons(int maxCon)
* virtual PHASE branching)
Is called if the global lower bound of‘anode is still strictly less than the local upper bound, but either no violated

cutting planes or variables are found, or we abort the cutting phase foesiiher strategic reason (e.g., observation
of a tailing off effect, or branch pausing).

* virtual PHASE fathomind)
Fathoms the node, and if certain conditions are satisfied, also its ancestor.

« virtual PHASE cutting()
Iteratively solves the LP-relaxation, generates constraints and/or viasab

« virtual ABA_LPSUB x generateLf)
« virtual intinitializeLp ()

* virtual int solveLp()

« virtual boolexceptionFathong)

Can be used to specify a problem specific fathoming criterium that is cheelfe the separation or pricing.

« virtual boolexceptionBranclf)
« virtual boolsolveApproxNow()

Protected Attributes

* ABA_MASTER * master_

* ABA_ACTIVE < ABA_CONSTRAINT, ABA_VARIABLE > x actCon_
* ABA_ACTIVE < ABA_VARIABLE , ABA_CONSTRAINT > % actVar_
ABA_SUB x father_

* ABA_LPSUB = Ip_

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.5 ABA_SUB Class Reference 165

ABA_ARRAY < ABA_FSVARSTAT * > * fsVarStat_

A pointer to an array storing the status of fixing and setting of the active vimsal&\lthough fixed and set variables
are already kept at their value by the adaption of the lower and uppentt&uve store this information, since, e.g.,
a fixed or set variable should not be removed, but a variable with aeuppund equal to the lower bound can be
removed.

« ABA_ARRAY < ABA_LPVARSTAT * > x IpVarStat_
A pointer to an array storing the status of each active variable in the lineagnam.

* ABA_ARRAY < double> x IBound_
* ABA_ARRAY < double> x uBound_
o ABA_ARRAY < ABA_SLACKSTAT x* > * slackStat_

A pointer to an array storing the statuses of the slack variables of the lastdtnear program.

e ABA_TAILOFF x tailOff_
 doubledualBound_

e intniter_

* int lastiterConAdd_

« int lastlterVarAdd_

« ABA_ BRANCHRULE * branchRule__
« boolallBranchOnSetVars_

If true, then the branching rule of the subproblem and of all ancestor on thetpdtte root node are branching on
a binary variable.

e ABA LP::METHOD IpMethod

 ABA CUTBUFFER< ABA_VARIABLE , ABA_CONSTRAINT > *x addVarBuffer_
* ABA_CUTBUFFER< ABA_CONSTRAINT, ABA_VARIABLE > x addConBuffer_
* ABA BUFFER< int > x removeVarBuffer_

The buffer of the variables which are removed at the beginning of thiatasation.

* ABA_BUFFER< int > x removeConBuffer_
The buffer of the constraints which are removed at the beginning of ttiéteration.

e doublex xVal_
 doublex yVal_
e doublex binvRow__

A row of the basis inverse associated with the infeasible variaifié@sVar_or slack variableinfeasCon.

« intinfeasCon_
e intinfeasVar_
* boolgenNonLiftCons_

Private Member Functions

e virtual int _separat€)

e virtual int_conEliminatg)

e virtual int _varEliminate()

e virtual int_pricing (bool &newValues, bool doFixSet=true)
« virtual int_improve(double &primalValue)

e virtual int _fixByLoglmp (bool &newValues)

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

166 Reference Manual

Returns 1, if a contradiction has been found, O otherwise.

« virtual void updateBoundInLgint i)
« virtual doublefixSetNewBoundint i)

Returns the value which the upper and lower bounds of a variable shdwddafger it is fixed or set.

« virtual void newDormantRoung)
* virtual PHASE _activatg)

Allocates and initializes memory of the subproblem at the beginning of theingtiom.

« virtual void _deactivate)
Deallocates the memory which is not required after the optimization of thecilem.

e virtual int_initMakeFeag)
Tries to add variables to restore infeasibilities detected at initialization time.

* virtual int_makeFeasibl§

Is called if theL P is infeasible and adds inactive variables, which can maké Eheasible again, to the set of active
variables.

* virtual int _setByLoglmp(bool &newValues)
Tries to set variables according to logical implications of already set aretifvariables.

« virtual void infeasibleSukf)

« virtual void getBas«)

« virtual void activateVar§ABA_BUFFER< ABA_POOLSLOT< ABA_VARIABLE , ABA_CONSTRAINT
> x > &new\Vars)

Adds the variables stored in the pool slotsefvVarsto the set of active variables, but not to the linear program.

* virtual void addVarsToLp (ABA_BUFFER< ABA_POOLSLOT< ABA_VARIABLE ,
ABA_CONSTRAINT > * > &newVars,ABA_BUFFER< ABA_FSVARSTAT * > xlocalStatus=0)

Adds the variables stored in the pool slotsnefvVarsto the linear programlocalStatuscan specify a local status
of fixing and setting.

« virtual void _selectVar§ABA_BUFFER< ABA_POOLSLOT< ABA_VARIABLE , ABA_CONSTRAINT
> x > &new\Vars)

« virtual void _selectCon$ABA_BUFFER< ABA_POOLSLOT< ABA_CONSTRAINT, ABA_VARIABLE
> % > &newCons)

Selects thenaster_>maxConAdd()best constraints from the buffered constraints and stores theravilCons

* virtual int_removeVar{ABA_BUFFER< int > &remove)
* virtual int_removeCon$ABA_BUFFER< int > &remove)
e ABA_SUB (constABA_SUB &rhs)

* constABA_SUB & operator5constABA_SUB &rhs)

Private Attributes
* intlevel_
e intid_
o STATUS status_

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.5 ABA_SUB Class Reference 167

 ABA_BUFFER< ABA_SUB x > % sons_
* int maxlterations_

e intnOpt_

« boolrelativeReserve

If this member idrue then the space reserve of the following three memb&rReserve, conReserve,_and nnz-
Reserve is relative to the initial numbers of constraints, variables, and nonzeespectively. Otherwise, the values
are casted to integers and regarded as absolute values.

e doublevarReserve
e doubleconReserve_
e doublennzReserve_
 int nDormantRounds_

The number of subproblem optimizations the subproblem has alreadiatheBormant

« boolactivated

The variable istrueif the functionactivate()has been called from the functioractivate() This memorization is
required such that aeactivate()s only called wheractivate()has been called.

* boolignorelnTailingOff_

If this flag is set tdruethen the next LP-solution is ignored in the tailing-off control. The defaultesafihe variable
is false It can be set tarue by the functiorignorelnTailingOff()

* ABA_LP::METHOD lastLP_

The method that was used to solve the last LP.

« ABA CPUTIMER localTimer_
« boolforceExactSolver_

Indicates whether to force the use of an exact solver to prepare birzmelc.

Friends

 classABA_MASTER

 classABA_BOUNDBRANCHRULE

 classABA_OPENSUB

 classABA_LPSOLUTION< ABA_CONSTRAINT, ABA_VARIABLE >
* classABA_LPSOLUTION< ABA_VARIABLE, ABA_CONSTRAINT >

6.5.1 Detailed Description

class implements an abstract base class for a subprobldra ehtimeration, i.e., a node of théree.

Definition at line 75 of file sub.h.

6.5.2 Member Enumeration Documentation

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

168 Reference Manual

6.5.2.1 enumABA_SUB::PHASE

The optimization of the subproblem can be in one of the fallgyphases:.

Parameters:
Done The optimization is done.

Cutting The iterative solution of the LP-relaxation and the genenabf cutting planes and/or variables is
currently performed.

Branching We try to generate further subproblems as sons of this sblgmo
Fathoming The subproblem is currently being fathomed.

Enumeration values:
Done

Cutting
Branching

Fathoming

Definition at line 111 of file sub.h.

6.5.2.2 enumABA_SUB:STATUS

A subproblem can have different statuses:

Parameters:
UnprocessedThe status after generation, but before optimization ostitgroblem.

Active The subproblem is currently processed.

Dormant The subproblem is partially processed and waiting in th@&epen subproblems for further opti-
mization.

ProcessedThe subproblem is completely processed but could not berfatl.

Fathomed The subproblem is fathomed.

Enumeration values:
Unprocessed

Active
Dormant
Processed

Fathomed

Definition at line 98 of file sub.h.

6.5.3 Constructor & Destructor Documentation

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.5 ABA_SUB Class Reference 169

6.5.3.1 ABA _SUB::ABA_SUB ABA MASTER x master double conRes double varRes double
nnzRes bool relativeRes=t r ue, ABA_BUFFER< ABA_POOLSLOT < ABA_CONSTRAINT,
ABA VARIABLE > x > % constraints= 0, ABA_ BUFFER< ABA POOLSLOT <
ABA VARIABLE , ABA_CONSTRAINT > x > % variables= 0)

The constructor for the root node of the enumeration tree.

Parameters:
master A pointer to the corresponding master of the optimization.

conRes The additional memory allocated for constraints.
varRes The additional memory allocated for variables.
nnzRes The additional memory allocated for nonzero elements ottmestraint matrix.

relativeReslf this argument istrue, then reserve space for variables, constraints, and nasizgven by
the previous three arguments, is given in percent of themaighumbers. Otherwise, the numbers are
interpreted as absolute values (casted to integer). Thideflue istrue.

constraints The pool slots of the initial constraints. If the value is Ben the constraints of the default
constraint pool are taken. The default value is 0.

variables The pool slots of the initial variables. If the value is 0,ritike variables of the default variable pool
are taken. The default value is 0.

6.5.3.2 ABA_SUB:ABA_SUB ABA MASTER x master ABA_SUB x father, ABA_BRANCHRULE =
branchRulg

The constructor for non-root nodes of the enumeration tree.

Parameters:
master A pointer to the corresponding master of the optimization.

father A pointer to the father in the enumeration tree.
branchRule The rule defining the subspace of the solution space asedaiath this subproblem.

6.5.3.3 virtual ABA_SUB::~ABA SUB () [virtual]

The destructor only deletes the sons of the node.

The deletion of allocated memory is already performed whenniode is fathomed. We recursively call the de-
structors of all subproblems contained in the enumeratemlielow this subproblem itself.

If a subproblem has no sons and its status is elthgarocessear Dormant then it is still contained in the set of
open subproblems, where it is removed from.

6.5.3.4 ABA _SUB:ABA SUB (consABA SUB & rhs) [pri vate]

6.5.4 Member Function Documentation

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

170 Reference Manual

6.5.4.1 virtual PHASE ABA_SUB::_activate () [private, virtual]

Allocates and initializes memory of the subproblem at thgifo@ing of the optimization.

The function returns the next phase of the optimization.sThieitherCutting or Fathomingif the subproblem
immediately turns out to be infeasible.

Since many objects of the class ABA_SUB can exist at the séme et in a sequential algorithm only
one problem is active, a lot of memory can be saved if some meisadynamically allocated when the
subproblem becomes active and other information is storedccompressed format for dormant problems.

These allocations and decompressions are performed byrtogdn_activate() the respective deallocations
and compression of data is executed by the functideactivate()

Currently for all subproblems which have not been procesdedy (except for the root) we initialize the
active constraints and variables with the respective data the father node adapted by the branching infor-
mation since so we can make sure that all fixed and set vasiabdeactive. A more flexible strategy might be
desirable but also dangerous.

The virtual functionactivate()can perform problem specific activations. It is called befeariables are fixed
by logical implications, because, e.g., for problems opgsathe graph associated with the subproblem might
have to be activated.

Moreover, the function activate()is redundant in the sense that it is called only once and dmikiibstituted
by a function. However, having a future generalization to Rén mind, we keep this function.

6.5.4.2 virtual int ABA_SUB::_conEliminate () [private, virtual]

Returns the number of eliminated constraints.
Only dynamic constraints are eliminated from tt

It might be worth to implement problem specific versions @ fanction.

6.5.4.3 virtual void ABA_SUB:: deactivate () [private, virtual]
Deallocates the memory which is not required after the dpétion of the subproblem.

The virtual dummy functiomeactivate(can perform problem specific deactivations.

As the function_activate() the function_deactivate()s redundant in the sense that it is called only once and
could be substituted by a function. However, having a fugereralization to nofy in mind, we keep this
function.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.5 ABA_SUB Class Reference 171

6.5.4.4 virtual int ABA_SUB::_fixByLoglmp (bool & newValue$ [private, virtual]

Returns 1, if a contradiction has been found, O otherwise.

The parametemewValuess set totrue if a variable is fixed to value different from its value in ttast solved linear
program.

6.5.4.5 virtual int ABA_SUB::_improve (double & primalValue) [private, virtual]
Tries to find a better feasible solution.

If a better solution is found its value is storeddrimalValueand we return 1, otherwise we return 0.

If the upper bound has been initialized with the optimum 8otuor with the optimum solution plus/minus
one these primal heuristics are skipped.

The primal bound, if improved, is either updated in the fiorctutting(), from which_improved()is called,
are can be updated in the functimnprove()of an application in a derived class.

6.5.4.6 virtual int ABA_SUB::_initMakeFeas () [private, virtual]
Tries to add variables to restore infeasibilities deteatdditialization time.

It returns 0O if variables could be activated which might eestfeasibility, otherwise it returns 1.

The function should analyse the constraints store@iBA LPSUB::infeasConsand try to add inactive vari-
ables which could restore the infeasibility.

The new variables are only added to the set of active vasaiie not to the linear program since no linear
program exists when this function is called.

6.5.4.7 virtual int ABA_SUB::_makeFeasible () [private, virtual]

Is called if theLP is infeasible and adds inactive variables, which can makéd.Ehfeasible again, to the set of
active variables.

The function return® if feasibility might have been restored afdf it is guaranteed that the linear program is
infeasible on the complete variable set.

6.5.4.8 virtual int ABA_SUB::_pricing (bool & newValues bool doFixSet=true) [private,
vi rtual]

If doFixSetis true, then we try to fix and set variables, if all inactive variabfgice out correctly. In this case
newValuedecomedrue of a variable is set or fixed to a value different from its valu¢he last linear program.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

172 Reference Manual

In a pricing step the reduced costs of inactive variablesamputed and variables with positive (negative)
reduced costs in a maximization (minimization) problematvated.

The function_pricing() returns the 1 if no global optimality can be guaranteed,esivariables have nega-
tive reduced costs, it returns 2 if before a pricing step capdrformed, non-liftable constraints have to be
removed, and O if the LP-solution is global dual feasible.

Also if there are no inactive variables, this function idedlsince it will also try to fix and set variables.

true is the default value ofloFixSet No variables should be fixed or set ipricing() is called from
_makeFeasible()

6.5.4.9 virtual int ABA_SUB::_removeCons ABA_BUFFER< int > & remove [private,
vi rtual]

Removes the constraints with numbegmovefrom the set of active constraints.

6.5.4.10 virtual int ABA_SUB::_removeVars ABA_BUFFER< int > & removg [pri vate,
vi rtual]

6.5.4.11 virtual void ABA_SUB::_selectConsABA BUFFER < ABA_POOLSLOT <
ABA_CONSTRAINT , ABA_VARIABLE > x> & newCon3 [private, virtual]

Selects thenaster_>maxConAdd(pest constraints from the buffered constraints and stbiexas innewCons

6.5.4.12 virtual void ABA_SUB::_selectVars ABA_BUFFER < ABA_POOLSLOT < ABA_VARIABLE ,
ABA_CONSTRAINT > %> & newVarg [private, virtual]

Selects thenaster_>maxVarAdd(pest variables from the buffered variables.

Parameters:
newVars Holds the selected variables after the call.

6.5.4.13 virtual int ABA_SUB:: separate () [private, virtual]
Returns the number of generated cutting planes.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.5 ABA_SUB Class Reference 173

6.5.4.14 virtual int ABA_SUB::_setByLoglmp (bool & newValue3 [private, virtual]

Tries to set variables according to logical implicationslwéady set and fixed variables.

Since logical implications are problem specific the virtugictionsetByLogImp()s called to find variables which
can be set. If a variable is set to a new value, i.e., a valdierdift from the one in the last solved LfewValuess
set totrue. If such a setting implies a contradictiorsetByLoglmp(jeturns 1, otherwise it returns 0.

6.5.4.15 virtual int ABA_SUB:: varEliminate () [private, virtual]

Returns the number of eliminated variables.

Only dynamic variables can be eliminated.
6.5.4.16 ABA_ACTIVE < ABA_CONSTRAINT , ABA_VARIABLE > x ABA_SUB::actCon () const
[inline]

Returns:
A pointer to the currently active constraints.

Definition at line 2249 of file sub.h.

6.5.4.17 virtual void ABA_SUB::activate () [protected, virtual]

Does nothing but can be used as an entrance point for prolplecifis activations by a reimplementation in derived
classes.

6.5.4.18 virtual void ABA_SUB::activateVars ABA BUFFER < ABA_POOLSLOT < ABA_VARIABLE ,
ABA_CONSTRAINT > % > & newVarg [private, virtual]

Adds the variables stored in the pool slotsefvVarsto the set of active variables, but not to the linear program.

If the new number of variables exceeds the maximal numbeables an automatic reallocation is performed.

6.5.4.19 ABA_ACTIVE < ABA_VARIABLE , ABA_CONSTRAINT > x ABA_SUB::actVar () const
[1nline]

Returns:
A pointer to the currently active variables.

Definition at line 2254 of file sub.h.

6.5.4.20 int ABA_SUB::addBranchingConstraint ABA_POOLSLOT < ABA_CONSTRAINT ,
ABA_VARIABLE > xslof) [inline, virtual]

Adds a branching constraint to the constraint buffer sueh ithis automatically added at the beginning of the
cutting plane algorithm.

It should be used in definitions of the pure virtual funct®BRANCHRULE::extract()

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

174 Reference Manual

Returns:
0 If the constraint could be added,
1 otherwise.

Parameters:
slot A pointer to the pools slot containing the branching comstra

Definition at line 2143 of file sub.h.

6.5.4.21 int ABA_SUB::addConBufferSpace () const[i nl i ne]

Can be used to determine the maximal number of the constralmith still can be added to the constraint buffer.

A separation algorithm should stop as soon as the numbermafrged constraints reaches this number because
further work is useless.

Returns:
The number of constraints which still can be inserted inedbnstraint buffer.

Definition at line 2148 of file sub.h.

6.5.4.22 virtual int ABA_SUB::addCons ABA_BUFFER < ABA_POOLSLOT < ABA_CONSTRAINT,
ABA_VARIABLE > x> & newCon3 [protected, virtual]

Adds constraints to the active constraints and the linezgnam.

Returns:
The number of added constraints.

Parameters:
newCons A buffer storing the pool slots of the new constraints.

6.5.4.23 virtual int ABA_SUB::addCons ABA_BUFFER < ABA_CONSTRAINT x > & constraints
ABA_POOL < ABA_CONSTRAINT , ABA_VARIABLE > x pool=0, ABA_ BUFFER < bool > %
keepInPool= 0, ABA BUFFER< double > xrank =0) [protected, virtual]

Tries to add new constraints to the constraint buffer andoh po

The memory management of added constraints is passgldytaalling this function.

Returns:
The number of added constraints.

Parameters:
constraints The new constraints.

pool The pool in which the new constraints are inserted. If theealf this argument is 0, then the cut pool
of the master is selected. Its default value is 0.

keepInPool If (xkeeplnPool)[i] istrue, then the constraint stays in the pool even if it is not atéiga The
default value is a O-pointer.

rank If this pointer to a buffer is nonzero, this buffer shouldrsta rank for each constraint. The greater the
rank, the better the variable. The default valueawfk is 0.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.5 ABA_SUB Class Reference 175

6.5.4.24 int ABA_SUB::addVarBufferSpace () const [i nl i ne]

Can be used to determine the maximal number of the variabiiezhwstill can be added to the variable buffer.

A pricing algorithm should stop as soon as the number of géeéwvariables reaches this number because further
work is useless.

Returns:
The number of variables which still can be inserted into thieable buffer.

Definition at line 2153 of file sub.h.

6.5.4.25 virtual int ABA_SUB::addVars (ABA_ BUFFER< ABA POOLSLOT < ABA VARIABLE ,
ABA CONSTRAINT > % > & newVarg [protected, virtual]

Adds both the variables inewVarso the set of active variables and to the linear program o§thmroblem.

If the new number of variables exceeds the maximal numbeaid@bles an automatic reallocation is performed.

Returns:
The number of added variables. We require this feature iivetbrclasses if variables afewVarscan be
discarded if they are already active.

Parameters:
newVars A buffer storing the pool slots of the new variables.

6.5.4.26 virtual int ABA_SUB::addVars (ABA_BUFFER< ABA_VARIABLE x > & variables
ABA POOL < ABA_VARIABLE , ABA_CONSTRAINT > % pool=0, ABA BUFFER< bool > x
keeplnPool= 0, ABA_BUFFER< double > xrank =0) [protected, virtual]

Tries to add new variables to the variable buffer and a pool.

The memory management of added variables is passebtyaalling this function.

Returns:
The number of added variables.

Parameters:
variable The new variables.

pool The pool in which the new variables are inserted. If the valfithis argument is 0, then the default
variable pool is taken. The default value is 0.

keepInPool If (xkeeplnPool)[i] istrue, then the variable stays in the pool even if it is not actidatdhe
default value is a O-pointer.

rank If this pointer to a buffer is nonzero, this buffer shouldrsta rank for each variable. The greater the
rank, the better the variable. The default valueasfk is 0.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

176 Reference Manual

6.5.4.27 virtual void ABA_SUB::addVarsToLp (ABA_BUFFER< ABA_POOLSLOT <
ABA_VARIABLE , ABA_CONSTRAINT > x > & newVars ABA_BUFFER < ABA_FSVARSTAT
x > x localStatus=0) [private, virtual]

Adds the variables stored in the pool slotefvVarsto the linear programlocalStatuscan specify a local status
of fixing and setting.

If the local ABA_FSVARSTAT of the added variables differs from their global statusntties local status can be
stated inocalStatus Per default the value dbcalStatuss O.

6.5.4.28 bool ABA_SUB::ancestor (consABA _SUB x sub) const
Returns:

true If this subproblem is an ancestor of the subprobferm We define that a subproblem is its own ancestor,
false otherwise.

Parameters:
sub A pointer to a subproblem.

6.5.4.29 virtual void ABA_SUB::basicConEliminate ABA_BUFFER< int > & removeg [pr ot ect ed,
virtual]

Retrieves all dynamic constraints having basic slack teia

Parameters:
remove Stores the nonbinding constraints.

6.5.4.30 bool ABA_SUB::betterDual (doublex) const [pr ot ect ed]
Returns:

true If x is better than the best known dual bound of the subproblem,
false otherwise.

6.5.4.31 bool ABA_SUB::boundCrash () const[pr ot ect ed]
Returns:

true If the dual bound is worse than the best known primal dpun
false otherwise.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.5 ABA_SUB Class Reference 177

6.5.4.32 virtualPHASE ABA_SUB::branching () [protected, virtual]

Is called if the global lower bound of\anode is still strictly less than the local upper bound, btitesino violated
cutting planes or variables are found, or we abort the aytitmase for some other strategic reason (e.g., observation
of a tailing off effect, or branch pausing).

Usually, two new subproblems are generated. However, oplleimentation obranching()is more sophisticated
that allows different branching. Moreover, we also chedkig node is only paused. If this is the case the node is
put back into the list of opek nodes without generating sons of this node.

Finally if none of the previous conditions is satisfied we g@ite new subproblems.

Returns:
Done If sons of the subproblem could be generated,
Fathoming otherwise.

6.5.4.33 virtual int ABA_SUB::branchingOnVariable (ABA_BUFFER < ABA_BRANCHRULE x > &
rules) [protected, virtual]

Generates branching rules for two new subproblems by @sjeet branching variable with the function
selectBranchingVariable()
If a new branching variable selection strategy should bel tise functionselectBranchingVariable@hould be

redefined.

Returns:
0 If branching rules could be found,
1 otherwise}

Parameters:
rules If branching rules are found, then they are stored in thigghbuThe length of this buffer is the number
of active variables of the subproblem. If more branchingsuhre generated a reallocation has to be
performed.

6.5.4.34 ABA_BRANCHRULE x ABA_SUB::branchRule () const [i nl i ne]

Returns:
A pointer to the branching rule of the subproblem.

Definition at line 2138 of file sub.h.

6.5.4.35 virtualABA_LP::METHOD ABA_SUB::chooselLpMethod (intnVarRemovedint nConRemoved
int nVarAdded int nConAdded [protected, virtual]

Controls the method used to solve a linear programming agiarx.

The default implementation chooses the barrier methodhfeffitst linear program of the root node and for all
other linear programs it tries to choose a method such threseph of the simplex method is not required.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

178 Reference Manual

Returns:
The method the next linear programming relaxation is solwithl.

Parameters:
nVarRemovedThe number of removed variables.

nConRemovedThe number of removed constraints.
nVarAdded The number of added variables.
nConAdded The number of added constraint.

6.5.4.36 int ABA_SUB::closeHalf ABA_BUFFER< int > & branchVar, ABA_VARTYPE: TYPE
branchVarTypg [prot ect ed]

Searches searches several possible branching variabypebitanchVarType with fraction as close t®.5 as
possible.

Returns:
0 If at least one branching variable is found,
1 otherwise.

Parameters:
variables Stores the possible branching variables.

branchVartype The type of the branching variable can be restricted eithekBA_VARTYPE::Binary or
ABA_VARTYPE::Integer

6.5.4.37 int ABA_SUB::closeHalf (int & branchVar, ABA_VARTYPE::TYPE branchVarTyp§
[prot ect ed]

Searches a branching variable of tygranchVarTypewith fraction as close t0.5 as possible.

Returns:
0 If a branching variable is found,
1 otherwise.

Parameters:
branchVar Holds the branching variable if one is found.

branchVartype The type of the branching variable can be restricted eithekBA VARTYPE::Binary or
ABA_VARTYPE::Integer

6.5.4.38 int ABA_SUB::closeHalfExpensiveABA_BUFFER< int > & variables ABA_VARTYPE: TYPE
branchVarTypg [pr ot ect ed]

This version of the functionloseHalfExpensivegelects several candidates for branching variables otisgoech-
VarType

Thos variables with fractional part close(i® and high absolute objective function coefficient are selbct

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.5 ABA_SUB Class Reference 179

Returns:
0 If at least one branching variable is found,
1 otherwise.

Parameters:
branchVar Holds the numbers of possible branching variables if at leas is found. We try to find as many
candidates as fit into this buffer. We abort the function witlatal error if the size of the buffer is 0.

branchVartype The type of the branching variable can be restricted eithekBA VARTYPE::Binary or
ABA_VARTYPE::Integet

6.5.4.39 int ABA_SUB::closeHalfExpensive (int &ranchVar, ABA VARTYPE:: TYPE branchVarTypg
[protect ed]

Selects a single branching variable of typanchVarType with fractional part close t6.5 and high absolute
objective function coefficient.

This is the default strategy from the TSP project JRT94}.

Returns:
0 If a branching variable is found,
1 otherwise.

Parameters:
branchVar Holds the number of the branching variable if one is found.

branchVartype The type of the branching variable can be restricted eithekBA VARTYPE::Binary or
ABA_VARTYPE::Integer

6.5.4.40 virtual int ABA_SUB::compareBranchingSampleRaks (ABA_ARRAY < double > & rank1,
ABA_ARRAY < double > & rank2) [protected, virtual]

Compares the ranks of two branching samples.

For maximimization problem that rank is better for which thaximal rank of a rule is minimal, while for mini-
mization problem the rank is better for which the minimalkrar a rule is maximal. If this value equals for both
ranks we continue with the secand greatest value, etc.

Returns:
1 If ranklis better.

0 If both ranks are equal.
-1 If rank2is better.

6.5.4.41 virtual void ABA_ SUB::conEliminate ABA BUFFER< int > & removg [pr ot ect ed,
virtual]

Can be used as an entry point for application specific elitiinaf constraints by redefinig it in derived classes.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

180 Reference Manual

The default implementation of this function calls eithee flanctionnonBindingConEliminate(pr the function
basicConEliminate(epending on the constraint elimination mode of the mak#dri$ initialized via the param-
eter file.

Parameters:
remove The constraints that should be eliminated must be insentdds buffer.

6.5.4.42 virtual void ABA_SUB::conRealloc (intnewSiz¢ [protected, virtual]

Reallocates memory that at moswSizeconstraints can be handled in the subproblem.

Parameters:
newSize The new maximal number of constraints of the subproblem.

6.5.4.43 ABA_CONSTRAINT « ABA_SUB::constraint (int i) const

Returns:
A pointer to thei-th active constraint.

Parameters:
i The constraint being accessed.

6.5.4.44 virtual int ABA_SUB::constraintPoolSeparation(int ranking = 0, ABA_POOL <
ABA_CONSTRAINT, ABA_VARIABLE > x pool =0, double minViolation = 0. 001)
[protected, virtual]

Tries to generate inactive constraints from a pool.

Returns:
The number of generated constraints.

Parameters:
ranking This parameter indicates how the ranks of violated comgsahould be computed (0: no ranking; 1:
violation is rank, 2: absolute value of violation is rank r8nk determined bABA_CONVAR::rank()).
The default value is 0. }

pool The pool the constraints are generated fronpdbl is 0, then the default constraint pool is used. The
default value opoolis 0.

minAbsViolation A violated constraint/variable is only added if the absehslue of its violation is at least
minAbsViolation The default value i6.001.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.5 ABA_SUB Class Reference 181

6.5.4.45 virtualPHASE ABA_SUB::cutting () [protected, virtual]

Iteratively solves the LP-relaxation, generates constisaind/or variables.

Also generating variables can be regarded as “cutting”,ahaas generating cuts for the dual problem. A reader
even studying these lines has been very brave! Therefadrshreader of these lines is invited to a beer from the
author.

Returns:
Fathoming If one of the conditions for fathoming the subpeabis satisfied.
Branching If the subproblem should be splitted in furthéssoblems.

6.5.4.46 virtual void ABA_SUB::deactivate () [protected, virtual]

Can be used as entrance point for problem specific deactigéfter the subproblem optimization.

The default version of this function does nothing. This fiimt is only called if the functioractivate()for the
subproblem has been executed. This function is called frdeactivate()

6.5.4.47 void ABA_SUB::dualBound (doublex)

Sets the dual bound of the subproblem, and if the subproldéheiroot node of the enumeration tree and the new
value is better than its dual bound, also the global dual Bdsinpdated. It is an error if the dual bound gets worse.
In normal applications it is not required to call this fumetiexplicitly. This is already done by during the
subproblem optimization.

Parameters:
x The new value of the dual bound.

6.5.4.48 double ABA_SUB::dualBound () const[i nl i ne]

Returns:
A bound which is better than the optimal solution of the sobjem in respect to the sense of the optimization,
i.e., an upper for a maximization problem or a lower boundsfaminimization problem, respectively.

Definition at line 2229 of file sub.h.

6.5.4.49 virtual double ABA_ SUB::dualRound (doublex) [protected, virtual]

Returns:
If all objective function values of feasible solutions anéeger the functiomualRound()returnsx rounded
up to the next integer if this is a minimization problem,rounded down to the next integer if this is a
maximization problem, respectively. Otherwise, the netalue isx.

Parameters:
x The value that should be rounded if possible.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

182 Reference Manual

6.5.4.50 virtual bool ABA_SUB::exceptionBranch () [protected, virtual]

Can be used to specify a problem specific criteria for enfigrai branching step.

This criterium is checked before the separation or pricirite default implementation always retuffatse

Returns:
true If the subproblem should be fathomed,
false otherwise.

6.5.4.51 virtual bool ABA_SUB::exceptionFathom () [pr ot ect ed, virtual]

Can be used to specify a problem specific fathoming critethahis checked before the separation or pricing.

The default implementation always retuffatse

Returns:
true If the subproblem should be fathomed,
false otherwise.

6.5.4.52 consABA SUB x ABA_SUB::father () const [i nli ne]

Returns:
A pointer to the father of the subproblem in théree.

Definition at line 2234 of file sub.h.

6.5.4.53 virtual void ABA_SUB::fathom (boolreoptimiz§ [protected, virtual]

Fathoms a node and recursively tries to fathom its father.

If the root of the remaining tree is fathomed we are done since the optimization problsrbleen solved.

Otherwise, we count the number of unfathomed sons of therfaththe subproblem being fathomed. If all
sons of the father are fathomed it is recursively fathomeal, If the father is the root of the remainifgree
and only one of its sons is unfathomed, then this unfathornadoecomes the new root of the remaining
tree.

We could stop the recursive fathoming already at the roohefremaining\ tree. But, we proceed until the
root of the complete tree was visited to be really correct.

Note:
Use the functiorexceptionFathom(jor specifying problem specific fathoming criteria.

Parameters:
reoptimize If reoptimizeis true, then we perform a reoptimization in the new root. This istoafed via a
parameter since it might not be desirable when we find a newdaring the fathoming of a complete
subtree with the functiofathomTheSubTree()

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.5 ABA_SUB Class Reference 183

6.5.4.54 virtualPHASE ABA_SUB::fathoming () [protected, virtual]

Fathoms the node, and if certain conditions are satisfied,itd ancestor.

The third central phase of the optimization of a subproblgrihéFathomingof a subproblem. A subproblem is
fathomed if it can be guaranteed that this subproblem casurdain a better solution than the best known one. This
is the case if the global upper bound does not exceed theltmeat bound (maximization problem assumed) or the
subproblem cannot contain a feasible solution either ifehe a fixing/setting contradiction or thd>-relaxation
turns out to be infeasible.

Note:
Use the functiorexceptionFathom(jor specifying problem specific fathoming criteria.

The called functiorfiathom()fathoms the subproblem itself and recursively also tridattom its father in the
enumeration tree. The argumentfathom()is true as a possibly detected new root should be reoptimized in
order to receive better criteria for fixing variables by regl costs.

In the parallel version, only the subproblem itself is fattea. No processed unfathomed nodes are kept in
memory (father_=0).

Returns:
The function always returrione

6.5.4.55 virtual void ABA_SUB::fathomTheSubTree () [prot ected, virtual]

Fathoms all nodes in the subtree rooted at this subproblem.
DormantandUnprocessedodes are also removed from the set of open subproblems.

If the subproblem is alreadyathomedwe do not have to proceed in this branch. Otherwise, we fatihenmode
and continue with all its sons. The actual fathoming startek@unfathomed leaves of the subtree and recursively
goes up through the tree.

6.5.4.56 virtual bool ABA_SUB::feasible () [pr ot ect ed, pure virtual]

The pure virtual functiorieasible()checks for the feasibility of a solution of the LP-relaxatio

If the function returndrue and the value of the primal bound is worse than the value effg@sible solution, the
value of the primal bound is updated automatically.

Returns:

true If the LP-solution is feasible,
false otherwise.

6.5.4.57 int ABA_SUB::findNonFixedSet (int &branchVar, ABA_VARTYPE: TYPE branchVarTypg
[protect ed]

Selects the first variable that is neither fixed nor set.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

184 Reference Manual

Returns:
0 If a variable neither fixed nor set is found,
1 otherwise.

Parameters:
branchVar Holds the number of the branching variable if one is found.

branchVarType The type of the branching havABA_VARTYPE::Binary or ABA_VARTYPE::Intege).

6.5.4.58 int ABA_SUB::findNonFixedSet ABA_BUFFER< int > & branchVar, ABA_VARTYPE::TYPE
branchVarTypg [pr ot ect ed]

Selects the first variables that are neither fixed nor set.

Returns:
0 If at least one variable neither fixed nor set is found,
1 otherwise.

Parameters:
branchVar Holds the number of the possible branching variables if arieund.

branchVartype The type of the branching variable can be restricted eithekBA_VARTYPE::Binary or
ABA_VARTYPE::Integer

6.5.4.59 virtual int ABA_SUB::fix (int i, ABA_FSVARSTAT x newStat bool & newValug [pr ot ect ed,
virtual]

Fixes a variable.

If the variable which is currently fixed is already set thenmwast not change its bounds in the LP since it might
be eliminated.

Returns:
1 If a contradiction is found,
0 otherwise.

Parameters:
i The number of the variable being fixed.

newStat A pointer to an object storing the new status of the variable.

newValue If the variable is fixed to a value different from the one of thst LP-solution, the argumengw-
Valueis set totrue. Otherwise, it is set téalse

6.5.4.60 virtual int ABA_SUB::fixAndSet (bool & newValue$ [protected, virtual]

Tries to fix and set variables both by logical implicationsl a@duced cost criteria.

Actually, variables fixed or set to 0 could be eliminated. tewer, this could lead to a loss of important structural
information for fixing and setting further variables later, the computation of feasible solutions, for the separati
and for detecting contradictions. Therefore, we do notielate these variables per default.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.5 ABA_SUB Class Reference 185

Returns:
1 If a contradiction is found,
0 otherwise.

Parameters:
newValueslIf a variables is set or fixed to a value different from the laBtsolution,newValuess set totrue,
otherwise it is set tdalse

6.5.4.61 virtual bool ABA_SUB::fixAndSetTime () [protected, virtual]

Controls if variables should be fixed or set when all varialgigce out corretly.

The default implementation always retutnse.

Returns:
true If variables should be fixed and set,
false otherwise.

6.5.4.62 virtual void ABA_SUB::fixByLoglmp (ABA BUFFER< int > & variable ABA BUFFER<
ABA_FSVARSTAT x > & statug [protected, virtual]

Should collect the numbers of the variables to be fixedainable and the respective statusessiatus

The default implementation dixByLoglmp()does nothing. This function has to be redefined if variabfesikl
be fixed by logical implications in derived classes.

Parameters:
variables The variables which should be fixed.

status The statuses these variables should be fixed to.

6.5.4.63 virtual int ABA_SUB::fixByRedCost (bool & newValues bool saveCanjl [pr ot ect ed,
vi rtual]

Tries to fix variables according to the reduced cost criterio

Returns:
1 If a contradiction is found,
0 otherwise.

Parameters:
newVales If variables are fixed to different values as in the last sbliear program, thenewValuebecomes
true.

saveCandIf saveCands true, then a new list of candidates for later calls is compiledisTé only possible
when the root of the remainingis processed.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

186 Reference Manual

6.5.4.64 virtual int ABA_SUB::fixing (bool & newValues bool saveCand= f al se) [protect ed,
vi rtual]

Tries to fix variables by reduced cost criteria and logicgllications.

Returns:
1 If a contradiction is found,
0 otherwise.

Parameters:
newValues The parametenewValueshecomedrue if variables are fixed to other values as in the current

LP-solution.

saveCandlf the parametesaveCands true a new candidate list of variables for fixing is generated. The
default value ofsaveCands false. Candidates should not be saved if fixing is perfor@ier the
addition of variables.

6.5.4.65 virtual double ABA SUB::fixSetNewBound (inf) [private, virtual]

Returns the value which the upper and lower bounds of a Ver&iould take after it is fixed or set.

6.5.4.66 bool ABA_SUB::forceExactSolver () const[i nl i ne]

Returns:
Whether using the exact solver is forced.

Definition at line 2207 of file sub.h.

6.5.4.67 ABA_FSVARSTAT x ABA_SUB::fsVarStat (int i) const [i nl i ne]

In a\ algorithm we also would have to refer to the global variatigus. While this subproblem is processed
another subproblem could change the global status.

Returns:
A pointer to the status of fixing/setting of tir¢h variable.

Note:
This is the local status of fixing/setting that might diffeorih the global status of fixing/setting of the variable

(variable(i)->fsVarStat().

Parameters:
i The number of the variable.

Definition at line 2192 of file sub.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.5 ABA_SUB Class Reference 187

6.5.4.68 virtual int ABA_SUB::generateBranchRules ABA_ BUFFER < ABA_BRANCHRULE x > &
rules) [protected, virtual]

Tries to find rules for splitting the current subproblem intfier subproblems.

Per default we generate rules for branching on varialiem¢hingOnVariable() But by redefining this function
in a derived class any other branching strategy can be imgrited.

Returns:
0 If branching rules could be found,
1 otherwise.

Parameters:
rules If branching rules are found, then they are stored in thigeuf

6.5.4.69 virtualABA_LPSUBx« ABA_SUB::generateLp () [protected, virtual]

Instantiates ahP for the solution of the_P-relaxationin this subproblem.
This function is redefined in a derived class for a spetiResolverinterface

This function is defined in the filkpif.cc.

Returns:
A pointer to an object of typABA_LPSUB.

6.5.4.70 virtual ABA_SUBx+ ABA_SUB::generateSon ABA_BRANCHRULE =« rule) [protect ed,
pure virtual]

Returns a pointer to an object of a problem specific subpnolderived from the class ABA_SUB, which is
generated from the current subproblem by the branchingulge

Parameters:
rule The branching rule with which the subproblem is generated.

6.5.4.71 virtual void ABA_SUB::getBase () [pri vate, virtual]

Updates the status of the variables and the slack variables.
6.5.4.72 virtual bool ABA_SUB::goodCol ABA_COLUMN & col, ABA_ARRAY < double > & row,
double x, doublelb, doubleub) [protected, virtual]

Returns:
true If the columrcol might restore feasibiblity if the variable with valudurns out to be infeasible,
false otherwise.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

188 Reference Manual

Parameters:
col The column of the variable.

row The row of the basis inverse associated with the infeasénliable.
x The LP-value of the infeasible variable.

Ib The lower bound of the infeasible variable.

ub The upper bound of the infeasible variable.

6.5.4.73 virtual double ABA_SUB::guarantee () [prot ected, virtual]

May not be called if the lower bound is 0 and upper bound noakiguO.

The guarantee that can be given for the subproblem.

6.5.4.74 virtual bool ABA_SUB::guaranteed () [prot ected, virtual]
Returns:

true If the lower and the upper bound of the subproblem sagisfie guarantee requirements,
false otherwise.

6.5.4.75 int ABA_SUB::id () const [i nl i ne]

Returns:
The identity number of the subproblem.

Definition at line 2217 of file sub.h.

6.5.4.76 void ABA_SUB::ignorelnTailingOff ()

Can be used to control better the tailing-off effect.

If this function is called, the next LP-solution is ignoradthe tailing-off control. CallinggnorelnTailingOff()

can e.g. be considered in the following situation: If onlyiswaints that are required for the integer programming

formulation of the optimization problem are added then thetrnP-value could be ignored in the tailing-off
control. Only “real” cutting planes should be considerethia tailing-off control (this is only an example strategy
that might not be practical in many situations, but somegitaened out to be efficient).

6.5.4.77 virtual int ABA_SUB::improve (double & primalValue) [protected, virtual]

Can be redefined in derived classes in order to implementgbheuristics for finding feasible solutions.

The default implementation does nothing.

Returns:
0 If no better solution could be found,
1 otherwise.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.5 ABA_SUB Class Reference 189

Parameters:
primalValue Should hold the value of the feasible solution, if a bettex mfound.

6.5.4.78 bool ABA_SUB::infeasible () [pr ot ect ed]

Returns:
true If the subproblem does not contain a feasible solution,
false otherwise.

6.5.4.79 virtual void ABA_SUB::infeasibleSub () [pri vate, virtual]

Should be called if a subproblem turns out to be infeasible.

It sets the dual bound of the subproblem correctly.

6.5.4.80 virtual void ABA_SUB::initializeCons (intmaxCor) [protected, virtual]
Initializes the active constraint set.

Parameters:
maxCon The maximal number of constraints of the subproblem.

6.5.4.81 virtual int ABA_SUB::initializeLp () [protected, virtual]

Initializes the linear program.

Since not all variables might be active we first have to try imgkheLP feasible again by the addition of variables.
If this falils, i.e.,_initMakeFeas(has a nonzero return value, we return 1 in order to indicatithie corresponding
subproblem can be fathomed. Otherwise, we continue witinttialization of theLP.

Returns:

0 If the linear program could be initialized successfully.
1 If the linear program turns out to be infeasible.

6.5.4.82 virtual void ABA_SUB::initializeVars (int maxVar) [protected, virtual]

Initializes the active variable set.

Parameters:
maxVar The maximal number of variables of the subproblem.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

190 Reference Manual

6.5.4.83 virtual int ABA_SUB::initMakeFeas (ABA_BUFFER < ABA_INFEASCON x > & infeasCon
ABA_BUFFER< ABA_VARIABLE x > & newVars ABA_POOL < ABA_VARIABLE ,
ABA CONSTRAINT > «x pool) [protected, virtual]

The default implementation of the virtuitMakeFeas()Jdoes nothing.

A reimplementation of this function should generate inactiariables until at least one variabevhich satisfies
the function ABA_INFEASCON::goodVar(v) for each infeasilzonstraint is found.

Returns:
0 If the feasibility might have been restored,
1 otherwise.

Parameters:
infeasCons The infeasible constraints.

newVars The variables that might restore feasibility should be adusre.

pool A pointer to the pool to which the new variables should be dddfethis is a O-pointer the variables are
added to the default variable pool. The default value is O.

6.5.4.84 bool ABA_SUB::integerFeasible ()[pr ot ect ed]

Can be used to check if the solution of the LP-relaxationiimally feasible if for feasibility an integral value for
all binary and integer variables is sufficient.

This function can be called from the functiéeasible()in derived classes.

Returns:
true If the LP-value of all binary and integer variables i®egral,
false otherwise.

6.5.4.85 void ABA_SUB::IBound (inti, doublel) [i nli ne]

Sets the local lower bound of a variable.

It does not change the global lower bound of the variable. Bdwend of a fixed or set variable should not be
changed.

Parameters:
i The number of the variable.

X The new value of the lower bound.
Definition at line 2173 of file sub.h.
6.5.4.86 double ABA_ SUB::IBound (inti) const [i nli ne]

Can be used to access the lower of an active variable of thgrcilem.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.5 ABA_SUB Class Reference 191

Warning:
This is the lower bound of the variable within the currentablem which can differ from its global lower
bound.

Returns:
The lower bound of theth variable.

Parameters:
i The number of the variable.

Definition at line 2168 of file sub.h.

6.5.4.87 int ABA_SUB::level () const [i nli ne]

Returns:
The level of the subproblem in thetree.

Definition at line 2212 of file sub.h.

6.5.4.88 double ABA_SUB::lowerBound () const

Returns:
A lower bound on the optimal solution of the subproblem.

6.5.4.89 ABA LPSUB « ABA_SUB:Ip () const [inline]

Returns:
A pointer to the linear program of the subproblem.

Definition at line 2239 of file sub.h.

6.5.4.90 double ABA_SUB::IpRankBranchingRule ABA_BRANCHRULE x branchRule int iterLimit =
-1) [protected]

Computes the rank of a branching rule by modifying the liragramming relaxation of the subproblem accord-
ing to the branching rule and solving it. This modifiction iedone after the solution of the linear program.

It is useless, but no error, to call this function for bramghirules for which the virtual dummy functions
extract(ABA_LPSUB andunExtract(ABA_ LPSURB of the base clasaBA_BRANCHRULE are not redefined.

Returns:
The value of he linear programming relaxation of the subl@tmodified by the branching rule.

Parameters:
branchRule A pointer to a branching rule.

iterLimit The maximal number of iterations that should be performethbysimplex method. If this number
is negative there is no iteration limit (besides internalils of the LP-solver). The default value-ik

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

192 Reference Manual

6.5.4.91 ABA LPVARSTAT x ABA SUB::IpVarStat (int i) const [inli ne]

Returns:
A pointer to the status of the variakilen the last solvedlinear program.

Parameters:
i The number of the variable.

Definition at line 2197 of file sub.h.

6.5.4.92 virtual int ABA_SUB::makeFeasible () [protected, virtual]

The default implementation ehakeFeasible(@loes nothing.

If there is an infeasible structural variable then it is stbininfeasVar, otherwiseinfeasVar _is -1. If there is an
infeasible slack variable, it is storediimfeasCon, otherwise it is-1. At most one of the two membeisfeasVar_
andinfeasCon_can be nonnegative. A reimplementation in a derived classldigenerate variables to restore
feasibility or confirm that the subproblem is infeasible.

The strategy for the generation of inactive variables is metely problem and user specific. For
testing if a variable might restore again the feasibilitye tfunctions ABA_VARIABLE::useful() and
ABA_SUB::goodCol()might be helpful.

Returns:

0 If feasibility can be restored,
1 otherwise.

6.5.4.93 ABA_MASTER x ABA_SUB:master () const [i nl i ne]

Definition at line 2118 of file sub.h.

6.5.4.94 int ABA_SUB::maxCon () const [i nl i ne]

Returns:
The maximum number of constraints which can be handled witfeallocation.

Definition at line 2274 of file sub.h.

6.5.4.95 void ABA_SUB::maxlterations (intmax)

Sets the maximal number of iterations in the cutting plaresph

Setting this value to 1 implies that no cuts are generatelddroptimization process of the subproblem.

Parameters:
max The maximal number of iterations.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.5 ABA_SUB Class Reference 193

6.5.4.96 int ABA_SUB::maxVar () const [i nline]

Returns:
The maximum number of variables which can be handled withealtocation.

Definition at line 2269 of file sub.h.

6.5.4.97 int ABA_SUB::nCon () const [i nl i ne]

Returns:
The number of active constraints.

Definition at line 2264 of file sub.h.

6.5.4.98 int ABA_SUB::nDormantRounds () const [i nl i ne]

Returns:
The number of subproblem optimization the subproblem saaly dormant.

Definition at line 2158 of file sub.h.

6.5.4.99 void ABA_SUB:newDormantRound () [i nl i ne, private, virtual]

Increments the counter for the number of rounds the subgmnois dormant.
This function is called, when the set of open subproblemeasised for the selection of the next subproblem.
Definition at line 2163 of file sub.h.

6.5.4.100 double ABA_SUB::nnzReserve () consf{ i nl i ne]

Returns:
The additional space for nonzero elements of the constraatiix when it is passed to the LP-solver.

Definition at line 2128 of file sub.h.

6.5.4.101 virtual void ABA_SUB::nonBindingConEliminate (ABA_BUFFER < int > & remove
[protected, virtual]

Retrieves the dynamic constraints with slack exceedingahee given by the parameter { ConElimEps}.

Parameters:
remove Stores the nonbinding constraints.

6.5.4.102 int ABA_SUB:nVar () const [inline]

Returns:
The number of active variables.

Definition at line 2259 of file sub.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

194 Reference Manual

6.5.4.103 bool ABA_SUB::objAllinteger ()

If all variables areBinary or Integerand all objective function coefficients are integral, thémbjective function
values of feasible solutions are integral. The functidajAllinteger() tests this condition for the current set of
active variables.

Note:
The result of this function can only be used to set the globeumeter ifactVar contains all variables of the
problem formulation.

Returns:
true If this condition is satisfied by the currently activeighle set,
false otherwise.

6.5.4.104 consABA_SUB& ABA_SUB::operator= (const ABA_SUB & rhs) [pri vat e]

6.5.4.105 virtual int ABA_SUB::optimize () [protected, virtual]

Performs the optimization of the subproblem.

After activating the subproblem, i.e., allocating andializing memory, and initializing th&P, the optimization
process constitutes of the three phaSeatting Branching andFathoming which are alternately processed. The
function fathoming()always return©one However, we think that the code is better readable instéaakong

it out of thewhile loop. The optimization stops if theHASE Dones reached. Notd)onedoes not necessarily
mean that the subproblem is solved to optimality!

After the node is processed we deallocate memory, whichtissgiired for further computations or of which
the corresponding data can be easily reconstructed. Therfisrmed in_deactivate()

Returns:
0 If the optimization has been performed without error,
1 otherwise.

6.5.4.106 virtual bool ABA_SUB::pausing () [prot ected, virtual]

Sometimes it is appropriate to put a subproblem back inttigshef open subproblems. This is callpdusing In
the default implementation the virtual functipausing()always returngalse

It could be useful to enforce pausing a node if a tailing diéeffis observed during its first optimization.
Returns:

true The functiorpausing()should returrtrue if this condition is satisfied,
false otherwise.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.5 ABA_SUB Class Reference 195

6.5.4.107 virtual int ABA_SUB::prepareBranching (bool & lastlteration) [protected, virtual]

Is called before a branching step to remove constraints.

Returns:
1 If constraints have been removed,
0 otherwise.

Parameters:
lastlteration This argument is always set tae in the function call.

6.5.4.108 virtual int ABA_SUB::pricing () [protected, virtual]

Should generate inactive variables which do not price orrectly.
The default implementation does nothing and returns 0.

Returns:
The number of new variables.

6.5.4.109 virtual bool ABA_SUB::primalSeparation () [prot ected, virtual]
Is a virtual function which controls, if during the cuttinggpe phase a (primal) separation step or a pricing step
(dual separation) should be performed.

Per default a pure cutting plane algorithm performs alwapsimal separation step, a pure column generation
algorithm never performs a primal separation, and a hydgdrahm generates usually cutting planes but from
time to time also inactive variables are priced out depemdimthepricingFrequency()

Returns:
true Then cutting planes are generated in this iteration.
false Then columns are generated in this iteration.

6.5.4.110 virtual double ABA_SUB::rankBranchingRule ABA_BRANCHRULE x branchRulg
[protected, virtual]

Computes the rank of a branching rule.

This default implementation computes the rank with the fiamclpRankBranchingRule() By redefining this
virtual function the rank for a branching rule can be comguw#ferently.

Returns:
The rank of the branching rule.

Parameters:
branchRule A pointer to a branching rule.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

196 Reference Manual

6.5.4.111 virtual void ABA_SUB::rankBranchingSample ABA_BUFFER < ABA_BRANCHRULE x > &
sample ABA_ARRAY < double > & rank) [protected, virtual]

Computes for each branching rule of a branching sample awéhkhe functionrankBranchingRule()

Parameters:
sample A branching sample.

rank An array storing the rank for each branching rule in the samfter the function call.

6.5.4.112 void ABA_SUB::redCostVarEliminate ABA_ BUFFER< int > & removeg [prot ect ed]

Retrieves all variables with “wrong” reduced costs.

Parameters:
remove The variables with “wrong” reduced cost are stored in thifdsu

6.5.4.113 bool ABA_SUB::relativeReserve () const i nl i ne]

Returns:
true If the reserve space for variables, constraints, anderos is given in percent of the original space, and
falseif its given as absolute value,
false otherwise.

Definition at line 2133 of file sub.h.

6.5.4.114 virtual void ABA_SUB::removeCon (inti) [vi rtual]

The following version of the functioremoveCon(dds a single constraint to the set of constraints which are
removed from the active set at the beginning of the nexttitara

Parameters:
i The number of the constraint being removed.

6.5.4.115 virtual void ABA_SUB::removeCons ABA_BUFFER< int > & removg [virtual]

Adds constraints to the buffer of the removed constraintsckvwill be removed at the beginning of the next
iteration of the cutting plane algorithm.

Parameters:
remove The constraints which should be removed.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.5 ABA_SUB Class Reference 197

6.5.4.116 virtual bool ABA_SUB::removeNonLiftableCons) [protected, virtual]

Returns:
true If all active constraints can be lifted.
false otherwise. In this case the non-liftable constraamésremoved andenNonLiftCons is set tofalseto
avoid the generation of non-liftable constraints in thetroeting plane iterations.

6.5.4.117 void ABA_SUB::removeVar (int)) [inli ne]

Can be used to remove a single variable from the set of acirahles.

Like in the functionremoveVars(jhe variable is buffered and removed at the beginning of #x¢ iteration.

Parameters:
i The variable which should be removed.

Definition at line 2123 of file sub.h.

6.5.4.118 void ABA_SUB::removeVarsABA_BUFFER< int > & remov§

With functionremoveVars(yariables can be removed from the set of active variables.
The variables are not removed when this function is calletiabe buffered and removed at the beginning of the
next iteration.

Parameters:
remove The variables which should be removed.

6.5.4.119 virtual void ABA_SUB::reoptimize () [protected, virtual]

Repeats the optimization of an already optimized subproble
This function is used to determine the reduced costs fordixariables of a new root of the remainikdree.

As the subproblem has been processed already earlier ffigesot to perform the cutting plane algorithm. If the
subproblem is fathomed the complete subtree rooted atubjzrsblem can be fathomed, too. Since this function
is usually only called for the root of the remainiRdree, we are done in this case.

It is not guaranteed that all constraints and variablesisfgtibproblem can be regenerated attivate() There-
fore, the result of a call tweoptimize()can differ from the result obtained by the cutting plane &thm in
optimize()

6.5.4.120 virtual int ABA_SUB::selectBestBranchingSamig (int nSamples ABA_BUFFER <
ABA_BRANCHRULE x > xx sample} [protected, virtual]

Evaluates branching samples (we denote a branching sahgpet of rules defining all sons of a subproblem in
the enumeration tree). For each sample the ranks are datgtmiith the functiorrankBranchingSample()The
ranks of the various samples are compared with the functiompareBranchingSample()

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

198 Reference Manual

Returns:
The number of the best branching sample;lan case of an internal error.

Parameters:
nSamplesThe number of branching samples.

samplesAn array of pointer to buffers storing the branching rulegath sample.

6.5.4.121 virtual int ABA_SUB::selectBranchingVariable(int & variable) [protected, virtual]

Chooses a branching variable.

The functionselectBranchingVariableCandidate$f)asked to generate depending in the parameter { NBranching
VariableCandidates} of the file { .abacus} candidates fartmhing variables. If only one candidate is generate,
this one becomes the branching variable. Otherwise, this pabranching rules are generated for all candidates
and the “best” branching variables is determined with threfion selectBestBranchingSample()

Returns:
0 If a branching variable is found,
1 otherwise.

Parameters:
variable Holds the branching variable if one is found.

6.5.4.122 virtual int ABA_SUB::selectBranchingVariableCandidates ABA_BUFFER< int > &
candidatey [protected, virtual]

Selects depending on the branching variable strategy diyethe parameter { BranchingStrategy} in the file {
.abacus} candidates that for branching variables.

Currently two branching variable selection strategiesrapemented. The first on€{oseHalf) first searches the
binary variables with fractional part closestd® . If there is no fractional binary variable it repeats thisgess
with the integer variables.

The second strategZ{oseHalfExpensivdirst tries to find binary variables with fraction close(td and high
absolute objective function coefficient. If this fails,rigs to find an integer variable with fractional part close
to 0.5 and high absolute objective function coefficient.

If neither a binary nor an integer variable with fractionalue is found then for both strategies we try to find
non-fixed and non-set binary variables. If this fails we egghis process with the integer variables.

Other branching variable selection strategies can be imgiéed by redefining this virtual function in a de-
rived class.

Returns:

0 If a candidate is found,
1 otherwise.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.5 ABA_SUB Class Reference 199

Parameters:
candidatesThe candidates for branching variables are stored in tHfstbie try to find as many variables
as fit into the buffer.

6.5.4.123 virtual void ABA_SUB::selectCons () [prot ect ed, virtual]

Is called before constraint are selected from the constbaiffer.

It can be redefined in a derived class e.g., to remove mulitiglgrted constraints from the buffer.

6.5.4.124 virtual void ABA_SUB::selectVars () [prot ected, virtual]

Is called before variables are selected from the variakieibu

It can be redefined in a derived class e.g., to remove mulitiglgrted variables from the buffer.

6.5.4.125 virtual int ABA_SUB::separate () [protected, virtual]

Must be redefined in derived classes for the generation tihgytlanes.

The default implementation does nothing.

Returns:
The number of generated cutting planes.

6.5.4.126 virtual int ABA_SUB::set (inti, ABA_ FSVARSTAT::STATUS newsStat doublevalue, bool &
newValug [protected, virtual]

Sets a variable.

Returns:
1 If a contradiction is found,
0 otherwise.

Parameters:
i The number of the variable being set.

newStat The new status of the variable.
value The value the variable is set to.

newValue If the variable is set to a value different from the one of thst ILP-solutionnewValueis set to
true. Otherwise, it is set tfalse

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

200 Reference Manual

6.5.4.127 virtual int ABA_SUB::set (inti, ABA_FSVARSTAT::STATUS newStat bool & newValug
[protected, virtual]

Sets a variable.

Returns:
1 If a contradiction is found,
0 otherwise.

Parameters:
i The number of the variable being set.

newStat The new status of the variable.

newValue If the variable is set to a value different from the one of thst ILP-solutionnewValueis set to
true. Otherwise, it is set tfalse

6.5.4.128 virtual int ABA_SUB::set (inti, ABA_FSVARSTAT * newStat bool & newValug
[protected, virtual]

Sets a variable.

Returns:
1 If a contradiction is found,
0 otherwise.

Parameters:
i The number of the variable being set.
newStat A pointer to the object storing the new status of the the gia

newValue If the variable is set to a value different from the one of thst ILP-solutionnewValueis set to
true. Otherwise, it is set tfalse

6.5.4.129 virtual void ABA_SUB::setByLogimp ABA_BUFFER< int > & variable ABA_BUFFER<
ABA_FSVARSTAT x> & statug [protected, virtual]

The default implementation aletByLoglmp(¥loes nothing.

In derived classes this function can be reimplemented.
Parameters:
variable The variables which should be set have to be inserted in ttferb

status The status of the set variables.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.5 ABA_SUB Class Reference 201

6.5.4.130 virtual int ABA_SUB::setByRedCost () [protected, virtual]
Tries to set variables according to the reduced cost witeri
Returns:

1 If a contradiction is found,
0 otherwise.

6.5.4.131 virtual int ABA_SUB::setting (bool & newValue3 [protected, virtual]

Tries to set variables by reduced cost criteria and logralications likefixing(), but instead of global conditions
only locally valid conditions have to be satisfied.

Returns:
1 If a contradiction has been found,
0 otherwise.

Parameters:

newValues The parametenewValuesbecomedrue if variables are fixed to other values as in the current
LP-solution éetByRedCostfannot set variables to new values).

6.5.4.132 ABA_SLACKSTAT x ABA_SUB::slackStat (inti) const [i nli ne]

Returns:
A pointer to the status of the slack variabl@ the last solved linear program.

Parameters:
i The number of the slack variable.

Definition at line 2202 of file sub.h.

6.5.4.133 virtual bool ABA_SUB::solveApproxNow () [prot ected, virtual]

Returns:
True, if the approximative solver should be used to solventhe linear program, false otherwise.

The default implementation always returns false.

6.5.4.134 virtual int ABA_SUB::solveLp () [protected, virtual]

Solves the LP-relaxation of the subproblem.

As soon as théP-relaxationbecomes infeasible in a static branch and cut algorithmehpetctive subproblem
can be fathomed. Otherwise, we memorize the value of theoliRisn to control the tailing off effect.

{ We assume that theP is never primal unbounded.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

202 Reference Manual

Returns:
0 The linear program has an optimimal solution.
1 If the linear program is infeasible.
2 If the linear program is infeasible for the current vareagét, but non-liftable constraints have to be removed
before a pricing step can be performed.

6.5.4.135 ABA_SUB::STATUS ABA_SUB::status () const [i nl i ne]

Returns:
The status of the subproblem optimization.

Definition at line 2244 of file sub.h.

6.5.4.136 virtual bool ABA SUB::tailingOff () [protected, virtual]

Is called when a tailing off effect according to the paramsefdailOffPercent} and { TailOffNLps} of the param-
eter file is observed.

This function can be redefined in derived classes in ordegtiopm actions to resolve the tailing off (e.g., switching

on an enhanced separation strategy).

Returns:
true If a branching step should be enforced. But before Iiaga pricing operation is perfored. The branch-
ing step is only performed if no variables are added. Otrmythe cutting plane algorithm is continued.
false If the cutting plane algorithm should be continued.

6.5.4.137 void ABA_SUB::uBound (inti, doubleu) [i nli ne]

This version of the functionBound()sets thef local upper bound of a variable.

This does not change the global lower bound of the variable Hound of a fixed or set variable should not be
changed.

Parameters:
i The number of the variable.

x The new value of the upper bound.

Definition at line 2185 of file sub.h.

6.5.4.138 double ABA_SUB::uBound (inf) const [i nl i ne]
Can be used to access the upper of an active variable of tipechiém.
Warning:
This is the upper bound of the variable within the currentsablem which can differ from its global upper

bound.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.5 ABA_SUB Class Reference 203

Returns:
The upper bound of thieth variable.

Parameters:
i The number of the variable.

Definition at line 2180 of file sub.h.

6.5.4.139 virtual void ABA_SUB::updateBoundinLp (inti) [private, virtual]

Adapts the bound of a fixed or set variabkdso in the linear program.

This can be only done if a linear program is available and #reable is not eliminated.

6.5.4.140 double ABA_SUB::upperBound () const

Returns:
An upper bound on the optimal solution of the subproblem.

6.5.4.141 virtual void ABA_SUB::varEliminate (ABA_BUFFER< int > & remove [pr ot ect ed,
virtual]

Provides an entry point for application specific variabliengiation that can be implemented by redefining this
function in a derived class.

The default implementation selects the variables with timetionredCostVarEliminate()

Parameters:
remove The variables that should be removed have to be stored ibuifisr.

6.5.4.142 ABA VARIABLE « ABA_SUB::variable (int i) const

Returns:
A pointer to the-th active variable.

Parameters:
i The number of the variable being accessed.

6.5.4.143 virtual int ABA_SUB::variablePoolSeparation {nt ranking = 0, ABA_POOL <
ABA_VARIABLE , ABA_CONSTRAINT > * pool =0, double minViolation = 0. 001)
[protected, virtual]

Tries to generate inactive variables from a pool.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

204 Reference Manual

Returns:
The number of generated variables.

Parameters:
ranking This parameter indicates how the ranks of geneated vasiableuld be computed (0: no ranking; 1:

violation is rank, 2: absolute value of violation is rank ank determined bABA_CONVAR::rank().
The default value is 0. }

pool The pool the variables are generated fronpdblis 0, then the default variable pool is used. The default
value ofpoolis 0.

minAbsViolation A violated constraint/variable is only added if the absehslue of its violation is at least
minAbsViolation The default value is 0.001.

6.5.4.144 virtual void ABA_SUB::varRealloc (inthewSiz¢ [protected, virtual]
Reallocates memory that at meostwSizevariables can be handled in the subproblem.

Parameters:
newSize The new maximal number of variables in the subproblem.

6.5.4.145 double ABA_SUB::xVal (inti) const [i nl i ne]

Parameters:
i The number of the variable under consideration.

Returns:
The value of the-th variable in the last solved linear program.

Definition at line 2108 of file sub.h.

6.5.4.146 double ABA_SUB::yVal (inti) const [i nl i ne]

Parameters:
i The number of the variable under consideration.

Returns:
The value of the-th dual variable in the last solved linear program.

Definition at line 2113 of file sub.h.

6.5.5 Friends And Related Function Documentation

6.5.5.1 friend classABA_BOUNDBRANCHRULE [fri end]
Definition at line 77 of file sub.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.5 ABA_SUB Class Reference 205

6.5.5.2 friend classABA_LPSOLUTION < ABA_CONSTRAINT , ABA_VARIABLE > [friend]

Definition at line 79 of file sub.h.

6.5.5.3 friend classABA_LPSOLUTION < ABA_VARIABLE , ABA_CONSTRAINT > [friend]

Definition at line 80 of file sub.h.

6.5.5.4 friend classABA_MASTER [fri end]

Definition at line 76 of file sub.h.

6.5.5.5 friend classABA_OPENSUB [fri end]

Definition at line 78 of file sub.h.

6.5.6 Member Data Documentation

6.5.6.1 ABA_ACTIVE <ABA_CONSTRAINT, ABA_VARIABLE >x ABA_SUB::actCon_
[protect ed]

The active constraints of the subproblem.
Definition at line 1660 of file sub.h.

6.5.6.2 boolABA SUB::activated [pri vat e]

The variable igrueif the functionactivate()has been called from the functiomctivate() This memorization is
required such that deactivate()s only called wheractivate()has been called.

Definition at line 2080 of file sub.h.

6.5.6.3 ABA_ACTIVE <ABA_VARIABLE , ABA CONSTRAINT >« ABA_SUB::actVar_
[protected]

The active variables of the subproblem.
Definition at line 1664 of file sub.h.

6.5.6.4 ABA CUTBUFFER <ABA CONSTRAINT , ABA VARIABLE >x ABA_SUB::addConBuffer_
[protect ed]

The buffer of the newly generated constraints.
Definition at line 1741 of file sub.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

206 Reference Manual

6.5.6.5 ABA_CUTBUFFER <ABA_VARIABLE , ABA_CONSTRAINT >x ABA_SUB::addVarBuffer_
[protected]

The buffer of the newly generated variables.
Definition at line 1737 of file sub.h.

6.5.6.6 boolABA_ SUB::allBranchOnSetVars_ [pr ot ect ed]

If true, then the branching rule of the subproblem and of all ancestthe path to the root node are branching on
a binary variable.

Definition at line 1729 of file sub.h.

6.5.6.7 double ABA_SUB::binvRow_ [prot ect ed]

A row of the basis inverse associated with the infeasibleaéginfeasVar_or slack variablenfeasCon._
Definition at line 1764 of file sub.h.

6.5.6.8 ABA_BRANCHRULE x ABA_SUB::branchRule_ [prot ect ed]

The branching rule for the subproblem.
Definition at line 1723 of file sub.h.

6.5.6.9 doubleABA_SUB::conReserve_ [pri vat e]

The additional space for constraints.
Definition at line 2064 of file sub.h.

6.5.6.10 doubleABA_SUB::dualBound_ [pr ot ect ed]

The dual bound of the subproblem.
Definition at line 1707 of file sub.h.

6.5.6.11 ABA_SUBx ABA_SUB::father_ [pr ot ect ed]

A pointer to the father in thg tree.
Definition at line 1668 of file sub.h.

6.5.6.12 boolABA SUB::forceExactSolver_ [pri vat €]

Indicates whether to force the use of an exact solver to pedpanching etc.
Definition at line 2096 of file sub.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.5 ABA_SUB Class Reference 207

6.5.6.13 ABA_ARRAY <ABA_FSVARSTAT x>« ABA_SUB::fsVarStat_ [pr ot ect ed]
A pointer to an array storing the status of fixing and settifiipe active variables. Although fixed and set variables
are already kept at their value by the adaption of the lowdngper bounds, we store this information, since, e.g.,

a fixed or set variable should not be removed, but a variakile avi upper bound equal to the lower bound can be
removed.

Definition at line 1681 of file sub.h.

6.5.6.14 boolABA_ SUB::genNonLiftCons_ [pr ot ect ed]

If true, then the management of non-liftable constraints is peréat.
Definition at line 1776 of file sub.h.

6.5.6.15 intABA SUB:id_ [private]

The number of the subproblem.

Definition at line 2028 of file sub.h.

6.5.6.16 boolABA SUB::ignorelnTailingOff [pri vat e]

If this flag is set tatrue then the next LP-solution is ignored in the tailing-off cait The default value of the
variable isfalse It can be set tdrue by the functionignorelnTailingOff()

Definition at line 2086 of file sub.h.

6.5.6.17 intABA_SUB::infeasCon_ [pr ot ect ed]

The number of an infeasible constraint.

Definition at line 1768 of file sub.h.

6.5.6.18 intABA_SUB::infeasVar_ [pr ot ect ed]

The number of an infeasible variable.

Definition at line 1772 of file sub.h.

6.5.6.19 intABA_SUB::lastliterConAdd_ [pr ot ect ed]
The last iteration in which constraints have been added.
Definition at line 1715 of file sub.h.

6.5.6.20 intABA_SUB::lastlterVarAdd_ [pr ot ect ed]

The last iteration in which variables have been added.
Definition at line 1719 of file sub.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

208 Reference Manual

6.5.6.21 ABA_LP::METHOD ABA_SUB::lastLP_ [private]

The method that was used to solve the last LP.

Definition at line 2089 of file sub.h.

6.5.6.22 ABA_ARRAY <double>x ABA_SUB::IBound_ [pr ot ect ed]
A pointer to an array with the local lower bound of the actiegigbles.
Definition at line 1690 of file sub.h.

6.5.6.23 intABA_SUB::level_ [pri vat €]

The level of the subproblem in the enumeration tree.

Definition at line 2024 of file sub.h.

6.5.6.24 ABA CPUTIMER ABA_SUB::localTimer_ [pri vat €]

Definition at line 2091 of file sub.h.

6.5.6.25 ABA_LPSUBx ABA_SUB::lp_ [prot ect ed]

A pointer to the corresponding linear program.

Definition at line 1672 of file sub.h.

6.5.6.26 ABA LP::METHOD ABA SUB:IpMethod_ [pr ot ect ed]

The solution method for the next linear program.

Definition at line 1733 of file sub.h.

6.5.6.27 ABA_ ARRAY <ABA LPVARSTAT x>x ABA_SUB::IpVarStat_ [pr ot ect ed]
A pointer to an array storing the status of each active végigbthe linear program.
Definition at line 1686 of file sub.h.

6.5.6.28 ABA_MASTER « ABA_SUB::master_ [pr ot ect ed]

A pointer to the corresponding master of the optimization.

Definition at line 1656 of file sub.h.

6.5.6.29 IntABA_SUB:maxliterations_ [pri vat e]

The maximum number of iterations in the cutting plane phase.
Definition at line 2043 of file sub.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.5 ABA_SUB Class Reference 209

6.5.6.30 IntABA_SUB::nDormantRounds_ [pri vat €]

The number of subproblem optimizations the subproblem meady the statuBormant
Definition at line 2073 of file sub.h.

6.5.6.31 intABA SUB::nlter_ [prot ect ed]

The number of iterations in the cutting plane phase.
Definition at line 1711 of file sub.h.

6.5.6.32 doubleABA SUB::nnzReserve [pri vat e]

The additional space for nonzeros.
Definition at line 2068 of file sub.h.

6.5.6.33 intABA _SUB::nOpt_ [private]

The number of optimizations of the subproblem.
Definition at line 2047 of file sub.h.

6.5.6.34 boolABA_ SUB::relativeReserve_ [pri vat e]

If this member idrue then the space reserve of the following three membarReserve, conReserve_andnnz-
Reserve is relative to the initial numbers of constraints, variahland nonzeros, respectively. Otherwise, the
values are casted to integers and regarded as absoluts.value

Definition at line 2056 of file sub.h.

6.5.6.35 ABA BUFFER<int>x ABA_SUB::removeConBuffer_ [pr ot ect ed]

The buffer of the constraints which are removed at the béginaf the next iteration.
Definition at line 1751 of file sub.h.

6.5.6.36 ABA BUFFER<int>x ABA_SUB::removeVarBuffer_ [prot ect ed]

The buffer of the variables which are removed at the begmnpirthe next iteration.
Definition at line 1746 of file sub.h.

6.5.6.37 ABA_ARRAY <ABA_SLACKSTAT %> ABA_SUB::slackStat_ [pr ot ect ed]

A pointer to an array storing the statuses of the slack veasatif the last solved linear program.
Definition at line 1699 of file sub.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

210 Reference Manual

6.5.6.38 ABA BUFFER<ABA_SUBx>x ABA_SUB::sons_ [pri vat e]
The sons of the node in thetree.

Definition at line 2039 of file sub.h.

6.5.6.39 STATUS ABA_SUB::status_ [pri vat e]

The status of the subproblem.

Definition at line 2035 of file sub.h.

6.5.6.40 ABA_TAILOFF x ABA_SUB::tailOff [prot ect ed]

A pointer to the tailing off manager.

Definition at line 1703 of file sub.h.

6.5.6.41 ABA_ARRAY <double>x ABA_SUB:uBound_ [prot ect ed]
A pointer to an array with the local upper bounds of the aotevgables.
Definition at line 1694 of file sub.h.

6.5.6.42 doubleABA SUB::varReserve_ [pri vat e]

The additional space for variables.

Definition at line 2060 of file sub.h.

6.5.6.43 double ABA_SUB::xVal_ [prot ect ed]

The last LP-solution.

Definition at line 1755 of file sub.h.

6.5.6.44 double ABA_SUB:yVal [protect ed]

The dual variables of the last linear program.
Definition at line 1759 of file sub.h.

The documentation for this class was generated from theviollg file:

¢ Include/abacusub.h

6.6 ABA_CONVAR Class Reference

ABA_CONVAR is the common base class for constraints andatdes, which are implemented in the derived
classeABA_ CONSTRAINT andABA_VARIABLE , respectively.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.6 ABA_CONVAR Class Reference 211

#i ncl ude <convar. h>
Inheritance diagram for ABA_CONVAR::

| ABA_ABACUSROOT|

|

| ABA_CONVAR |

f
[|

|ABA_CONSTRAINT| | ABA_VARIABLE |

f f
[| [|

ABA_NUMCON || ABA_ROWCON || ABA_COLVAR || ABA_NUMVAR

|

| ABA_SROWCON |

Public Member Functions

« ABA_CONVAR (ABA_MASTER xmaster, consABA_SUB «sub, bool dynamic, bool local)
* virtual ~ABA_CONVAR ()

* boolactive() const

 boollocal () const

* boolglobal() const

« virtual booldynamic() const

e constABA_SUB * sub() const

void sub(ABA_SUB xsub)

This version of the functiosub()associates a new subproblem with the constraint/variable.

virtual unsignechashKey()
Should provide a key for the constraint/variable that can be used to ingetbia hash table.

virtual const chax name()
virtual boolequal(ABA_CONVAR xcv)

Should compare if the constraint/variable is identical (in a mathematicaleemish the constraint/variablev.

virtual doublerank()
The function should return a rank associated with the constraint/variable default implementation returns 0.

Constraints/Variables often have to be stored in a formtiedént from the format used in the linear program.
One reason is to save memory and the other reason is thatsti@nts and/or variable sets are dynamic, then
we require a format to compute the coefficients of later atéigt variables/constraints.

The disadvantage of such a constraint format is that the catipn of a single constraint coefficient can

be very time consuming. Often it cannot be done in constarg tHence we provide a mechanism which
converts a constraint/variable to a format enabling effitieomputation of coefficients. The following

functions provide this feature.

 boolexpanded) const

e void _expand)

 void _compresg)

« virtual void print (ostream &out)

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

212 Reference Manual

Protected Attributes

ABA MASTER * master_
constABA SUB * sub_

A pointer to the subproblem associated with the constraint/variable. This maisb the 0-pointer.

bool expanded_
int nReferences__

The number of references to the pool slot the constraint is stdBAl POOLSLOTREF

booldynamic__

If this member igruethen the constraint/variable can be also removed from the active formulatiantafiedded
the first time. For constraints/variables which should be never remowsd fhe active formulation this member
should be set talse

int nActive_
The number of active subproblems of which the constraint/variable belortbe set of active constraints/variables.

int nLocks_
boollocal_

This flag istrueif the constraint/variable is only locally valid, otherwise it is false.

Private Member Functions

void activate()
Must be called if the constraint/variable is added to the active formulation otémeasubproblem.

void deactivate)

Is the counterpart tactivate()and is also called within members of the claB8A_ SUBto indicate that the con-
straint/variable does not belong any more to the active formulation of an astivproblem.

int nReference§) const
Returns the number of references to the pool AB&_POOLSLOTRESBtoring this constraint/variable.

void addReferencé
Indicates that there is a new reference to the pool slot storing this congtraiiable.

void removeReferencg
Is the counterpart of the functicaddReference@nd indicates the removal of a reference to this constraint.

virtual booldeletablg)) const
virtual void expand()
virtual void compresg)

If a constraint/variable has just been separated and addedhe buffer of currently separated con-
straints/variables, then this item should not be removedrbehe buffer is emptied at the beginning of the
next iteration. Hence, we provide a locking mechanism foistraints/variables by the following three func-
tions.

* boollocked() const

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.6 ABA_CONVAR Class Reference 213

* void lock ()
Adds an additional lock to the constraint/variable.

* void unlock()

Friends

* classABA POOLSLOT< ABA CONSTRAINT, ABA VARIABLE >

* classABA_POOLSLOT< ABA_VARIABLE, ABA_CONSTRAINT >

e classABA POOLSLOTRER: ABA_CONSTRAINT, ABA VARIABLE >

* classABA_POOLSLOTRER ABA VARIABLE, ABA_ CONSTRAINT >

* classABA_STANDARDPOOL< ABA_CONSTRAINT, ABA_VARIABLE >
* classABA_ STANDARDPOOL< ABA VARIABLE, ABA CONSTRAINT >
* classABA_CUTBUFFER< ABA_CONSTRAINT, ABA_VARIABLE >

* classABA_CUTBUFFER< ABA_VARIABLE, ABA_CONSTRAINT >

» classABA_SUB

6.6.1 Detailed Description

ABA_CONVAR is the common base class for constraints andatdes, which are implemented in the derived
classeABA CONSTRAINT andABA_VARIABLE , respectively.

Definition at line 79 of file convar.h.

6.6.2 Constructor & Destructor Documentation

6.6.2.1 ABA_CONVAR:ABA_CONVAR (ABA_MASTER x master constABA_SUB x sub, bool dynamig
bool local)

The constructor.

Parameters:
master A pointer to the corresponding master of the optimization.

sub A pointer the subproblem the constraint/variable is asgediwith. If the item is not associated with any
subproblem, then this can also be the O-pointer.

dynamic If this paramument isrue, then the constraint/variable can also be removed again fhe set of
active constraints/variables after it is added once.

local If localis true, then the constraint/variable is only locally valid.

6.6.2.2 virtual ABA_CONVAR:: ~ABA_CONVAR () [virtual]
The destructor.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

214 Reference Manual

6.6.3 Member Function Documentation

6.6.3.1 void ABA_CONVAR::_compress ()

Removes the expanded format of the constraint/variable.

This will be only possible if the virtual functiooompress()s redefined for the specific constraint/variable.

6.6.3.2 void ABA_CONVAR::_expand ()

Tries to generate the expanded format of the constraiiahler

This will be only possible if the virtual functioexpand()is redefined for the specific constraint/variable.

6.6.3.3 void ABA_CONVAR::activate () [inline, private]

Must be called if the constraint/variable is added to thevadbrmulation of an active subproblem.
This function is only called within member functions of tHassABA_SUB.

Definition at line 473 of file convar.h.

6.6.3.4 bool ABA_CONVAR::active () const [i nl i ne]

Checks if the constraint/variable is active in at least ariv@ subproblem.

In the parallel implementation this can be more than one lidm when multithreading occurs. Only those
subproblems are taken into account which are related toabkipwhich the constraint/variable is stored.

Returns:
true If the constraint/variable is active,
false otherwise.

Definition at line 467 of file convar.h.

6.6.3.5 void ABA_CONVAR:addReference () [i nline, private]

Indicates that there is a new reference to the pool slotrgjdhiis constraint/variable.
The function is only called from members of the cl&&®A POOLSLOTREF

Definition at line 483 of file convar.h.

6.6.3.6 virtual void ABA_CONVAR::compress () [private, virtual]
Also the default implementation of the functicompress()s void. It should be redefined in derived classes.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.6 ABA_CONVAR Class Reference 215

6.6.3.7 void ABA_CONVAR::deactivate () [pri vat e]

Is the counterpart tactivate()and is also called within members of the cla&BA SUB to indicate that the
constraint/variable does not belong any more to the aotiidlation of an active subproblem.

6.6.3.8 virtual bool ABA_CONVAR::deletable () const [private, virtual]

Returnstrue if the constraint/variable can be destructed.

This is per default only possible if the reference countdr &d no lock is set. The function is declared virtual
such that problem specific implementations are possible.

6.6.3.9 virtual bool ABA_CONVAR::dynamic () const [virtual]

Returns:
true If the constraint/variable can be also removed frons#tef active constraints/Vai\-a\-bles after it has
been activated,
false otherwise.

6.6.3.10 virtual bool ABA_CONVAR::equal (ABA_CONVAR xcv) [virtual]

Should compare if the constraint/variable is identicala(imathematical sense) with the constraint/variahle

Using RTTI or its emulation provided by the functiorame() it is sufficient to implement this functions for
constraints/variables of the same type.

This function is required if the constraint/variable isrsin a pool of the classBA_NONDUPLPOOL

The default implementation shows a warning and aali§(). This function is not a pure virtual function because
in the default version of it is not required.

The redundant return statement is required to suppressilesmwarnings.

Returns:
true If the constraint/variable represented by this ohjeptesents the same item as the constraint/var@able
false otherwise.

Parameters:
cv The constraint/variable that should be compared with thjedi.

6.6.3.11 virtual void ABA_CONVAR::expand () [private, virtual]
The default implementation of the functiexpand()is void. It should be redefined in derived classes.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

216 Reference Manual

6.6.3.12 bool ABA_CONVAR::expanded () const[i nl i ne]

Returns:
true If the expanded format of a constraint/variable islatde,
false otherwise.

Definition at line 524 of file convar.h.

6.6.3.13 bool ABA_CONVAR::global () const [i nl i ne]

Returns:
true If the constraint/variable is globally valid,
false otherwise.

Definition at line 504 of file convar.h.

6.6.3.14 virtual unsigned ABA_CONVAR::hashKey () [vi rtual]

Should provide a key for the constraint/variable that cand® to insert it into a hash table.

As usual for hashing, it is not required that any two itemsehdifferent keys.
This function is required if the constraint/variable isrsbin a pool of the classBA_NONDUPLPOOL

The default implementation shows a warning and ceXi(). This function is not a pure virtual function
because in the default version'pft is not required.

We do not useloubleas result type because typical problems in floating poithm@étic might give slightly
different hash keys for two constraints that are equal frarmmaghematical point of view.

The redundant return statement is required to suppressilesmarnings.

Returns:
An integer providing a hash key for the constraint/variable

6.6.3.15 bool ABA_CONVAR::local () const [i nl i ne]

Returns:
true If the constraint/variable is only locally valid,
false otherwise.

Definition at line 499 of file convar.h.

6.6.3.16 void ABA_CONVAR::lock () [inline, private]

Adds an additional lock to the constraint/variable.

Definition at line 494 of file convar.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.6 ABA_CONVAR Class Reference 217

6.6.3.17 bool ABA_CONVAR::locked () const [i nline, private]

Returns:
trueif at least one lock is set on the constraint/variable
falseotherwise.

Definition at line 488 of file convar.h.

6.6.3.18 virtual const chax ABA_CONVAR::name () [virtual]

Should return the name of the constraint/variable.

This function is required to emulate a simple run time typermation (RTTI) that is still missing in /. This
function will be removed as soon as RTTI is supported sufiitye

A user must take care that for each redefined version of thstifan in a derived class a unique name is
returned. Otherwise fatal run time errors can occur. Theeefwe recommend to return always the name of
the class.

This function is required if the constraint/variable isrstbin a pool of the clasaBA_NONDUPLPOOL

The default implementation shows a warning and caXg(). This function is not a pure virtual function
because in the default version'pit is not required.

The redundant return statement is required to suppressilesmwarnings.

Returns:
The name of the constraint/variable.

6.6.3.19 int ABA_CONVAR::nReferences () const[i nline, private]

Returns the number of references to the poolABA POOLSLOTREFstoring this constraint/variable.

We require the bookkeeping of the references in order taihite if a constraint/variable can be deleted without
causing any harm.

Definition at line 478 of file convar.h.

6.6.3.20 virtual void ABA_CONVAR::print (ostream & out) [vi rtual]

The function writes the constraint/variable on the strearn

This function is used since the output operator cannot b&at virtual. The default implementation writes

"ABA_CONVAR::print() is only a dummyoh the streanout. We do not declare this function pure virtual since it
is not really required, mainly only for debugging. In thiseaa constraint/variable specific redefinition is strongly
recommended.

Normally, the implementatioout << xthis should be sufficient.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

218 Reference Manual

Parameters:
out The output stream.

Reimplemented idBA_COLVAR, ABA_NUMCON, andABA_ROWCON

6.6.3.21 virtual double ABA CONVAR:rank () [virtual]

The function should return a rank associated with the caimdtvariable. The default implementation returns 0.

Returns:
The rank of the constraint/variable.

6.6.3.22 void ABA_CONVAR::removeReference () [pri vat €]

Is the counterpart of the functi@ddReference@nd indicates the removal of a reference to this constraint.
It is only called from members of the cla88A_POOLSLOTREF

6.6.3.23 void ABA_CONVAR::sub ABA_SUBxsub) [i nli ne]
This version of the functiosub()associates a new subproblem with the constraint/variable.

Parameters:
sub The new subproblem associated with the constraint/vaiabl

Definition at line 519 of file convar.h.

6.6.3.24 consABA SUB x ABA_CONVAR::sub () const [inline]

Returns:
A pointer to the subproblem associated with the constrairitible. Note, this can also be the 0-pointer.

Definition at line 514 of file convar.h.

6.6.3.25 void ABA_CONVAR::unlock () [private]

Removes one lock from the constraint/variable.

6.6.4 Friends And Related Function Documentation

6.6.4.1 friend classABA_CUTBUFFER < ABA_CONSTRAINT , ABA VARIABLE > [friend]
Definition at line 86 of file convar.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.6 ABA_CONVAR Class Reference 219

6.6.4.2 friend classABA_CUTBUFFER < ABA_VARIABLE , ABA_CONSTRAINT > [fri end]

Definition at line 87 of file convar.h.

6.6.4.3 friend classABA_POOLSLOT < ABA_CONSTRAINT , ABA_VARIABLE > [friend]

Definition at line 80 of file convar.h.

6.6.4.4 friend classABA_POOLSLOT < ABA_VARIABLE , ABA_CONSTRAINT > [friend]

Definition at line 81 of file convar.h.

6.6.4.5 friend classABA_POOLSLOTREF < ABA_CONSTRAINT , ABA_VARIABLE > [friend]

Definition at line 82 of file convar.h.

6.6.4.6 friend classABA_POOLSLOTREF < ABA_VARIABLE , ABA_CONSTRAINT > [fri end]

Definition at line 83 of file convar.h.

6.6.4.7 friend classABA_STANDARDPOOL < ABA_CONSTRAINT , ABA_VARIABLE > [friend]

Definition at line 84 of file convar.h.

6.6.4.8 friend classABA_STANDARDPOOL < ABA_VARIABLE , ABA_CONSTRAINT > [friend]

Definition at line 85 of file convar.h.

6.6.4.9 friend classABA_SUB [fri end]

Definition at line 88 of file convar.h.

6.6.5 Member Data Documentation

6.6.5.1 boolABA_ CONVAR::dynamic_ [pr ot ect ed]

If this member igrue then the constraint/variable can be also removed from ttivedformulation after it is added
the first time. For constraints/variables which should beeneemoved from the active formulation this member
should be set tfalse

Definition at line 356 of file convar.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

220 Reference Manual

6.6.5.2 boolABA_CONVAR::expanded_ [prot ect ed]

true, if expanded version of constraint/variables available.

Definition at line 342 of file convar.h.

6.6.5.3 boolABA_CONVAR::local_ [protect ed]

This flag istrue if the constraint/variable is only locally valid, otherwig is false.

Definition at line 377 of file convar.h.

6.6.5.4 ABA_MASTER x ABA_CONVAR:master_ [pr ot ect ed]

A pointer to the corresponding master of the optimization.

Definition at line 333 of file convar.h.

6.6.5.5 intABA_CONVAR:nActive_ [protected]

The number of active subproblems of which the constrainitiiaée belongs to the set of active constraints/variables.

This value is always 0 after construction and has to be setreset during the subproblem optimization. This
member is mainly used to accelerate pool separation anchtootthat the same variable is not multiply included
into a set of active variables.

Definition at line 368 of file convar.h.

6.6.5.6 intABA_CONVAR::nLocks_ [prot ect ed]

The number of locks which have been set on the constrairahlar

Definition at line 372 of file convar.h.

6.6.5.7 IntABA_CONVAR:nReferences_ [prot ect ed]

The number of references to the pool slot the constrainbiedABA_POOLSLOTREFE
Definition at line 347 of file convar.h.

6.6.5.8 constABA SUBx ABA CONVAR:sub_ [prot ect ed]

A pointer to the subproblem associated with the constrairitlble. This may be also the 0-pointer.
Definition at line 338 of file convar.h.

The documentation for this class was generated from theviall file:

 Include/abacusbnvar.h

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.7 ABA_CONSTRAINT Class Reference 221

6.7 ABA_CONSTRAINT Class Reference

class forms the virtual base class for all possible congsajiven in pool format and is derived from the common
base clas®BA CONVAR of all constraints and variables.

#i ncl ude <constraint. h>
Inheritance diagram for ABA_CONSTRAINT::

| ABA_ABACUSROOT|

|

| ABA_CONVAR |

| ABA_CONSTRAINT |

f
[|

ABA_NUMCON || ABA_ROWCON |

|

| ABA_SROWCON |

Public Member Functions

 ABA_CONSTRAINT (ABA_MASTER sxmaster, consABA_SUB xsub, ABA_ CSENSE::SENSEense,
double rhs, bool dynamic, bool local, bool liftable)

* ABA_CONSTRAINT (ABA_MASTER xmaster)

* ABA_CONSTRAINT (constABA_CONSTRAINT &rhs)

* virtual ~ABA_CONSTRAINT ()

e ABA CSENSEx sensH)

« virtual doublecoeff (ABA_VARIABLE *v)=0

e virtual doublerhs()

« boolliftable () const

« virtual boolvalid (ABA_SUB xsub)

* virtual intgenRowW(ABA_ACTIVE < ABA_VARIABLE , ABA_CONSTRAINT > xvar, ABA_ROW &row)
« virtual doubleslack(ABA_ACTIVE < ABA_VARIABLE , ABA_CONSTRAINT > xvariables, doublex)

Computes the slack of the vectoassociated with the variable seariables

« virtual boolviolated(ABA_ACTIVE < ABA_VARIABLE , ABA_CONSTRAINT > xvariables, doublex,
doublexsl=0)

« virtual boolviolated(double slack) const

This version of functiomiolated()checks for the violation given the slack of a vector.

* void printRow (ostream &outABA_ACTIVE < ABA_VARIABLE , ABA_CONSTRAINT > xvar)
Writes the row format of the constraint associated with the variableasin an output stream.

« virtual doubledistancgdoublexx, ABA_ACTIVE < ABA_VARIABLE , ABA_CONSTRAINT > xactVar)
¢ ABA_CONSTRAINT « duplicate()
* ABA CONCLASSH classificatiofABA_ACTIVE < ABA_VARIABLE , ABA_CONSTRAINT > xvar=0)

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

222 Reference Manual

Protected Member Functions

« virtual ABA_INFEASCON::INFEAS voidLhsViolateddouble newRhs) const

Can be called if after variable elimination the left hand side of the constraintleasme void and the right hand
side has been adapted newRhs

« virtual ABA_CONCLASS =« classify (ABA_ACTIVE< ABA VARIABLE, ABA_CONSTRAINT >
*var)

The default implementation of the functiciassify()returns a 0 pointer.

Protected Attributes

« ABA_CSENSE sense_

e doublerhs_

* ABA_CONCLASS:x conClass_
* boolliftable_

This member isrueif also coefficients of variables which have been inactive at generationciimdée computed,
falseotherwise.

Private Member Functions

e constABA_CONSTRAINT & operator=constABA_CONSTRAINT &rhs)

Friends

* classABA_LPSUB

6.7.1 Detailed Description

class forms the virtual base class for all possible congsajiven in pool format and is derived from the common
base clas®BA CONVAR of all constraints and variables.

Definition at line 55 of file constraint.h.

6.7.2 Constructor & Destructor Documentation

6.7.2.1 ABA_CONSTRAINT::ABA_CONSTRAINT (ABA_MASTER x master constABA_SUB * sub,
ABA_CSENSE::SENSEsensedoublerhs, bool dynamig bool local, bool liftable)

The constructor.

Parameters:
master A pointer to the corresponding master of the optimization.

sub A pointer to the subproblem associated with the constrainis can be also the 0-pointer.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.7 ABA_CONSTRAINT Class Reference 223

senseThe sense of the constraint.
rhs The right hand side of the constraint.

dynamic If this paramument isrue, then the constraint can be removed from the active conssat during
the cutting plane phase of the subproblem optimization.

local If this paramument igrue, then the constraint is considered to be only locally validthis case the
paramument sub must not be 0 as each locally valid constsaassociated with a subproblem. }

liftable If this paramument igrue, then a lifting procedure must be available, i.e., that tbefficients of
variables which have not been active at generation timeeo€timstraint can be computed.

6.7.2.2 ABA_CONSTRAINT::ABA_CONSTRAINT (ABA_MASTER * maste)

The following constructor initializes an empty constraint

This constructor is, e.g., useful if parallel separatioapglied. In this case the constraint can be constructed and
receive later its data by message passing.

Parameters:
master A pointer to the corresponding master of the optimization.

6.7.2.3 ABA_CONSTRAINT::ABA_CONSTRAINT (const ABA_CONSTRAINT & rhs)

The copy constructor.

Parameters:
rhs The constraint being copied.

6.7.2.4 virtual ABA_CONSTRAINT:: ~ABA_CONSTRAINT () [virtual]

The destructor.

6.7.3 Member Function Documentation

6.7.3.1 ABA_CONCLASS+ ABA_CONSTRAINT::classification (ABA_ACTIVE < ABA_VARIABLE ,
ABA_CONSTRAINT > % var=0)

Returns a pointer to the classification of the constraint.

If no classification is available then we try to classify tlwmstraint. In this casear must not be a O-pointer. Per
defaultvar is 0.

A constraint classification can only be generated if the fioncclassify()is redefined in a derived class.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

224 Reference Manual

6.7.3.2 virtual ABA_CONCLASS* ABA_CONSTRAINT::classify (ABA_ACTIVE < ABA_VARIABLE ,
ABA CONSTRAINT > xvar) [protected, virtual]

The default implementation of the functiafassify()returns a 0 pointer.

6.7.3.3 virtual double ABA CONSTRAINT::coeff (ABA_VARIABLE xvV) [pure virtual]

Parameters:
v A pointer to a variable.

Returns:
The coefficient of the variablein the constraint.

Implemented ilPABA_NUMCON, andABA_ROWCON.

6.7.3.4 virtual double ABA_CONSTRAINT::distance (doublex x, ABA_ACTIVE < ABA VARIABLE ,
ABA_CONSTRAINT > % actVar) [virtual]

The distance of a poirit and a hyperplane”z = 3 can be computed in the following way: Legtbe the

intersection of the hyperplang’z = 3 and the line defined by and the vector. . Then the distancé is the
length of the vectofz — || .

Returns:
The Euclidean distance of the vectoassociated with the variable samttVarto the hyperplane induced by
the constraint.

Parameters:
X The point for which the distance should be computed.

actVar The variables associated with

6.7.3.5 ABA_CONSTRAINT x ABA_CONSTRAINT::duplicate () [i nli ne]

Definition at line 245 of file constraint.h.

6.7.3.6 virtual int ABA_CONSTRAINT::;genRow (ABA_ACTIVE < ABA_VARIABLE ,
ABA_CONSTRAINT > * var, ABA_ROW & row) [virtual]

Generates the row format of the constraint associated hatlvariable setar.

This function is declared virtual since faster constrapgafic implementations might be desirable.

All nonzero coefficients are added to the row format. Befoesgenerate the coefficients we try to expand the
constraint, afterwards it is compressed again.

Returns:
The number of nonzero elements in the row formoat.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.7 ABA_CONSTRAINT Class Reference 225

Parameters:
var The variable set for which the row format should be computed.

row Stores the row format after calling this function.

Reimplemented idBA_SROWCON

6.7.3.7 bool ABA_CONSTRAINT::liftable () const [i nl i ne]

Checks if the constraint is liftable,

i.e., if the coefficients of variables inactive at genenatione of the constraint can be computed later.
Returns:

true If the constraint can be lifted,
false otherwise.

Definition at line 308 of file constraint.h.

6.7.3.8 constABA_CONSTRAINT & ABA_CONSTRAINT::operator= (const ABA_CONSTRAINT &
rhs) [private]

6.7.3.9 void ABA_CONSTRAINT::printRow (ostream & out, ABA_ACTIVE < ABA_VARIABLE ,
ABA_CONSTRAINT > * var)

Writes the row format of the constraint associated with théalde setvar on an output stream.

Parameters:
out The output stream.

var The variables for which the row format should be written.

6.7.3.10 virtual double ABA CONSTRAINT::;rhs () [virtual]

Returns:
The right hand side of the constraint.

6.7.3.11 ABA CSENSE=x ABA CONSTRAINT::sense () [i nli ne]

Returns:
A pointer to the sense of the constraint.

Definition at line 303 of file constraint.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

226 Reference Manual

6.7.3.12 virtual double ABA_CONSTRAINT::slack (ABA_ACTIVE < ABA_VARIABLE ,
ABA CONSTRAINT > x variables doublex x) [virtual]

Computes the slack of the vectoassociated with the variable setriables

Returns:
The slack induced by the vecter

Parameters:
variables The variable set associated with the vector

X The values of the variables.

Reimplemented idBA_SROWCON

6.7.3.13 virtual bool ABA_ CONSTRAINT::valid (ABA_SUB x sub [virtual]

Checks if the constraint is valid for the subproblem sub.
Per default, this is the case if the constraint is globalljdyar the subproblem associated with the constraint is an
ancestor of the subproblem sub in the enumeration tree.

Returns:
true If the constraint is valid for the subproblem sub,
false otherwise.

Parameters:
sub The subproblem for which the validity is checked.

6.7.3.14 virtual bool ABA_CONSTRAINT::violated (double slacK const [vi rtual]
This version of functiorviolated()checks for the violation given the slack of a vector.

Returns:
true If the constraint is an equation and #tackis nonzero, or if the constraint isa-inequality and the slack
is negative, or the constraint issa-inequality and the slack is positive,
false otherwise.

Parameters:
slack The slack of a vector.

6.7.3.15 virtual bool ABA_CONSTRAINT::violated (ABA_ACTIVE < ABA_VARIABLE ,
ABA_CONSTRAINT > « variables double x x, doublex sI=0) [virtual]

Checks if a constraint is violated by a veckaaissociated with a variable set.
Returns:
true If the constraint is violated,

false otherwise.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.7 ABA_CONSTRAINT Class Reference 227

Parameters:
variables The variables associated with the vector

X The vector for which the violation is checked.
sl If slis nonzero, thersl will store the value of the violation, i.e., the slack.

6.7.3.16 virtual ABA_INFEASCON::INFEAS ABA_CONSTRAINT::voidLhsViolated (double newRhg
const [protected, virtual]

Can be called if after variable elimination the left handesid the constraint has become void and the right hand
side has been adaptedrtewRhs

Then this function checks if the constraint is violated.

Returns:
{TooLparame or TooSmall} If the valurewRhssiolates the sense of the constraint, i.e, iki¢ >/ != 0 and
the sense of the constraintis= / <=/ =,
Feasible otherwise.

Parameters:
newRhs The right hand side of the constraint after the eliminatibthe variables.

6.7.4 Friends And Related Function Documentation

6.7.4.1 friend classABA_LPSUB [fri end]

Definition at line 56 of file constraint.h.

6.7.5 Member Data Documentation

6.7.5.1 ABA_CONCLASSx ABA_CONSTRAINT::conClass_ [pr ot ect ed]

Definition at line 290 of file constraint.h.

6.7.5.2 boolABA CONSTRAINT::liftable_ [pr ot ect ed]

This member idgrueif also coefficients of variables which have been inactivgeateration time can be computed,
falseotherwise.

Definition at line 296 of file constraint.h.

6.7.5.3 doubleABA _CONSTRAINT::rhs_ [pr ot ect ed]

The right hand side of the constraint.

Definition at line 289 of file constraint.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

228 Reference Manual

6.7.5.4 ABA_CSENSE ABA_CONSTRAINT::sense_ [prot ect ed]

The sense of the constraint.
Definition at line 285 of file constraint.h.

The documentation for this class was generated from thevioll file:

¢ Include/abacusbnstraint.h

6.8 ABA_VARIABLE Class Reference

class forms the virtual base class for all possible vargagheen in pool format
#i ncl ude <vari abl e. h>
Inheritance diagram for ABA_VARIABLE::

| ABA_ABACUSROOT|

|

| ABA_CONVAR |

T

| ABA_VARIABLE |

i
[|

| ABA_COLVAR || ABA_NUMVAR

Public Member Functions

* ABA_VARIABLE (ABA_MASTER xmaster, consABA_SUB xsub, bool dynamic, bool local, double obj,
double IBound, double uBoundBA_VARTYPE:: TYPEtype)
* virtual ~ABA_VARIABLE ()

The destructor.

e ABA_VARTYPE:TYPE varTypeg) const
* booldiscrete()

* boolbinary()

* boolinteger()

* virtual doubleobj ()

« doubleuBound() const

« void uBound(double newValue)

This version of the functionBound()sets the upper bound of the variable.

e doublelBound() const
« void IBound (double newValue)

This version of the functiolBound() sets the lower bound of the variable.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.8 ABA_VARIABLE Class Reference 229

ABA_FSVARSTAT x* fsVarStat()
virtual boolvalid (ABA_SUB xsub)

virtual int genColumn (ABA_ACTIVE< ABA_CONSTRAINT, ABA_ VARIABLE > xactCon,
ABA_COLUMN &col)

Computes the colunmol of the variable associated with the active constrairastCon

virtual doublecoeff (ABA_CONSTRAINT xcon)
virtual boolviolated(double rc) const

Checks, if a variable does not price out correctly, i.e., if the redumesdrc is positive for a maximization problem
and negative for a minimization problem, respectively.

virtual boolviolated (ABA_ACTIVE < ABA_CONSTRAINT, ABA_VARIABLE > xconstraints, double
«y, doublexslack=0)

This version of the functiowiolated()checks if the variable does not price out correctly, i.e., if the redwosd of
the variable associated with the constraint senstraintsand the dual variabley are positive for a maximization
problem and negative for a minimization problem, respectively.

virtual doubleredCost(ABA_ACTIVE < ABA_CONSTRAINT, ABA_VARIABLE > xactCon, double
*Y)

Computes the reduced cost of the variable corresponding the constetictConand the dual variables.

virtual booluseful(ABA_ACTIVE < ABA_CONSTRAINT, ABA_VARIABLE > xactCon, doubley, dou-
ble IpVal)

An (inactive) discrete variable is consideredwseful ()if its activation might not produce only solutions worse than
the best known feasible solution.

void printCol (ostream &outABA_ACTIVE < ABA_CONSTRAINT, ABA_VARIABLE > xconstraints)

Writes the column of the variable corresponding to tbastrainton the streanout

Protected Attributes

ABA_FSVARSTAT fsVarStat_
doubleobj_

doublelBound_
doubleuBound_
ABA_VARTYPE type_

6.8.1 Detailed Description

class forms the virtual base class for all possible varggieen in pool format

Definition at line 55 of file variable.h.

6.8.2 Constructor & Destructor Documentation

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

230 Reference Manual

6.8.2.1 ABA_VARIABLE::ABA_VARIABLE (ABA_MASTER x* master constABA_SUB x* sub, bool
dynamig bool local, double obj, double IBound, doubleuBound, ABA_ VARTYPE:: TYPE typée

The constructor.

Parameters:
master A pointer to the corresponding master of the optimization.

sub A pointer to the subproblem associated with the variablés Tan also be the 0-pointer.

dynamic If this argument igrue, then the variable can also be removed again from the setigéa@riables
after it is added once.

local If this argument igrue, then the variable is only locally valid, otherwise it is dly valid. As a locally
valid variable is always associated with a subproblem, theraentsubmust not be 0 ifocal is true.

obj The objective function coefficient.
IBound The lower bound of the variable.
uBound The upper bound of the variable.
type The type of the variable.

6.8.2.2 virtual ABA_VARIABLE:: ~ABA_VARIABLE () [virtual]

The destructor.

6.8.3 Member Function Documentation

6.8.3.1 bool ABA_VARIABLE:binary () [inline]
Returns:

true If the type of the variable Binary;,
false otherwise.

Definition at line 312 of file variable.h.

6.8.3.2 virtual double ABA_VARIABLE::coeff (ABA_CONSTRAINT xcon) [virtual]

Computes the coefficient of the variable in the constredamt

Per default the coefficient of a variable is computed indiyeda the coefficient of a constraint. Problem specific
redefinitions might be required.

Returns:
The coefficient of the variable in the constrason

Parameters:
con The constraint of which the coefficient should be computed.

Reimplemented iMBA_COLVAR.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.8 ABA_VARIABLE Class Reference 231

6.8.3.3 bool ABA_VARIABLE::discrete () [i nli ne]

Returns:
true If the type of the variable imtegeror Binary,
false otherwise.

Definition at line 307 of file variable.h.

6.8.3.4 ABA_FSVARSTAT x ABA VARIABLE::fsVarStat() [i nli ne]

Returns:
A pointer to the global status of fixing and setting of the ahfe.

Note:
This is the global status of fixing/setting that might diffeom the local status of fixing/setting a variable
returned by the functioABA_SUB::fsVarStat()

Definition at line 342 of file variable.h.

6.8.3.5 virtual int ABA_VARIABLE::genColumn (ABA_ACTIVE < ABA_CONSTRAINT,
ABA_VARIABLE > xactCon ABA_COLUMN & col) [virtual]

Computes the columeol of the variable associated with the active constraiatgsCon

Note:
The upper and lower bound of the column are initialized withglobal upper and lower bound of the variable.
Therefore, an adaption with the local bounds might be reqluir

Returns:
The number of nonzero entriesdol.

Parameters:
actCon The constraints for which the column of the variable shodabdmputed.

col Stores the column when the function terminates.

6.8.3.6 bool ABA_VARIABLE::integer () [inline]
Returns:

true If the type of the variable imteger,

false otherwise.

Definition at line 317 of file variable.h.

6.8.3.7 void ABA_ VARIABLE::IBound (double newValug [inline]

This version of the functiotBound()sets the lower bound of the variable.

Parameters:
newBound The new value of the lower bound.

Definition at line 327 of file variable.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

232 Reference Manual

6.8.3.8 double ABA_VARIABLE::IBound () const [i nli ne]

Returns:
The lower bound of the variable.

Definition at line 322 of file variable.h.

6.8.3.9 virtual double ABA_VARIABLE::obj() [virtual]

Returns:
The objective function coefficient.

6.8.3.10 void ABA_VARIABLE::printCol (ostream & out, ABA_ACTIVE < ABA_CONSTRAINT,
ABA_VARIABLE > x constraint9

Writes the column of the variable corresponding to¢bastraintson the streanout.

Parameters:
out The output stream.

constraints The constraints for which the column should be written.

6.8.3.11 virtual double ABA_VARIABLE::redCost (ABA_ACTIVE < ABA_CONSTRAINT,
ABA VARIABLE > xactCon doublexy) [virtual]

Computes the reduced cost of the variable correspondincptingtraint seactConand the dual variableg

Given the dual variableg , then the reduced cost of a variable with objective functioefficientc. , columna,_ .
are defined ag, — y"a.. .

Returns:
The reduced cost of the variable.

Parameters:
actCon The constraints associated with the dual variables

y The dual variables of the constraint.

6.8.3.12 void ABA_VARIABLE::uBound (double newValug [i nli ne]
This version of the functionBound()sets the upper bound of the variable.

Parameters:
newBound The new value of the upper bound.

Definition at line 337 of file variable.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.8 ABA_VARIABLE Class Reference 233

6.8.3.13 double ABA_VARIABLE::uBound () const [i nli ne]

Returns:
The upper bound of the variable.

Definition at line 332 of file variable.h.

6.8.3.14 virtual bool ABA_ VARIABLE::useful (ABA_ACTIVE < ABA_CONSTRAINT,
ABA_VARIABLE > x actCon doublexy, doublelpVal) [virtual]

An (inactive) discrete variable is considereduseful()if its activation might not produce only solutions worse
than the best known feasible solution.

This is the same criterion for fixing inactive variables bgiueed cost criteria.

Returns:
true If the variable is considered as useful,
false otherwise.

Parameters:
actCon The active constraints.

y The dual variables of these constraints.
IpVal The value of the linear program.

6.8.3.15 virtual bool ABA_ VARIABLE::valid (ABA_SUB x sub) [virtual]

Returns:
true If the variable is globally valid, or the subproblesubis an ancestor in the enumeration tree of the
subproblem associated with the variable,
false otherwise.

Parameters:
sub The subproblem for which validity of the variable is checked

6.8.3.16 ABA_VARTYPE: TYPE ABA_VARIABLE:varType () const [inline]

Returns:
The type of the variable.

Definition at line 302 of file variable.h.

6.8.3.17 virtual bool ABA_VARIABLE::violated (ABA_ACTIVE < ABA_CONSTRAINT ,
ABA VARIABLE > x constraints double x y, double x slack=0) [virtual]

This version of the functiomiolated()checks if the variable does not price out correctly, i.ehéf reduced cost of
the variable associated with the constraintcs®istraintsand the dual variablegare positive for a maximization
problem and negative for a minimization problem, respetfiv

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

234 Reference Manual

Returns:
true If the variable does not price out correctly.
false otherwise.

Parameters:
constraints The constraints associated with the dual variables

y The dual variables of the constraint.
r If r is not the O-pointer, it will store the reduced cost afterftiection call. Per defaultis O.

6.8.3.18 virtual bool ABA_ VARIABLE::violated (double rc) const [virtual]

Checks, if a variable does not price out correctly, i.ehé teduced cost is positive for a maximization problem
and negative for a minimization problem, respectively.

Returns:

true If the variable does not price out correctly.
false otherwise.

Parameters:
rc The reduced cost of the variable.

6.8.4 Member Data Documentation

6.8.4.1 ABA_FSVARSTAT ABA VARIABLE:fsVarStat [pr ot ect ed]
The global status of fixing and setting of the variable.

Definition at line 282 of file variable.h.

6.8.4.2 doubleABA VARIABLE::IBound_ [prot ect ed]

The lower bound of the variable.

Definition at line 290 of file variable.h.

6.8.4.3 doubleABA_VARIABLE::0bj_ [protected]
The objective function coefficient of the variable.

Definition at line 286 of file variable.h.

6.8.4.4 ABA_VARTYPE ABA VARIABLE:type [pr ot ect ed]

The type of the variable.

Definition at line 298 of file variable.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.9 ABA LPSOLUTION < BaseType, CoType> Class Template Reference 235

6.8.4.5 doubleABA VARIABLE::uBound_ [pr ot ect ed]

The upper bound of the variable.
Definition at line 294 of file variable.h.

The documentation for this class was generated from thevioll file:

¢ Include/abacusariable.h

6.9 ABA_LPSOLUTION < BaseType, CoType> Class Template Refer-
ence

template class implements an LP solution. This class isssacg when using the clag88A_SEPARATORfor
separation.

#i ncl ude <l psol ution. h>
Inheritance diagram for ABA_LPSOLUTION BaseType, CoType-::

| ABA_ABACUSROOT |

T

[ABA_LPSOLUTION< BaseType, CoType]>

Public Member Functions

« ABA_LPSOLUTION (ABA_SUB xsub, bool primalVariablesABA_ACTIVE < BaseType, CoType>
xactive)

e ABA_LPSOLUTION (ABA_MASTER xmaster)

* ABA_LPSOLUTION (constABA_LPSOLUTION< BaseType, CoType &rhs)

* ~ABA_LPSOLUTION()

The destructor.

« int nVarCon() const

 doublex zVal ()

* ABA_ACTIVE < BaseType, CoType- * active()
e intidSub() const

e intidLp () const

Protected Attributes

¢ ABA_MASTER % master_

e int nvVarCon_

e intidSub_

e intidLp_

* ABA_ARRAY < double> zVal_

* ABA_ACTIVE < BaseType, CoType * active_

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

236 Reference Manual

Private Member Functions

» constABA_LPSOLUTION< BaseType, CoType- & operator=constABA_LPSOLUTION< BaseType,
CoType> &rhs)

Friends

» classABA_SEPARATOR< CoType, BaseType
 ostream &operatox < (ostream &out, consABA_LPSOLUTION< BaseType, CoType- &rhs)

6.9.1 Detailed Description
template<class BaseType, class CoTypeclass ABA_LPSOLUTION< BaseType, CoType>

template class implements an LP solution. This class isssacg when using the clag88A_SEPARATORfor
separation.

Parameters:
ABA_MASTER xmaster_ A pointer to the corresponding master of the opétiun.

int nVarCon_ The number of variables/constraints.

int idSub_ The Id of the subproblem in which the LP solution wasegated.

int idLp_ The Id of the LP in which the LP solution was generated.
ABA_ARRAY<double> * zVal_The primal/dual variables of the LP solution.
ABA_ACTIVE<BaseType,CoType xactive_The active variables/constraints.

Definition at line 61 of file Ipsolution.h.

6.9.2 Constructor & Destructor Documentation

6.9.2.1 templatecclass BaseType, class CoTypeABA_LPSOLUTION < BaseType, CoType
>::ABA_LPSOLUTION (ABA_SUB * sub, bool primalVariables ABA_ACTIVE < BaseType,
CoType > * active

The constructor.

Parameters:
sub A pointer to the subproblem in which the LP solution is getexta

primalVariables True if ABA_LPSOLUTION contains the primal variables. IrgttaseBaseTypanust be
ABA_VARIABLE . If primaVariabless false, therBaseTypenust beABA CONSTRAINT.

active The active variables/constraints that are associatedthith P solution. The default argument is O.
Then the set of active variables/constraints is not stdmetlis assumed to be fixed and known.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.9 ABA LPSOLUTION < BaseType, CoType> Class Template Reference 237

6.9.2.2 templatecclass BaseType, class CoTypeABA_LPSOLUTION < BaseType, CoType
>::ABA_LPSOLUTION (ABA_MASTER x* maste)

The constructor.

Parameters:
master A pointer toABA_MASTER.

6.9.2.3 templatecclass BaseType, class CoTypeABA LPSOLUTION < BaseType, CoType
>::ABA_LPSOLUTION (constABA_LPSOLUTION < BaseType, CoType> & rhs)

The copy constructor.

Parameters:
rhs The LP solution that is copied.

6.9.2.4 templatecclass BaseType, class CoTypeABA LPSOLUTION < BaseType, CoType
>::~ABA LPSOLUTION ()

The destructor.

6.9.3 Member Function Documentation

6.9.3.1 templatecclass BaseType, class CoType ABA ACTIVE <BaseType, CoType-x
ABA LPSOLUTION < BaseType, CoType>::active ()

Returns:
The active variables/constraints.

6.9.3.2 templatecclass BaseType, class CoTypeint ABA_LPSOLUTION < BaseType, CoType>::idLp
() const

Returns:
The Id of the LP in which the LP solution was generated.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

238 Reference Manual

6.9.3.3 templatecclass BaseType, class CoTypeint ABA_LPSOLUTION < BaseType, CoType>::idSub
() const

Returns:
The Id of the subproblem in which the LP solution was genelate

6.9.3.4 templatecclass BaseType, class CoTypeint ABA LPSOLUTION < BaseType, CoType
>::nVarCon () const

Returns:
The number of variables (iBaseTypes ABA_VARIABLE) or the number of constraints (BaseTypds
ABA_CONSTRAINT), resp.

6.9.3.5 templatecclass BaseType, class CoTypeconstABA_LPSOLUTION <BaseType, CoType-&
ABA_LPSOLUTION < BaseType, CoType>::operator= (const ABA_LPSOLUTION < BaseType,
CoType> & rhs) [private]

6.9.3.6 templatecclass BaseType, class CoTypedoublex ABA_LPSOLUTION < BaseType, CoType
>::zVal ()

Returns:
The primal/dual variables of the LP solution.

6.9.4 Friends And Related Function Documentation

6.9.4.1 templatecclass BaseType, class CoTypefriend classABA_SEPARATOR < CoType, BaseType>
[friend]

Definition at line 62 of file Ipsolution.h.

6.9.4.2 templatecclass BaseType, class CoTypeostream& operator<< (ostream & out, const
ABA _LPSOLUTION < BaseType, CoType> & rhs) [friend]

The output operator writes the Ipsolution to an output strea

Returns:
A reference to the output stream.

Parameters:
out The output stream.

rhs The Ipsolution being output.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.10 ABA_SEPARATOR< BaseType, CoType> Class Template Reference 239

6.9.5 Member Data Documentation

6.9.5.1 templatecclass BaseType, class CoType ABA_ACTIVE <BaseType, CoType-x
ABA_LPSOLUTION < BaseType, CoType>::active_ [pr ot ect ed]

Definition at line 159 of file Ipsolution.h.

6.9.5.2 templatecclass BaseType, class CoTypeint ABA_LPSOLUTION < BaseType, CoType>::idLp_
[protect ed]

Definition at line 154 of file Ipsolution.h.

6.9.5.3 templatecclass BaseType, class CoTypeint ABA LPSOLUTION < BaseType, CoType
>idSub_ [prot ect ed]

Definition at line 153 of file Ipsolution.h.

6.9.5.4 templatecclass BaseType, class CoTypeABA MASTER x ABA LPSOLUTION < BaseType,
CoType >::master_ [pr ot ect ed]

Definition at line 151 of file Ipsolution.h.

6.9.5.5 templatecclass BaseType, class CoTypeint ABA_LPSOLUTION < BaseType, CoType
>:nVarCon_ [prot ect ed]

Definition at line 152 of file Ipsolution.h.

6.9.5.6 templatecclass BaseType, class CoTypeABA_ARRAY <double> ABA_LPSOLUTION <
BaseType, CoType>::zVal_ [prot ect ed]

Definition at line 158 of file Ipsolution.h.

The documentation for this class was generated from theviall file:

¢ Include/abacuggsolution.h

6.10 ABA_SEPARATOR< BaseType, CoType> Class Template Refer-
ence

abstract template class can be used to implement a separatitne
#i ncl ude <separator. h>
Inheritance diagram for ABA_SEPARATGRBaseType, CoType-::

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

240

Reference Manual

| ABA_ABACUSROOT |

T

| ABA_SEPARATOR< BaseType, CoTypel >

Public Member Functions

* ABA_SEPARATOR(ABA_LPSOLUTION< CoType, BaseType- «IpSolution, bool nonDuplications, int

maxGen=300)
* virtual ~ABA_SEPARATOR()

The destructor.

« virtual void separat€)=0

This function has to be redefined and should implement the separationeoutin

« ABA_SEPARATOR_CUTFOUND cutFoun(BaseTypex)

The functiorcutFound(BaseTypecv) passes a cut (constraint or variable) to the buffer.

* virtual boolterminateSeparatiof)

* ABA_ BUFFER< BaseTypex > & cutBuffer()
* int nGen() const

« int nDuplications() const

« int nCollisions() const

* int maxGen() const

¢ doubleminAbsViolation() const

« void minAbsViolation(double minAbsVio)

Set a new value faminAbsViolation

* ABA LPSOLUTION< CoType, BaseType « IpSolution()

The IpSolution to be separated.

« void watchNonDuplPoo{ABA_NONDUPLPOOL< BaseType, CoType xpool)

If the separator checks for duplication of cuts, the test is also done fast@ints/variables that are in the pool

passed as argument.

Protected Member Functions

« boolfind (BaseTypex)

Protected Attributes

« ABA_MASTER * master_

* ABA_LPSOLUTION< CoType, BaseType * IpSol_

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.10 ABA_SEPARATOR< BaseType, CoType> Class Template Reference 241

Private Member Functions

* ABA_SEPARATOR(constABA_SEPARATOR BaseType, CoType &rhs)
» constABA_SEPARATOR< BaseType, CoType & operator5constABA_SEPARATOR< BaseType, Co-
Type > &rhs)

Private Attributes

 doubleminAbsViolation_

 ABA_BUFFER< BaseType: > newCons_

* ABA_HASH< unsigned, BaseType> x hash_

e int nDuplications__

« boolsendConstraints_

 ABA_NONDUPLPOOL< BaseType, CoType * pool_

6.10.1 Detailed Description
template<class BaseType, class CoTypeclass ABA_SEPARATOR< BaseType, CoType>

abstract template class can be used to implement a separatitne

Parameters:
ABA MASTER xmaster A pointer to the corresponding master of the optitioiza

ABA_ LPSOLUTION<CoType,BaseType «IpSol The LP solution to be separated.

Definition at line 67 of file separator.h.

6.10.2 Constructor & Destructor Documentation

6.10.2.1 templatecclass BaseType, class CoTypeABA_SEPARATOR< BaseType, CoType
>::ABA_SEPARATOR (ABA_LPSOLUTION < CoType, BaseType> « IpSolution, bool
nonDuplications int maxGen= 300)

The constructor.

Parameters:
master A pointer to the corresponding master of the optimization.

IpSolution The LP solution to be separated.
maxGen The maximal number of cutting planes which are stored.

nonDuplications If this flag is set, then the same constraint/variable isest@t most once in the buffer. In
this case for constraints/variables the virtual membections name() hashKey() andequal() of the
base clas#A\BA_CONVAR have to be defined. Using these three functions, we checleirfutiiction
cutFoundif a constraint or variable is already stored in the buffer.

sendConstraintin the parallel version this parameter determines if thestramts should be sent to their
corresponding stores.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

242 Reference Manual

6.10.2.2 templatecclass BaseType, class CoTypevirtual ABA_SEPARATOR< BaseType, CoType
>::~ABA_SEPARATOR () [virtual]

The destructor.

6.10.2.3 templatecclass BaseType, class CoTypeABA_SEPARATOR< BaseType, CoType
>::ABA_SEPARATOR (constABA_SEPARATOR < BaseType, CoType> & rhs) [pri vat e]

6.10.3 Member Function Documentation

6.10.3.1 templatecclass BaseType, class CoTypeABA BUFFER <BaseTypex>& ABA SEPARATOR<
BaseType, CoType>::cutBuffer ()

Returns:
The buffer with the generated constraints/variable.

6.10.3.2 templateclass BaseType, class CoType ABA_SEPARATOR_CUTFOUND
ABA_SEPARATOR < BaseType, CoType>::cutFound (BaseTypex)

The functioncutFound(BaseTypecv) passes a cut (constraint or variable) to the buffer.

If the buffer is full or the cut already exists, the cut is dete

Returns:
ABAAdded if the cut is added to the buffer;
ABA Duplication if the cut is already in the buffer;
ABAFull, if the buffer is full.

Parameters:
cv A pointer to a new constraint/variable found by the sepanagigorithm.

6.10.3.3 templatecclass BaseType, class CoTypebool ABA SEPARATOR < BaseType, CoType>::find
(BaseTypex) [protect ed]

Returns:
The function checks if a constraint/variable that is egent to cv according to the function
ABA_CONVAR::equal()is already stored in the buffer by using the hashtable.

Parameters:
cv A pointer to a constraint/variable for which it should be cked if an equivalent item is already contained
in the buffer.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.10 ABA_SEPARATOR< BaseType, CoType> Class Template Reference 243

6.10.3.4 templatecclass BaseType, class CoTypeABA_LPSOLUTION <CoType, BaseType-x
ABA_SEPARATOR< BaseType, CoType>::IpSolution () [i nli ne]

The IpSolution to be separated.

Definition at line 149 of file separator.h.
6.10.3.5 templatecclass BaseType, class CoTypeint ABA_SEPARATOR< BaseType, CoType
>::maxGen () const

Returns:
The maximal number of generated cutting planes.

6.10.3.6 templatecclass BaseType, class CoTypevoid ABA_SEPARATOR < BaseType, CoType
>::minAbsViolation (double minAbsVio) [i nli ne]

Set a new value fominAbsViolation

Definition at line 145 of file separator.h.
6.10.3.7 templateclass BaseType, class CoTypedouble ABA_SEPARATOR < BaseType, CoType
>::minAbsViolation () const

Returns:
The absolute value for considering a constraint/variabieialated.

6.10.3.8 templatecclass BaseType, class CoTypeint ABA SEPARATOR< BaseType, CoType
>::nCollisions () const

Returns:
The number of collisions in the hash table.

6.10.3.9 templatecclass BaseType, class CoTypeint ABA_SEPARATOR< BaseType, CoType
>::nDuplications () const

Returns:
The number of duplicated constraints/variables which &eadded.

6.10.3.10 template:class BaseType, class CoTypeint ABA_SEPARATOR < BaseType, CoType>::nGen
() const

Returns:
The number of generated cutting planes.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

244 Reference Manual

6.10.3.11 templatecclass BaseType, class CoTypeconstABA SEPARATOR <BaseType, CoType-&
ABA_SEPARATOR< BaseType, CoType>:.operator= (const ABA_SEPARATOR< BaseType,
CoType > & rhs) [private]

6.10.3.12 templatecclass BaseType, class CoTypevirtual void ABA_SEPARATOR< BaseType, CoType
>:.:separate () [pure virtual]

This function has to be redefined and should implement tharagpn routine.

6.10.3.13 templatezclass BaseType, class CoTypevirtual bool ABA_SEPARATOR < BaseType, CoType
>:iterminateSeparation () [inline, virtual]

Returns:
The function returns true if the separation should be teateit. In the default implementation, this is the case
if maxGerconstraints/variables are in the cutBuffer.

Definition at line 117 of file separator.h.

6.10.3.14 templateclass BaseType, class CoTypevoid ABA_SEPARATOR< BaseType, CoType
>::.watchNonDuplPool (ABA_NONDUPLPOOL < BaseType, CoType> * pool) [inli ne]

If the separator checks for duplication of cuts, the tesiss done for constraints/variables that are in the pool
passed as argument.

This can be useful if already cuts are generated by perfarigonstraint pool separation of this pool.

Definition at line 160 of file separator.h.

6.10.4 Member Data Documentation

6.10.4.1 templatecclass BaseType, class CoType ABA HASH <unsigned, BaseType>x
ABA_SEPARATOR< BaseType, CoType>::hash_ [pri vat e]

Definition at line 178 of file separator.h.

6.10.4.2 templatecclass BaseType, class CoTypeABA LPSOLUTION <CoType, BaseType-x
ABA SEPARATOR< BaseType, CoType>::IpSol_ [prot ect ed]

Definition at line 174 of file separator.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.11 System Classes 245

6.10.4.3 templatecclass BaseType, class CoTypeABA_MASTER x ABA_SEPARATOR < BaseType,
CoType >::master_ [pr ot ect ed]

Definition at line 173 of file separator.h.

6.10.4.4 templateclass BaseType, class CoTypedouble ABA_SEPARATOR < BaseType, CoType
>::minAbsViolation_ [pri vate]

Definition at line 176 of file separator.h.

6.10.4.5 templateclass BaseType, class CoTypeint ABA_SEPARATOR< BaseType, CoType
>::nDuplications_ [pri vat e]

Definition at line 179 of file separator.h.

6.10.4.6 templatecclass BaseType, class CoTypeABA_BUFFER <BaseType:> ABA_SEPARATOR <
BaseType, CoType>::newCons_ [pri vat e]

Definition at line 177 of file separator.h.

6.10.4.7 templatecclass BaseType, class CoTypeABA NONDUPLPOOL <BaseType, CoType-*
ABA_SEPARATOR< BaseType, CoType>::pool_ [privat €]

Definition at line 181 of file separator.h.

6.10.4.8 templatecclass BaseType, class CoTypebool ABA_SEPARATOR< BaseType, CoType
>::sendConstraints_ [pri vat e]

Definition at line 180 of file separator.h.

The documentation for this class was generated from theviolg file:
¢ Include/abacuséparator.h

%

6.11 System Classes

This section documents (almost) all internal system ckae@BACUS. This classes are usually not involved in
the derivation process for the implementation. Howeverétrieving special information (e.g., about the linear
program) or for advanced usage we provide here a detailachuertation.

6.12 ABA_ OPTSENSE Class Reference

We can either minimize or maximize the objective functiore ¥capsulate this information in a class since it is
required in various classes.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

246 Reference Manual

#i ncl ude <optsense. h>
Inheritance diagram for ABA_OPTSENSE::

| ABA_ABACUSROOT|

T

| ABA_OPTSENSE |

Public Types

e enumSENSE{ Min, Max, Unknown}

Public Member Functions

ABA_OPTSENSHSENSEs=Unknown)
 void sensg SENSES)

This version of the functiosense(sets the optimization sense.

SENSE sens@ const
 boolmin () const
boolmax() const
 boolunknown() const

Private Attributes

« SENSE sense__

Friends

 ostream &operatox < (ostream &out, consABA_OPTSENSE&rhs)

The output operator writes the optimization sense on an output stream inrtheg fmaximize}, { minimize}, or {
unknown}.

6.12.1 Detailed Description

We can either minimize or maximize the objective functiore vicapsulate this information in a class since it is
required in various classes.

Definition at line 43 of file optsense.h.

6.12.2 Member Enumeration Documentation

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.12 ABA_OPTSENSE Class Reference 247

6.12.2.1 enumABA_OPTSENSE::SENSE
The enumeration defining the sense of optimization.

Parameters:
Min Minimization problem.

Max Maximization problem.
Unknown Unknown optimization sense, required to recognize urilited object.

Enumeration values:
Min
Max
Unknown

Definition at line 53 of file optsense.h.

6.12.3 Constructor & Destructor Documentation

6.12.3.1 ABA_OPTSENSE: ABA_OPTSENSESENSEs=Unknown) [inli ne]
The constructor initializes the optimization sense.

Parameters:
s The sense of the optimization. The default valugigknown

Definition at line 106 of file optsense.h.

6.12.4 Member Function Documentation

6.12.4.1 bool ABA_OPTSENSE::max () const[i nl i ne]

Returns:
true If it is maximization problem,
false otherwise.

Definition at line 126 of file optsense.h.

6.12.4.2 bool ABA_OPTSENSE::min () const[i nli ne]

Returns:
true If it is minimization problem,
false otherwise.

Definition at line 121 of file optsense.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

248 Reference Manual

6.12.4.3 ABA_OPTSENSE::SENSEABA_OPTSENSE:sense () const[i nl i ne]

Returns:
The sense of the optimization.

Definition at line 111 of file optsense.h.

6.12.4.4 void ABA_OPTSENSE::senseSENSEs) [i nli ne]

This version of the functiosense(kets the optimization sense.

Parameters:
s The new sense of the optimization.

Definition at line 116 of file optsense.h.

6.12.4.5 bool ABA_OPTSENSE::unknown () const[i nl i ne]

Returns:
true If the optimization sense is unknown,
false otherwise.

Definition at line 131 of file optsense.h.

6.12.5 Friends And Related Function Documentation

6.12.5.1 ostream& operatok < (ostream & out, constABA_OPTSENSE& rhs) [fri end]

The output operator writes the optimization sense on arubstpeam in the form { maximize}, { minimize}, or {
unknown}.

Returns:
The output stream.

Parameters:
out The output stream.

rhs The sense being output.

6.12.6 Member Data Documentation

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.13 ABA_CSENSE Class Reference 249

6.12.6.1 SENSE ABA_OPTSENSE::sense_[pri vat e]

The optimization sense.
Definition at line 102 of file optsense.h.

The documentation for this class was generated from theviolg file:

« Include/abacusptsense.h

6.13 ABA_CSENSE Class Reference

we implement the sense of optimization as a class since wiredtboth in the classe&SBA_CONSTRAINT and
ABA_ROW.

#i ncl ude <csense. h>
Inheritance diagram for ABA_CSENSE::

| ABA_ABACUSROOT|

T

| ABA_CSENSE |

Public Types

e enumSENSKE{ Less Equal Greater

Public Member Functions

ABA_CSENSE(ABA_GLOBAL xglob)
ABA_CSENSE(ABA_GLOBAL xglob, SENSES)
ABA_CSENSE(ABA_GLOBAL xglob, char s)

With this constructor the sense of the constraint can also be initialized with kedetter.

e constABA CSENSE& operator5SENSErhs)

The default assignment operator is overloaded such that also the estioneSENSEcan be used on the right hand
side.

SENSE sensg@ const
 void sensg SENSES)

This overloaded version aense(rhanges the sense of the constraint.

* void sens€char s)
The sense can also be changed by a character as in the constABROrCSENSE(ABA_GLOBAgIob, char s)

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

250 Reference Manual

Private Attributes
« ABA_GLOBAL * glob_
 SENSE sense_
Friends

 ostream &operatox < (ostream &out, consABA_CSENSE&rhs)
The output operator writes the sense on an output stream in the<erns, or >=.

6.13.1 Detailed Description

we implement the sense of optimization as a class since wiredtboth in the classe&BA_CONSTRAINT and
ABA_ROW.

Definition at line 50 of file csense.h.

6.13.2 Member Enumeration Documentation

6.13.2.1 enumABA_CSENSE::SENSE

Parameters:
Less <

Equal =
Greater >

Enumeration values:
Less

Equal
Greater

Definition at line 57 of file csense.h.

6.13.3 Constructor & Destructor Documentation

6.13.3.1 ABA CSENSE:ABA CSENSEABA GLOBAL x glob)
If the default constructor is used, the sense is undefined.

Parameters:
glob A pointer to the corresponding global object.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.13 ABA_CSENSE Class Reference 251

6.13.3.2 ABA_CSENSE:ABA_CSENSEABA_GLOBAL = glob, SENSES)

This constructor initializes the sense.

Parameters:
glob A pointer to the corresponding global object.

s The sense.

6.13.3.3 ABA_CSENSE::ABA CSENSEABA GLOBAL = glob, chars)

With this constructor the sense of the constraint can alsoitialized with a single letter.

Parameters:
glob A pointer to the corresponding global object.

s A character representing the sense: { E} or { e} standEqual { G} and { g} stand for Greater, and { L}
or { I} stand for Less

6.13.4 Member Function Documentation

6.13.4.1 consABA CSENSE& ABA CSENSE::operator= (SENSErhs) [inline]

The default assignment operator is overloaded such thatfdsenumeratioBENSEcan be used on the right hand
side.

Returns:
A reference to the sense.

Parameters:
rhs The new sense.

Definition at line 146 of file csense.h.

6.13.4.2 void ABA_CSENSE::sense (cha)

The sense can also be changed by a character as in the ctorsdB8_ CSENSE(ABA_GLOBALxglob, char s)

Parameters:
s The new sense.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

252 Reference Manual

6.13.4.3 void ABA_CSENSE::senseSENSEs) [i nline]
This overloaded version @ense(rhanges the sense of the constraint.

Parameters:
s The new sense.

Definition at line 157 of file csense.h.

6.13.4.4 ABA_CSENSE::SENSEABA_CSENSE::sense () const[i nl i ne]

Returns:
The sense of the constraint.

Definition at line 152 of file csense.h.

6.13.5 Friends And Related Function Documentation

6.13.5.1 ostream& operatok < (ostream & out, constABA_CSENSE& rhs) [fri end]

The output operator writes the sense on an output stream iiotim <=, =, or >=.

Returns:
The output stream.

Parameters:
out The output stream.

rhs The sense being output.

6.13.6 Member Data Documentation

6.13.6.1 ABA_GLOBAL x ABA_CSENSE:glob_ [pri vat e]

Definition at line 138 of file csense.h.

6.13.6.2 SENSE ABA_CSENSE::sense_[pri vat €]

Stores the sense of a constraint.
Definition at line 142 of file csense.h.

The documentation for this class was generated from theviall file:

 Include/abacusbkense.h

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.14 ABA_VARTYPE Class Reference 253

6.14 ABA_VARTYPE Class Reference

Variables can be of three different type€ontinuous Integer or Binary. We distinguishinteger and Binary
variables since some operations are performed differéatty, branching).

#i ncl ude <vartype. h>
Inheritance diagram for ABA_VARTYPE::

| ABA_ABACUSROOT|

T

| ABA_VARTYPE |

Public Types

e enumTYPE{ ContinuousInteger Binary }

Public Member Functions

* ABA VARTYPE ()
The default constructor lets the type of the variable uninitialized.

* ABA VARTYPE (TYPEY)
* TYPE type() const
 void type(TYPE)
This version of the functiotype() sets the variable type.

* booldiscrete() const
* boolbinary() const
* boolinteger() const

Private Attributes

* TYPE type_

Friends

* ostream &operatox < (ostream &out, consABA_VARTYPE &rhs)
The output operator writes the variable type to an output stream in the fdr@atinuous}, { Integer}, or { Binary}.

6.14.1 Detailed Description

Variables can be of three different type€ontinuous Integer or Binary. We distinguishinteger and Binary
variables since some operations are performed differéatty, branching).

Definition at line 45 of file vartype.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

254 Reference Manual

6.14.2 Member Enumeration Documentation

6.14.2.1 enumABA_VARTYPE:TYPE

The enumeration with the different variable types.

Parameters:
Continuous A continuous variable.

Integer A general integer variable.
Binary A variable having value 0 or 1.

Enumeration values:
Continuous

Integer
Binary

Definition at line 54 of file vartype.h.

6.14.3 Constructor & Destructor Documentation

6.14.3.1 ABA_VARTYPE:ABA_VARTYPE () [inline]

The default constructor lets the type of the variable uialied.

Definition at line 126 of file vartype.h.

6.14.3.2 ABA_VARTYPE:ABA_VARTYPE (TYPEt) [inline]

This constructor initializes the variable type.

Parameters:
t The variable type.

Definition at line 130 of file vartype.h.

6.14.4 Member Function Documentation

6.14.4.1 bool ABA_VARTYPE::binary () const [inli ne]
Returns:

true If the type of the variablBinary,

false otherwise.

Definition at line 151 of file vartype.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.14 ABA_VARTYPE Class Reference 255

6.14.4.2 bool ABA_VARTYPE::discrete () const [i nl i ne]

Returns:
true If the type of the variable imtegeror Binary,
false otherwise.

Definition at line 145 of file vartype.h.

6.14.4.3 bool ABA_VARTYPE::integer () const

Returns:
true If the type of the variable imteger,
false otherwise.

6.14.4.4 void ABA_VARTYPE:type (TYPEt) [inline]

This version of the functiotype()sets the variable type.

Parameters:
t The new type of the variable.

Definition at line 140 of file vartype.h.

6.14.4.5 ABA_VARTYPE: TYPE ABA_VARTYPE:type () const [inli ne]

Returns:
The type of the variable.

Definition at line 135 of file vartype.h.

6.14.5 Friends And Related Function Documentation

6.14.5.1 ostream& operatok < (ostream & out, constABA_VARTYPE & rhs) [fri end]

The output operator writes the variable type to an outp@astr in the format { Continuous}, { Integer}, or {
Binary}.

Returns:
A reference to the output stream.

Parameters:
out The output stream.

rhs The variable type being output.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

256 Reference Manual

6.14.6 Member Data Documentation

6.14.6.1 TYPE ABA_VARTYPE:type [pri vate]

The type of the variable.
Definition at line 122 of file vartype.h.

The documentation for this class was generated from theviolg file:

* Include/abacuséartype.h

6.15 ABA_FSVARSTAT Class Reference

status of fixed and set variables.
#i ncl ude <fsvarstat.h>
Inheritance diagram for ABA_FSVARSTAT::

| ABA_ABACUSROOT|

T

| ABA_FSVARSTAT |

Public Types

e enumSTATUS({
Free SetToLowerBoungdSet SetToUpperBound
FixedToLowerBoundFixed FixedToUpperBoundl
The enumeration defining the different statuses of variables from thegfoirgw of fixing and setting:.

Public Member Functions

* ABA_ FSVARSTAT (ABA_GLOBAL xglob)
This constructor initializes the status Bsee

* ABA_FSVARSTAT (ABA_GLOBAL xglob, STATUS status)

This constructor initializes the status explicitely.

 ABA FSVARSTAT (ABA_GLOBAL xglob, STATUS status, double value)
This constructor initializes the status explicitelyRixedor Set

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.15 ABA_FSVARSTAT Class Reference 257

e ABA_FSVARSTAT (ABA_FSVARSTAT «fsVarStat)
o STATUS statug) const
* void status(STATUS stat)

This version of the functiostatus()assigns a new status.

* void statug(STATUS stat, double val)

This version of the functiostatus()can assign a new status also for the statuseedand Set

* void status(constABA_FSVARSTAT xstat)
A version ofstatus()for assigning the status of an other object of the class ABA_FSVARSTAT.

 doublevalue() const
« void value(double val)

This version ofialue()assigns a new value of fixing or setting.

 boolfixed () const

* boolset() const

« boolfixedOrSet) const

* bool contradiction(ABA_FSVARSTAT «fsVarStat) const

We say there is a contradiction between two status if they are fixed/set tenlifferunds or values. However, two
statuses are not contradiction if one of them is “fixed” and the other onesé&t™; if this fixing/setting refers to the
same bound or value.

* bool contradiction(STATUS status, double value=0) const

Private Attributes

 ABA_GLOBAL x glob_
o STATUS status_
e doublevalue__

Friends

 ostream &operatox < (ostream &out, conSABA_FSVARSTAT &rhs)

The output operator writes the status and, if the statlExedor Set also its value on an output stream.

6.15.1 Detailed Description

status of fixed and set variables.

Definition at line 49 of file fsvarstat.h.

6.15.2 Member Enumeration Documentation

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

258 Reference Manual

6.15.2.1 enumABA_FSVARSTAT::STATUS
The enumeration defining the different statuses of vargatotem the point of view of fixing and setting:.

Parameters:
Free The variable is neither fixed nor set.

SetToLowerBoundThe variable is set to its lower bound.

Set The variable is set to a value which can be accessed with theberefunctionjvalue().
SetToUpperboundThe variable is set to its upper bound.

FixedToLowerBound The variable is fixed to its lower bound.

Fixed The variable is fixed to a value which can be accessed with graber functiorjvalue().
FixedToUpperBound The variable is fixed to its upper bound.

Enumeration values:
Free

SetToLowerBound
Set
SetToUpperBound
FixedToLowerBound
Fixed
FixedToUpperBound

Definition at line 65 of file fsvarstat.h.

6.15.3 Constructor & Destructor Documentation

6.15.3.1 ABA_FSVARSTAT:ABA_FSVARSTAT (ABA_GLOBAL xglob) [inli ne]

This constructor initializes the statuskee

Parameters:
glob A pointer to a global object.

Definition at line 227 of file fsvarstat.h.

6.15.3.2 ABA_FSVARSTAT::ABA_FSVARSTAT (ABA_GLOBAL x glob, STATUS statug
This constructor initializes the status explicitely.

Parameters:
glob A pointer to a global object.

status The initial status that must neither Be&xed nor Set For these two statuses the next constructor has to
be used.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.15 ABA_FSVARSTAT Class Reference 259

6.15.3.3 ABA_FSVARSTAT::ABA_FSVARSTAT (ABA_GLOBAL = glob, STATUS status doublevalue)
This constructor initializes the status explicitelyRioed or Set

Parameters:
glob A pointer to a global object.

status The initial status that must éixed or Set
value The value associated with the stakised or Set

6.15.3.4 ABA_FSVARSTAT::ABA_FSVARSTAT (ABA_FSVARSTAT « fsVarSta)
This constructor makes a copy.

Parameters:
fsVarStat The status is initialized with a copy efsVarStat

6.15.4 Member Function Documentation

6.15.4.1 bool ABA_FSVARSTAT::contradiction (STATUS status doublevalue= 0) const
Another version of the functioaontradiction()

Returns:
true If there is a contradiction between the status of thjeailand étatus value),
false otherwise.

Parameters:
status The status with which contradiction is checked.

value The value with which contradiction is checked. The defaaltie ofvalueis 0.

6.15.4.2 bool ABA_FSVARSTAT::contradiction (ABA_FSVARSTAT x fsVarSta) const

We say there is a contradiction between two status if thefixad/set to different bounds or values. However, two
statuses are not contradiction if one of them is “fixed” areldther one is “set”, if this fixing/setting refers to the
same bound or value.

Returns:
true If there is a contradiction between the status of thjsalandfsVarStat
false otherwise.

Parameters:
fsVarStat A pointer to the status with which contradiction is is tested

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

260 Reference Manual

6.15.4.3 bool ABA_FSVARSTAT::fixed () const

Returns:
true If the status i§ixedToLowerBoundrixed, or FixedToUpperBound
false otherwise.

6.15.4.4 bool ABA_FSVARSTAT::fixedOrSet () const [i nl i ne]

Returns:
false If the status iEree,
true otherwise.

Definition at line 265 of file fsvarstat.h.

6.15.4.5 bool ABA FSVARSTAT::set () const

Returns:
true If the status iSetToLowerBoundset or SetToUpperBound
false otherwise.

6.15.4.6 void ABA_ FSVARSTAT::status (consABA_ FSVARSTAT « sta) [i nli ne]

A version ofstatus()for assigning the status of an other object of the class ABBVARSTAT.

Parameters:
stat A pointer to the object that status and value is copied.

Definition at line 249 of file fsvarstat.h.

6.15.4.7 void ABA_FSVARSTAT::status STATUS stat, doubleval) [i nli ne]

This version of the functiostatus()can assign a new status also for the statée=d andSet

Parameters:
stat The new status.

val A value associated with the new status.

Definition at line 243 of file fsvarstat.h.

6.15.4.8 void ABA_FSVARSTAT::status STATUS sta)) [i nli ne]

This version of the functiostatus()assigns a new status.

For specifying also a value in case of the statudsred or Setthe next version of this function can be use.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.15 ABA_FSVARSTAT Class Reference 261

Parameters:
stat The new status.

Definition at line 238 of file fsvarstat.h.

6.15.4.9 ABA_FSVARSTAT::STATUS ABA_FSVARSTAT::status () const [i nl i ne]

Returns:
The status of fixing or setting.

Definition at line 233 of file fsvarstat.h.

6.15.4.10 void ABA_FSVARSTAT::value (doubleval) [i nli ne]

This version ofvalue()assigns a new value of fixing or setting.

Parameters:
val The new value.

Definition at line 260 of file fsvarstat.h.

6.15.4.11 double ABA_FSVARSTAT::value () const[i nl i ne]

Returns:
The value of fixing or setting if the variable has staffiseed or Set

Definition at line 255 of file fsvarstat.h.

6.15.5 Friends And Related Function Documentation

6.15.5.1 ostream& operatok < (ostream & out, constABA_FSVARSTAT & rhs) [fri end]

The output operator writes the status and, if the statksesd or Set also its value on an output stream.

Returns:
A reference to the output stream.

Parameters:
out The output stream.

rhs The variable status being output.

6.15.6 Member Data Documentation

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

262 Reference Manual

6.15.6.1 ABA_GLOBAL x ABA_FSVARSTAT:glob_ [pri vat €]

A pointer to the corresponding global object.

Definition at line 213 of file fsvarstat.h.

6.15.6.2 STATUS ABA_ FSVARSTAT::status_ [pri vat e]

The status of the variable.

Definition at line 217 of file fsvarstat.h.

6.15.6.3 doubleABA_FSVARSTAT::value_ [private]

The value the variable is fixed/set to.
This member is only used for the status®sed andSet
Definition at line 223 of file fsvarstat.h.

The documentation for this class was generated from theviol file:

¢ Include/abacuggvarstat.h

6.16 ABA LPVARSTAT Class Reference

After the solution of a linear program by the simplex methedlevariable receives a status indicating if the
variable is contained in the basis of the optimal solutiarismonbasic and has a value equal to its lower or upper
bound, or is a free variable not contained in the basis.

#i ncl ude <l pvarstat. h>
Inheritance diagram for ABA_LPVARSTAT::

| ABA_ABACUSROOT|

T

| ABA_LPVARSTAT |

Public Types

e enumSTATUS({
AtLowerBound Basig AtUpperBound NonBasicFreg
Eliminated Unknown}

The enumeration of the statuses a variable gets from the linear prograersolv

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.16 ABA_LPVARSTAT Class Reference 263

Public Member Functions

e ABA_LPVARSTAT (ABA_GLOBAL xglob)

* ABA_LPVARSTAT (ABA_GLOBAL xglob, STATUS status)
* ABA_LPVARSTAT (ABA_LPVARSTAT xlpVarStat)

e STATUS statug) const

* void status(STATUS stat)

This version oftatus()sets the status.

« void status(constABA_LPVARSTAT xstat)
Another version of the functicstatus()or setting the status.

 boolatBound() const
 boolbasic() const

Private Attributes

« ABA GLOBAL xglob_
e STATUS status_

Friends

 ostream &operatox < (ostream &out, consABA_LPVARSTAT &rhs)

The output operator writes thBTATUS to an output stream in the form { AtLowerBoundy}, { Basic}, { AtUpper
Bound}, { NonBasicFree}, { Eliminated}, { Unknown}.

6.16.1 Detailed Description

After the solution of a linear program by the simplex methadhevariable receives a status indicating if the
variable is contained in the basis of the optimal solutiarismonbasic and has a value equal to its lower or upper
bound, or is a free variable not contained in the basis.

Definition at line 51 of file Ipvarstat.h.

6.16.2 Member Enumeration Documentation

6.16.2.1 enumABA_LPVARSTAT::STATUS
The enumeration of the statuses a variable gets from tharlpr@gram solver:.

Parameters:
AtLowerBound The variable is at its lower bound, but not in the basis.

Basic The variable is in the basis.
AtUpperBound The variable is at its upper bound , but not in the basis.
NonBasicFree The variable is unbounded and not in the basis.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

264 Reference Manual

Eliminated The variable has been removed by our preprocessor in the AB& LPSUB. So, it is not
present in the LP-solver.

Unknown The LP-status of the variable is unknown since no LP has balgad This status is also assigned
to variables which are fixed or set, yet still contained in tfeto avoid a wrong setting or fixing by
reduced costs.

Enumeration values:
AtLowerBound

Basic
AtUpperBound
NonBasicFree
Eliminated
Unknown

Definition at line 73 of file Ipvarstat.h.

6.16.3 Constructor & Destructor Documentation

6.16.3.1 ABA_LPVARSTAT::ABA_LPVARSTAT (ABA_GLOBAL xglob) [inli ne]

This constructor initializes the statusldsknown

Parameters:
glob A pointer to the corresponding global object.

Definition at line 164 of file Ipvarstat.h.

6.16.3.2 ABA_LPVARSTAT::ABA_LPVARSTAT (ABA_GLOBAL = glob, STATUS statug [i nli ne]
This constructor initializes the ABA_LPVARSTAT.

Parameters:
glob A pointer to the corresponding global object.

status The initial status.

Definition at line 170 of file Ipvarstat.h.

6.16.3.3 ABA LPVARSTAT::ABA_LPVARSTAT (ABA_LPVARSTAT =x IpVarSta) [i nli ne]
This constructor make a copy eljpVarStat

Parameters:
IpVarStat A copy of this object is made.

Definition at line 176 of file Ipvarstat.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.16 ABA_LPVARSTAT Class Reference 265

6.16.4 Member Function Documentation

6.16.4.1 bool ABA_LPVARSTAT::atBound () const [i nl i ne]

Returns:
true If the variable status &tUpperBoundbr AtLowerBound
false otherwise.

Definition at line 197 of file Ipvarstat.h.

6.16.4.2 bool ABA LPVARSTAT::basic () const [i nl i ne]

Returns:
true If the status iBasig
false otherwise.

Definition at line 203 of file Ipvarstat.h.

6.16.4.3 void ABA_LPVARSTAT::status (constABA LPVARSTAT =« sta) [i nline]
Another version of the functiostatus()for setting the status.

Parameters:
stat The new LP-status.

Definition at line 192 of file Ipvarstat.h.
6.16.4.4 void ABA_LPVARSTAT::status (STATUS sta)) [i nli ne]

This version ofstatus()sets the status.

Parameters:
stat The new LP-status.

Definition at line 187 of file Ipvarstat.h.

6.16.4.5 ABA LPVARSTAT::STATUS ABA LPVARSTAT::status () const [inline]

Returns:
The LP-status.

Definition at line 182 of file Ipvarstat.h.

6.16.5 Friends And Related Function Documentation

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

266 Reference Manual

6.16.5.1 ostream& operatok < (ostream & out, constABA_LPVARSTAT & rhs) [friend]

The output operator writes tH&TATUSO0 an output stream in the form { AtLowerBound}, { Basic}, { Atppei\-
Bound}, { NonBasicFree}, { Eliminated}, { Unknown}.

Returns:
A reference to the output stream.

Parameters:
out The output stream.

rhs The status being output.

6.16.6 Member Data Documentation

6.16.6.1 ABA_GLOBAL x ABA_LPVARSTAT::glob_ [pri vat €]

A pointer to the corresponding global object.

Definition at line 156 of file Ipvarstat.h.

6.16.6.2 STATUS ABA LPVARSTAT::status_ [pri vate]

The LP-status.
Definition at line 160 of file Ipvarstat.h.

The documentation for this class was generated from theviolg file:

* Include/abacufpvarstat.h

6.17 ABA_SLACKSTAT Class Reference

As for the structural variables the simplex method alsogassa unique status to each slack variable. A slack
variable can be a basic or a nonbasic variable.

#i ncl ude <sl ackstat. h>
Inheritance diagram for ABA_SLACKSTAT::

| ABA_ABACUSROOT|

T

| ABA_SLACKSTAT |

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.17 ABA_SLACKSTAT Class Reference 267

Public Types

* enumSTATUS{ Basic NonBasicZerpNonBasicNonZerpUnknown}

Public Member Functions

e ABA SLACKSTAT (constABA_ GLOBAL xglob)
This constructor initializes the status Bisknown

o ABA_SLACKSTAT (constABA_GLOBAL xglob, STATUS status)
STATUS statug) const
* void status(STATUS stat)

This version of the functiostatus()sets the status of the slack variable.

« void status(constABA_SLACKSTAT xstat)
This version of the functiostatus()sets the status to the onesdtat

Private Attributes
e constABA_GLOBAL =« glob_
o STATUS status_

Friends

 ostream &operatox < (ostream &out, CoOnSABA_SLACKSTAT &rhs)

The output operator writes the status to an output stream in the format { Bé@dlonBasicZero}, { Nok-Basic\-
Non\-Zero}, or { Unknown}.

6.17.1 Detailed Description

As for the structural variables the simplex method alsogassa unique status to each slack variable. A slack
variable can be a basic or a nonbasic variable.

Definition at line 50 of file slackstat.h.

6.17.2 Member Enumeration Documentation

6.17.2.1 enumABA_ SLACKSTAT::STATUS
The different statuses of a slack variable:

Parameters:
Basic The slack variable belongs to the basis.

NonBasicZero The slack variable does not belong to the basis and has vatae z

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

268 Reference Manual

NonBasicNonZero The slack variable does not belong to the basis and has anoovedae.

Unknown The status of the slack variable is not known since no lingagqam with the corresponding
constraint has been solved.

Enumeration values:
Basic

NonBasicZero
NonBasicNonZero
Unknown

Definition at line 64 of file slackstat.h.

6.17.3 Constructor & Destructor Documentation

6.17.3.1 ABA_SLACKSTAT::ABA_SLACKSTAT (const ABA_GLOBAL xglob) [inline]

This constructor initializes the statusldsknown

Parameters:
glob A pointer to the corresponding global object.

Definition at line 137 of file slackstat.h.

6.17.3.2 ABA_SLACKSTAT::ABA_SLACKSTAT (const ABA_GLOBAL = glob, STATUS statug
[inline]

A constructor with initialization.

Parameters:
glob A pointer to the corresponding global object.

status The slack variable receives the stastgtus

Definition at line 143 of file slackstat.h.

6.17.4 Member Function Documentation

6.17.4.1 void ABA_SLACKSTAT::status (constABA_SLACKSTAT s« sta)) [i nli ne]
This version of the functiostatus()sets the status to the onesaftat

Parameters:
stat The status of the slack variable is set&iat

Definition at line 159 of file slackstat.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.17 ABA_SLACKSTAT Class Reference 269

6.17.4.2 void ABA_SLACKSTAT::status (STATUS sta) [i nli ne]
This version of the functiostatus()sets the status of the slack variable.

Parameters:
stat The new status of the slack variable.

Definition at line 154 of file slackstat.h.

6.17.4.3 ABA_SLACKSTAT::STATUS ABA_SLACKSTAT::status () const [i nli ne]

Returns:
The status of the slack variable.

Definition at line 149 of file slackstat.h.

6.17.5 Friends And Related Function Documentation

6.17.5.1 ostream& operatok < (ostream & out, constABA_SLACKSTAT & rhs) [fri end]

The output operator writes the status to an output streaheiformat { Basic}, { NonBasicZero}, { Noy-Basic\-
Non\-Zero}, or { Unknown}.

Returns:
A reference to the output stream.

Parameters:
out The output stream.

rhs The status being output.

6.17.6 Member Data Documentation

6.17.6.1 consABA GLOBAL x ABA_SLACKSTAT::glob_ [private]
A pointer to the corresponding global object.

Definition at line 129 of file slackstat.h.

6.17.6.2 STATUS ABA_SLACKSTAT::status_ [pri vat e]

The status of the slack variable.
Definition at line 133 of file slackstat.h.

The documentation for this class was generated from theviall file:

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

270 Reference Manual

¢ Include/abacuslackstat.h

6.18 ABA_LP Class Reference

section provides a generic interface class to linear pragr&om which we will derive further classes both for the
solution of LP-relaxationsABA_LPSUB) with a\ algorithm and for interfaces to LP-solvesRA_OSIIF).

#i ncl ude <l p. h>
Inheritance diagram for ABA_LP::

| ABA_ABACUSROOT|

T

| ABA_LP |

i
[|

| ABA_LPSUB || ABA_OSIIF |

| |

| ABA_LPSUBOSI || ABA_LPSUBOSI |

Public Types

e enumOPTSTAT{
Optimal Unoptimized Error, Feasible

Infeasible Unbounded
e enumSOLSTAT{ Available Missing}

This enumeration describes if parts of the solution likevalues, reduced costs, etc. are available.

e enumMETHOD {
Primal Dual, BarrierAndCrossoveBarrierNoCrossover
Approximate}

Public Member Functions

* ABA_LP (ABA_MASTER xmaster)
e virtual ~ABA_LP ()

The destructor.

« voidinitialize (ABA_OPTSENSEsense, int nRow, int maxRow, int nCol, int maxCABA_ARRAY < dou-
ble > &obj, ABA_ARRAY < double> &IBound, ABA_ARRAY < double> &uBound, ABA_ARRAY <
ABA_ROW x > &rows)

« voidinitialize (ABA_OPTSENSEsense, int nRow, int maxRow, int nCol, int maxCABA_ARRAY < dou-
ble > &obj, ABA_ARRAY < double> &IBound, ABA_ARRAY < double> &uBound, ABA_ARRAY <
ABA_ROW x > &rows, ABA_ARRAY < ABA_LPVARSTAT::STATUS > &lIpVarStat, ABA_ARRAY <
ABA_SLACKSTAT::STATUS > &slackStat)

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.18 ABA_LP Class Reference 271

This version of the functiomitialize() performs like its previous version, but also initializes the basis with the
arguments:.

e virtual void loadBasis(ABA_ARRAY < ABA_LPVARSTAT::STATUS > &lpVarStat, ABA_ARRAY <
ABA_SLACKSTAT::STATUS > &slackStat)

 ABA OPTSENSE sensfg const

* void sensgconstABA OPTSENSE&newSense)

* int nRow/() const

 int maxRow() const

« intnCol () const

« int maxCol() const

e int nnz() const

 doubleobj (int i) const

e doublelBound(int i) const

 doubleuBound(int i) const

* void row (int i, ABA_ROW &r) const

 doublerhs(int i) const

« virtual doublevalue() const

« virtual doublexVal (int i)

« virtual doublebarXVal (int i)

« virtual doublereco(int i)

« virtual doubleyVal (int c)

« virtual doubleslack(int c)

e SOLSTAT xValStatug) const

e SOLSTAT barXValStatug) const

e SOLSTAT yValStatug) const

o SOLSTAT recoStatu§ const

e SOLSTAT slackStatu§ const

e SOLSTAT basisStatug const

* int nOpt() const

« virtual boolinfeasible() const

« virtual int getinfeaqint &infeasRow, int &infeasCol, doubleblnvRow)

Can be called if the last linear program has been solved with the dual simmpéglod and is infeasible and all
inactive variables price out correctly.

* virtual ABA_LPVARSTAT::STATUS IpVarSta{int i)

o virtual ABA_SLACKSTAT::STATUS slackStafint i)

« virtual OPTSTAT optimiz§ METHOD method)

* void remRows(ABA_BUFFER< int > &ind)

* void addRowqABA_BUFFER< ABA_ROW x > &newRows)
* void remCols(ABA_BUFFER< int > &cols)

* void addCols(ABA_BUFFER< ABA_COLUMN x* > &newCols)
 void changeRh$ABA_ARRAY < double> &newRhs)

« virtual void changeLBoundint i, double newLb)

« virtual void changeUBoundint i, double newUb)

« virtual int pivotSlackVariableIfABA_BUFFER< int > &rows)
« void rowRealloc(int newSize)

« void colRealloc(int newSize)

« int writeBasisMatrix(const chakfileName)

Writes the complete basis of an optimal linear program to a file.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

272 Reference Manual

« int setSimplexIterationLimiint limit)
« int getSimplexlIterationLimifint &limit)
* ABA CPUTIMER * IpSolverTime()

Protected Member Functions

« void colsNnz(int nRow,ABA_ARRAY < ABA_ROW x > &rows, ABA_ARRAY < int > &nnz)

« void rows2cols(int nRow, ABA_ARRAY < ABA_ROW x > &rows, ABA_ARRAY < ABA_SPARVEC %
> &cols)

« void rowRangeCheckint r) const

« void colRangeCheckint i) const

« virtual ABA_OPTSENSE _sengg const =0

The pure virtual function sense(Jnust be defined by the used LP-solver and return the sense of the aitmiz

* virtual void _sensdconstABA_OPTSENSE&newSense)=0
e virtual int_nRow() const =0

The pure virtual function nRow() must be defined by the used LP-solver and return the number of rothe o
problem.

e virtual int_maxRow() const =0
The pure virtual function maxRow()must be defined by the used LP-solver and return the maximal nuriioevd

e virtual int_nCol() const =0
The pure virtual function nCol() must be defined by the used LP-solver and return the number of celumn

« virtual int_maxCol() const =0

The pure virtual function maxCol()must be defined by the the used LP-solver and return the maximal naifnbe
columns.

e virtual int_nnz() const =0

The pure virtual function nnz()must be defined by the used LP-solver and return the number ofmaieenents
of the constraint matrix not including the right hand side and the boundiseo¥ariables.

« virtual double_obj(int i) const =0

The pure virtual function obj() must be defined by the used LP-solver and return the objective funcediicamnt
of variablei.

« virtual double_IBound(int i) const =0
The pure virtual function IBound()must be defined by the used LP-solver and return the lower boundiableai.

« virtual double_uBound(int i) const =0

The pure virtual function uBound()must be defined by the used LP-solver and return the upper bourzdiable
i

e virtual double_rhs(int i) const =0
The pure virtual function rhs()must be defined by the used LP-solver and return the right hand samsfrainti.

e virtual void _row (int i, ABA_ROW &r) const =0

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.18 ABA_LP Class Reference 273

e virtual void _initialize (ABA_OPTSENSE sense, int nRow, int maxRow, int nCol, int maxCol,
ABA_ARRAY < double > &obj, ABA_ARRAY < double > &IBound, ABA_ARRAY < double > &u-
Bound,ABA_ARRAY < ABA_ROW % > &rows)=0

The pure virtual function initialize() must be defined by the used LP-solver and should initialize the LP-saker w

« virtual void _loadBasis(ABA_ARRAY < ABA_LPVARSTAT::STATUS > &lpVarStat, ABA_ARRAY <
ABA_SLACKSTAT::STATUS > &slackStat)=0
* virtual OPTSTAT _ primalSimplex)=0

The pure virtual function primalSimplex(must be defined by the used LP-solver and should call the primal simplex
method of the used LP-solver.

* virtual OPTSTAT _dualSimplex)=0

The pure virtual function dualSimplex()must be defined by the used LP-solver and should call the dual simplex
method of the used LP-solver.

« virtual OPTSTAT _barriefbool doCrossover)=0

The pure virtual function barrier()must be defined by the used LP-solver and should call the barrier chefttbe
used LP-solver.

« virtual OPTSTAT _approX)=0

The pure virtual function approx()must be defined by the used LP-solver and should call the approximeagived
of the used LP-solver.

« virtual double_value() const =0

The pure virtual function value()must be defined by the used LP-solver and should return the optimueofahe
linear program after it has been solved.

« virtual double_xVal (inti)=0

The pure virtual function xVal() must be defined by the used LP-solver and should return the valueialbled in
the LP-solution.

« virtual double_barXVal(int i)=0
« virtual double_reco(int i)=0

The pure virtual function reco() must be defined by the used LP-solver and should return the redestdf
variablei.

« virtual double_slack(int i)=0

The pure virtual function slack()must be defined by the used LP-solver and should return the value siaitie
variablei.

« virtual double_yVal (int i)=0

The pure virtual function yVal() must be defined by the used LP-solver and should return the value dtitthe
variable of the constrainit

« virtual ABA_LPVARSTAT::STATUS _IpVarSta(int i)=0

The pure virtual function IpVarStat()must be defined by the used LP-solver and should return the status of the
variablei in the LP-solution.

« virtual ABA_SLACKSTAT::STATUS _slackStatint i)=0

The pure virtual function slackStat(nust be defined by the used LP-solver and should return the statusstéitke
variablei in the LP-solution.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

274 Reference Manual

virtual int _getinfeagint &infeasRow, int &infeasCol, doubleblnvRow)=0

The pure virtual function getinfeas(must be defined by the used LP-solver and can be called if the last linear
program has been solved with the dual simplex method and is infeasible.

virtual void_remRowgABA_BUFFER< int > &ind)=0

The pure virtual function remRows()must be defined by the used LP-solver and should remove the rows with
numbers given in the buffénd from the LP-solver.

virtual void _addRowgABA_BUFFER< ABA_ROW x > &newRows)=0

The pure virtual function addRows(must be defined by the used LP-solver and should add the rows gives in th
buffernewRowsto the LP.

virtual void _remCols(ABA_BUFFER< int > &vars)=0

The pure virtual function remCols()must be defined by the used LP-solver and should remove the coldthns w
numbers given ivarsfrom the LP.

virtual void _addColfABA_BUFFER< ABA_COLUMN x > &newCols)=0

The pure virtual function addCols(must be defined by the used LP-solver and should add the cohewolsto
the LP.

virtual void _changeRh§ABA_ARRAY < double> &newRhs)=0

The pure virtual function changeRhs(nust be defined by the used LP-solver and should set the right handfsid
the constraint matrix of the LP toewRhs

virtual void _changeLBoundint i, double newLb)=0

The pure virtual function changeLBound(nust be defined by the used LP-solver and should set the lower bound
of variablei to newLh

virtual void _changeUBoundnt i, double newUb)=0

The pure virtual function changeLBound(inust be defined by the used LP-solver and should set the upper bound
of variablei to newUh

virtual int _pivotSlackVariableI{ABA_BUFFER< int > &rows)=0
The functiorpivotSlackVariableIn(pivots the slack variables stored in the buffewsinto the basis.

virtual void _rowRealloq(int newSize)=0

The pure virtual function rowRealloc()must be defined in the used LP-solver and should reallocate its memory
such that up tenewSizerows can be handled.

virtual void _colRealloq(int newSize)=0

The pure virtual function colRealloc(must be defined by the used LP-solver and should reallocate its meubry s
that up tonewSizecolumns can be handled.

virtual int _setSimplexIterationLimigint limit)=0

The functiorsetSimplexIterationLimit(thanges the iteration limit of the Simplex algorithm.

virtual int _getSimplexIterationLimiint &limit)=0

The functiorgetSimplexlterationLimit(yetrieves the value of the iteration limit of the simplex algorithm.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.18 ABA_LP Class Reference 275

Protected Attributes

e ABA MASTER % master_
* OPTSTAT optStat_
* SOLSTAT xValStatus_

This member becoméwailable if the = -values of the optimal solution can be accessed with the fungiai(),
otherwise it has the valuglissing

e SOLSTAT barXValStatus_
e SOLSTAT yValStatus_

This member becoméwailableif the values of the dual variables of the optimal solution can be accessethe
functionyVal(), otherwise it has the valudissing/.

e SOLSTAT recoStatus__

This member becom@sailableif the reduced costs of the optimal solution can be accessed with the furetiaf)
otherwise it has the valugissing

e SOLSTAT slackStatus_

This member becoméwailableif the values of the slack variables of the optimal solution can be accesgethe
functionslack() otherwise it has the valudissing

e SOLSTAT basisStatus_

This member becoméwailableif the status of the variables and the slack variables of the optimal solutiobhean
accessed with the functiofvarStat()andslackStat() otherwise it has the valudissing

e intnOpt_
* ABA_CPUTIMER IpSolverTime_
Private Member Functions

* void initPostOpt()
Resets the optimization status and the availability statuses of the solution.

e ABA_LP (constABA_LP &rhs)
e constABA LP & operatorconstABA_LP &rhs)
Friends

» ostream &operatok < (ostream &out, consABA_LP &rhs)

The output operator writes the objective function, followed by the constrair@younds on the columns and the
solution values (if available) to an output stream.

6.18.1 Detailed Description

section provides a generic interface class to linear progr&rom which we will derive further classes both for the
solution of LP-relaxationsABA_LPSUB) with a\ algorithm and for interfaces to LP-solve’sRA_OSIIF).

Definition at line 70 of file Ip.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

276 Reference Manual

6.18.2 Member Enumeration Documentation

6.18.2.1 enumABA_LP::METHOD
The solution method for the linear program.

Parameters:
Primal The primal simplex method.

Dual The dual simplex method.

BarrierAndCrossoverThe barrier method followed by a crossover to a basis.
BarrierNoCrossoverThe barrier method without crossover.

Approximate An approximative solver

Enumeration values:
Primal

Dual
BarrierAndCrossover
BarrierNoCrossover
Approximate

Definition at line 107 of file Ip.h.

6.18.2.2 enumABA_LP::OPTSTAT
The optimization status of the linear program.

Parameters:
Unoptimized Optimization is still required, this is also the case forpgmization.

Optimized The optimization has been performed, yet only a cal(}ocan give us the status of optimization.
Error An error has happened during optimization.

Optimal The optimal solution has been computed.

Feasible A primal feasible solution for the linear program, but nat tiptimal solution has been found.
Infeasible The linear program is primal infeasible.

Unbounded The linear program is unbounded.

Enumeration values:
Optimal

Unoptimized
Error
Feasible
Infeasible
Unbounded

Definition at line 87 of file Ip.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.18 ABA_LP Class Reference 277

6.18.2.3 enumABA_LP::SOLSTAT

This enumeration describes if parts of the solution likealues, reduced costs, etc. are available.

Parameters:
Available The part of the solution is available.

Missing The part of the solution is missing.

Enumeration values:
Available

Missing

Definition at line 96 of file Ip.h.

6.18.3 Constructor & Destructor Documentation

6.18.3.1 ABA _LP::ABA LP (ABA_MASTER x maste)
The constructor.

Parameters:
master A pointer to the corresponding master of the optimization.

6.18.3.2 virtual ABA_LP::~ABA LP () [virtual]

The destructor.

6.18.3.3 ABA _LP::ABA_LP (constABA LP & rhs) [private]

6.18.4 Member Function Documentation

6.18.4.1 virtual void ABA_LP::_addCols (ABA_BUFFER< ABA_COLUMN x > & newCol3
[protected, pure virtual]

The pure virtual function addCols()must be defined by the used LP-solver and should add the celnewCols
to the LP.

Implemented ilABA_OSIIF.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

278 Reference Manual

6.18.4.2 virtual void ABA_LP::_addRows ABA BUFFER< ABA_ROW x > & newRow$}
[protected, pure virtual]

The pure virtual function addRows(Jnust be defined by the used LP-solver and should add the reas bji the
buffer newRowso the LP.

Implemented ilABA_OSIIF.

6.18.4.3 virtual OPTSTAT ABA LP:: approx () [protected, pure virtual]

The pure virtual function approx() must be defined by the used LP-solver and should call the zippative
method of the used LP-solver.

Implemented ilABA_OSIIF.

6.18.4.4 virtual OPTSTAT ABA_LP:: barrier (bool doCrossover [protected, pure virtual]

The pure virtual function barrier() must be defined by the used LP-solver and should call thegbam@thod of
the used LP-solver.

Implemented irABA_OSIIF.

6.18.4.5 virtual double ABA_LP::_barXVal (int i) [protected, pure virtual]

Implemented ilABA_OSIIF.

6.18.4.6 virtual void ABA_LP::_changeLBound (inti, double newLb) [protected, pure
virtual]

The pure virtual function changeLBound(nust be defined by the used LP-solver and should set the lawerch
of variablei to newLh
Implemented ilABA_OSIIF.

6.18.4.7 virtual void ABA_LP::_changeRhs ABA_ARRAY < double > & newRh3 [prot ect ed,
pure virtual]

The pure virtual function changeRhs(nust be defined by the used LP-solver and should set the ragitt ide
of the constraint matrix of the LP toewRhs

Implemented ilABA_OSIIF.

6.18.4.8 virtual void ABA_LP::_changeUBound (inti, doublenewUl [protected, pure
vi rtual]

The pure virtual function changeLBoundnust be defined by the used LP-solver and should set the uppadb
of variablei to newUh

Implemented ilABA_OSIIF.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.18 ABA_LP Class Reference 279

6.18.4.9 virtual void ABA_LP::_colRealloc (intnewSiz¢ [protected, pure virtual]

The pure virtual function colRealloc()must be defined by the used LP-solver and should reallocatedmory
such that up tmewSizecolumns can be handled.

Implemented ilABA_OSIIF.

6.18.4.10 virtualOPTSTAT ABA_LP::_dualSimplex () [protected, pure virtual]

The pure virtual function dualSimplex(must be defined by the used LP-solver and should call the duplex
method of the used LP-solver.

Implemented ilABA_OSIIF.

6.18.4.11 virtual int ABA_LP::_getinfeas (int & infeasRow int & infeasCol double x« biInvRow)
[protected, pure virtual]

The pure virtual function getinfeas(Imust be defined by the used LP-solver and can be called if ghdinear
program has been solved with the dual simplex method anddasible.

In this case it should compute the infeasible basic variableonstraint and the corresponding roimvRowof
the basis inverse. Eith@feasRowor infeasColis nonnegative. The nonnegative argument is an infeasilleor
column, respectively.

Returns:
0 if it is successful
1 otherwise.

Implemented ilABA_OSIIF.

6.18.4.12 virtual int ABA_LP::_getSimplexlIterationLimit (int & limit) [protected, pure
vi rtual]

The functiongetSimplexiterationLimit()etrieves the value of the iteration limit of the simplexai¢ghm.

Returns:
0 If the iteration limit could be get,
1 otherwise.

Parameters:
limit Stores the value of the iteration limit if the function ratsi0.

Implemented ilABA_OSIIF.

6.18.4.13 virtual void ABA_LP::_initialize (ABA_OPTSENSE senseint nRow, int maxRow int nCol, int
maxCol ABA_ARRAY < double > & obj, ABA_ARRAY < double > & IBound, ABA_ARRAY <
double > & uBound, ABA_ARRAY < ABA_ROW x > & rows) [protected, pure
virtual]

The pure virtual function initialize() must be defined by the used LP-solver and should initialieeL#-solver
with.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

280 Reference Manual

Parameters:
senseThe sense of the optimization.

nRow The number of rows.

maxRow The maximal number of rows.

nCol The number of columns.

maxCol The maximal number of columns.

obj An array with the objective functions coefficients.
IBound An array with the lower bounds of the variables.
uBound An array with the upper bounds of the variables.

rows An array storing the constraint matrix in row format.

Implemented irABA_OSIIF.

6.18.4.14 virtual double ABA LP:: IBound (inti) const [protected, pure virtual]

The pure virtual function IBound()must be defined by the used LP-solver and return the lowerdoftiariable
i

Implemented ilABA_OSIIF.

6.18.4.15 virtual void ABA_LP::_loadBasis ABA_ARRAY < ABA LPVARSTAT::STATUS > &
IpVarStat ABA_ARRAY < ABA_SLACKSTAT::STATUS > & slackStaj [prot ect ed,
pure virtual]

This pure virtual function should load a basis into the LR#so

Parameters:
IpVarStat An array storing the status of the variables.

slackStat An array storing the status of the slack variables.

Implemented ilABA_OSIIF.

6.18.4.16 virtualABA_LPVARSTAT::STATUS ABA_LP::_IpVarStat (int i) [protected, pure
virtual]

The pure virtual function IpVarStat()must be defined by the used LP-solver and should return thesstéthe
variablei in the LP-solution.

Implemented ilABA_OSIIF.

6.18.4.17 virtual int ABA_LP::_maxCol () const [protected, pure virtual]

The pure virtual function maxCol()must be defined by the the used LP-solver and return the marimasber of
columns.

Implemented ilABA_OSIIF.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.18 ABA_LP Class Reference 281

6.18.4.18 virtual int ABA_LP::_maxRow () const [protected, pure virtual]

The pure virtual function maxRow(must be defined by the used LP-solver and return the maxinmabau of
rows.

Implemented ilABA_OSIIF.

6.18.4.19 virtual int ABA_LP::_nCol () const [protected, pure virtual]

The pure virtual function nCol() must be defined by the used LP-solver and return the numbelwhaos.
Implemented irABA_OSIIF.

6.18.4.20 virtualint ABA_LP::_nnz () const [protected, pure virtual]

The pure virtual function nnz()must be defined by the used LP-solver and return the numbenaieno elements
of the constraint matrix not including the right hand sidd &me bounds of the variables.

Implemented ilABA_OSIIF.

6.18.4.21 virtual int ABA_LP::_nRow () const [protected, pure virtual]

The pure virtual function nRow()must be defined by the used LP-solver and return the numbemsf of the
problem.

Implemented ilABA_OSIIF.

6.18.4.22 virtual double ABA_LP::_obj(inti) const [protected, pure virtual]

The pure virtual function obj() must be defined by the used LP-solver and return the objdctiation coefficient
of variablei.

Implemented irABA_OSIIF.

6.18.4.23 virtual int ABA_LP::_pivotSlackVariableln (ABA_BUFFER< int > & rows) [prot ect ed,
pure virtual]

The functionpivotSlackVariableln(pivots the slack variables stored in the buff@wsinto the basis.
Returns:

0 All variables could be pivoted in,
1 otherwise.

Parameters:
rows The numbers of the slack variables that should be pivoted in.

Implemented ilABA_OSIIF.

6.18.4.24 virtual OPTSTAT ABA_LP::_primalSimplex () [protected, pure virtual]

The pure virtual function primalSimplex()must be defined by the used LP-solver and should call the prima
simplex method of the used LP-solver.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

282 Reference Manual

Implemented ilABA_OSIIF.

6.18.4.25 virtual double ABA LP:: reco (inti) [protected, pure virtual]

The pure virtual function reco() must be defined by the used LP-solver and should return theceeldcost of
variablei.

Implemented ilABA_OSIIF.

6.18.4.26 virtual void ABA_LP:: remCols (ABA BUFFER< int > & varg [protected, pure
virtual]

The pure virtual function remCols()must be defined by the used LP-solver and should remove thenoglwith
numbers given ivarsfrom the LP.

Implemented ilABA_OSIIF.

6.18.4.27 virtual void ABA_LP:;_remRows ABA_BUFFER< int > & ind) [protected, pure
virtual]

The pure virtual function remRows()must be defined by the used LP-solver and should remove the \atlv
numbers given in the buffend from the LP-solver.

Implemented ilABA_OSIIF.

6.18.4.28 virtual double ABA_LP:: rhs (inti) const [protected, pure virtual]

The pure virtual function rhs()must be defined by the used LP-solver and return the right sigledof constraint
i

Implemented ilABA_OSIIF.

6.18.4.29 virtual void ABA_LP::_row (int i, ABA_ROW & r)const [protected, pure virtual]

The pure virtual function row() must be defined by the used LP-solver and storétheow of the problem in the
rowr.

Implemented ilABA_OSIIF.

6.18.4.30 virtual void ABA_LP::_rowRealloc (intnewSiz¢ [protected, pure virtual]

The pure virtual function rowRealloc()must be defined in the used LP-solver and should reallocatae@mory
such that up tmewSizeows can be handled.

Implemented ilABA_OSIIF.

6.18.4.31 virtual void ABA_LP::_sense (consABA OPTSENSE& newSensg [protected, pure
virtual]

Implemented ilABA_OSIIF.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.18 ABA_LP Class Reference 283

6.18.4.32 virtualABA_OPTSENSEABA LP:: sense () const [protected, pure virtual]

The pure virtual function sense(nust be defined by the used LP-solver and return the sense opthmization.
Implemented ilABA_OSIIF.

6.18.4.33 virtual int ABA_LP::_setSimplexlterationLimit (int limit) [protected, pure virtual]
The functionsetSimplexlterationLimit@hanges the iteration limit of the Simplex algorithm.
Returns:

0 If the iteration limit could be set,
1 otherwise.

Parameters:
limit The new value of the iteration limit.

Implemented ilABA_OSIIF.

6.18.4.34 virtual double ABA_LP:: slack (inti) [protected, pure virtual]

The pure virtual function slack()must be defined by the used LP-solver and should return thie wdlthe slack
variablei.

Implemented ilABA_OSIIF.

6.18.4.35 virtualABA_SLACKSTAT::STATUS ABA LP:: slackStat (inti) [protected, pure
vi rtual]

The pure virtual function slackStat(must be defined by the used LP-solver and should return thesstéthe
slack variable in the LP-solution.

Implemented ilABA_OSIIF.
6.18.4.36 virtual double ABA_LP::_uBound (inti) const [protected, pure virtual]

The pure virtual function uBound()must be defined by the used LP-solver and return the uppedbafuariable
i

Implemented ilABA_OSIIF.
6.18.4.37 virtual double ABA_LP::_value () const [prot ected, pure virtual]

The pure virtual function value()must be defined by the used LP-solver and should return theapt value of
the linear program after it has been solved.

Implemented ilABA_OSIIF.

6.18.4.38 virtual double ABA LP:: xVal (inti) [protected, pure virtual]

The pure virtual function xVal() must be defined by the used LP-solver and should return the wdlvariable
in the LP-solution.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

284 Reference Manual

Implemented ilABA_OSIIF.

6.18.4.39 virtual double ABA _LP::_yVal (inti) [protected, pure virtual]

The pure virtual function yVal() must be defined by the used LP-solver and should return the wdlthe dual
variable of the constrairnt

Implemented ilABA_OSIIF.
6.18.4.40 void ABA_LP::addCols ABA_BUFFER< ABA_COLUMN x > & newCol3

Adds columns to the linear program.

If the new number of columns exceeds the maximal number aicos a reallocation is performed.

Parameters:
newCols The new columns that are added.

6.18.4.41 void ABA_LP::addRows ABA_BUFFER< ABA_ROW x > & newRow3

Adds rows to the linear program.

If the new number of rows exceeds the maximal number of rovesbocation is performed.

Parameters:
newRowsThe rows that should be added to the linear program.

6.18.4.42 double ABA LP::barXVal (inti) [inline, virtual]
Reimplemented idBA_LPSUB.

Definition at line 793 of file Ip.h.

6.18.4.43 ABA LP::SOLSTAT ABA_LP::barXValStatus () const [i nli ne]

Definition at line 830 of file Ip.h.

6.18.4.44 ABA LP::SOLSTAT ABA_LP::basisStatus () const [i nl i ne]

Definition at line 850 of file Ip.h.

6.18.4.45 virtual void ABA_LP::changeLBound (inti, doublenewLb) [virtual]
Changes the lower bound of a single column.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.18 ABA_LP Class Reference 285

Parameters:
i The column.

newlLb The new lower bound of the column.

Reimplemented idBA_LPSUB.

6.18.4.46 void ABA_LP::changeRhsABA_ARRAY < double > & newRh3g
Changes the complete right hand side of the linear program.

Parameters:
newRhs The new right hand side of the rows.

6.18.4.47 virtual void ABA_LP::changeUBound (inti, doublenewUb [vi rtual]
Changes the upper bound of a single column.

Parameters:
i The column.

newUb The new upper bound of the column.

Reimplemented idBA LPSUB.

6.18.4.48 void ABA_LP::colRangeCheck (int) const [prot ect ed]
Terminates the program if there is no column with index

Parameters:
i The number of a column.

6.18.4.49 void ABA_LP::colRealloc (intnewSizé

Performs a reallocation of the column space of the lineagnaimo.

Parameters:
newSize The new maximal number of columns of the linear program.

Reimplemented iMBA_LPSUB.

6.18.4.50 void ABA_LP::colsNnz (inthRow, ABA_ARRAY < ABA_ROW x > & rows, ABA_ARRAY < int
> & nnz) [protected]

Computes the number of nonzero elements in each column @€a get of rows.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

286 Reference Manual

Parameters:
nRow The number of rows.

rows The array storing the rows.

nnz An array of length at least the number of columns of the liqagram which will hold the number of
nonzero elements of each column.

6.18.4.51 virtual int ABA_LP::getinfeas (int & infeasRow int & infeasCol double x biInvRow)
[virtual]

Can be called if the last linear program has been solved Wwihdual simplex method and is infeasible and all
inactive variables price out correctly.

Then, the basis is dual feasible, but primal infeasible, §@me variables or slack variables violate their bounds.
In this case the functiogetinfeas(determines an infeasible variable or slack variable.

Returns:
0 On success,
1 otherwise.

Parameters:
infeasRow Holds after the execution the number of an infeasible slaclable, or—1 .

infeasVar Holds after the execution the number of an infeasible coluwnn-1 .

binvRow Holds after the execution the row of the basis inverse cparding to the infeasible column or
slack variable, which is always a basic variable gétinfeas()is successful, then eith@rfeasRowor
infeasVaris —1 and the other argument holds the nonnegative number of tbasiible variable.

Reimplemented idBA_LPSUB.

6.18.4.52 int ABA_LP::getSimplexiterationLimit (int & limit)

Returns:
0 If the iteration limit could be get,
1 otherwise.

Parameters:
limit Stores the iteration limit if the return value is 0.

6.18.4.53 bool ABA_LP:infeasible () const[inline, virtual]

Reimplemented idBA_LPSUB.
Definition at line 860 of file Ip.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.18 ABA_LP Class Reference 287

6.18.4.54 void ABA_LP::initialize (ABA_OPTSENSE senseint nRow, int maxRow int nCol,
int maxCol ABA_ARRAY < double > & obj, ABA_ARRAY < double > & IBound,
ABA_ARRAY < double > & uBound, ABA_ARRAY < ABA_ROW x > & rows ABA_ ARRAY <
ABA LPVARSTAT::STATUS > & IpVarStat ABA_ARRAY < ABA_SLACKSTAT::STATUS >
& slackStaj

This version of the functiomnitialize() performs like its previous version, but also initializeg thasis with the
arguments:.

Parameters:
IpVarStat An array storing the status of the columns.

slackStat An array storing the status of the slack variables.

Reimplemented idBA_LPSUB.

6.18.4.55 void ABA_LP::initialize (ABA_OPTSENSE senseint nRow, int maxRow int nCol, int maxCol,
ABA_ARRAY < double > & obj, ABA_ARRAY < double > & IBound, ABA_ARRAY < double
> & uBound, ABA_ARRAY < ABA_ROW x > & rows)

Loads the linear program defined by its arguments.

We do not perform the initialization via arguments of a camdbr, since for the most frequent application of
linear programs within , the solution of the linear prograimgrelaxations in the subproblems, the problem data
is preprocessed before it is loaded. Only after the pregsieg in the constructor of the derived class, we can call
initialize().

Of course, it would be possible to provide an extra construeith automatic initialization if required.

Parameters:
senseThe sense of the objective function.

nCol The number of columns (variables).

maxCol The maximal number of columns.

nRow The number of rows.

maxRow The maximal number of rows.

obj An array with the objective function coefficients.
Ib An array with the lower bounds of the columns.
ub An array with the upper bounds of the columns.
rows An array storing the rows of the problem.

Reimplemented idBA_LPSUB.

6.18.4.56 void ABA_LP::initPostOpt () [pri vate]

Resets the optimization status and the availability sesta$ the solution.

The functioninitPostOpt()must be called after each modification of the linear progritmesets the optimization
status and the availability status of the solution.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

288 Reference Manual

6.18.4.57 double ABA_LP::IBound (inti) const [i nli ne]

Reimplemented idBA_LPSUB.
Definition at line 748 of file Ip.h.

6.18.4.58 virtual void ABA_LP::loadBasis ABA_ARRAY < ABA_LPVARSTAT::STATUS > & IpVarStat,
ABA_ARRAY < ABA_SLACKSTAT::STATUS > & slackStay [virtual]

Loads a new basis for the linear program.

Parameters:
IpVarStat An array storing the status of the columns.

slackStat An array storing the status of the slack variables.

Reimplemented i\BA_LPSUB.

6.18.4.59 ABA_CPUTIMER * ABA_LP:IpSolverTime () [i nli ne]

Definition at line 347 of file Ip.h.

6.18.4.60 ABA_ LPVARSTAT::STATUS ABA_LP:lpVarStat (int i) [inline, virtual]

Reimplemented idBA LPSUB.
Definition at line 866 of file Ip.h.

6.18.4.61 int ABA_LP::maxCol () const [i nli ne]

Reimplemented idBA_LPSUB.
Definition at line 730 of file Ip.h.

6.18.4.62 int ABA_LP::maxRow () const [i nl i ne]

Definition at line 720 of file Ip.h.

6.18.4.63 int ABA_LP::nCol () const [inline]

Reimplemented idBA_LPSUB.
Definition at line 725 of file Ip.h.

6.18.4.64 int ABA_LP::innz ()const [inline]

Reimplemented id\BA_LPSUB.
Definition at line 735 of file Ip.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.18 ABA_LP Class Reference 289

6.18.4.65 int ABA_LP::nOpt () const [inli ne]

Definition at line 855 of file Ip.h.

6.18.4.66 int ABA_LP::nRow () const [i nl i ne]

Definition at line 715 of file Ip.h.

6.18.4.67 double ABA_LP::obj (inti) const [inli ne]

Reimplemented idBA LPSUB.
Definition at line 740 of file Ip.h.

6.18.4.68 consABA_LP& ABA_LP::operator= (const ABA_LP & rhs) [privat e]

6.18.4.69 virtualOPTSTAT ABA_LP::optimize (METHOD method [virtual]

Performs the optimization of the linear program.

Returns:
The status of the optimization.

Parameters:
method The method with which the optimization is performed.

Reimplemented idBA _LPSUB.

6.18.4.70 virtual int ABA_LP::pivotSlackVariableln (ABA_BUFFER< int > & rows) [vVirtual]
Pivots the slack variables stored in the buffewsinto the basis.
Returns:

0 All variables could be pivoted in,

1 otherwise.

Parameters:
rows The numbers of the slack variables that should be pivoted in.

6.18.4.71 double ABA LP:reco (int) [inline, virtual]

Reimplemented idBA_LPSUB.
Definition at line 801 of file Ip.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

290 Reference Manual

6.18.4.72 ABA_LP::SOLSTAT ABA _LP::recoStatus () const [i nline]

Definition at line 835 of file Ip.h.

6.18.4.73 void ABA_LP::remCols ABA_BUFFER< int > & colg

Removes columns from the linear program.

Parameters:
cols The numbers of the columns that should be removed.

6.18.4.74 void ABA_LP::remRows ABA_BUFFER< int > & ind)
Removes rows of the linear program.

Parameters:
ind The numbers of the rows that should be removed.

6.18.4.75 double ABA_LP::rhs (inti) const [i nl i ne]

Definition at line 772 of file Ip.h.

6.18.4.76 void ABA_LP::row (inti, ABA_ ROW & r)const [inline]

Definition at line 764 of file Ip.h.

6.18.4.77 void ABA_LP::rowRangeCheck (intr) const [pr ot ect ed]
Terminates the program if there is no row with index

Parameters:
r The number of a row of the linear program.

6.18.4.78 void ABA_LP::rowRealloc (intnewSiz¢
Performs a reallocation of the row space of the linear progra

Parameters:
newSize The new maximal number of rows of the linear program.

Reimplemented i\BA_LPSUB.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.18 ABA_LP Class Reference 291

6.18.4.79 void ABA_LP::rows2cols (inhRow, ABA_ARRAY < ABA_ROW x > & rows ABA_ARRAY <
ABA SPARVEC x > & colg [protected]

Computes the columnwise representation of the row matrix.

Parameters:
nRow The number of rows.

rows The array storing the rows.

cols An array holding pointers to sparse vectors which will comtiéie columnwise representation of the
constraint matrix defined byows The length of this array must be at least the number of cofumn
The elements of the array must not be 0-pointers. Sparsergauftsufficient length should be allocated
before the function is called. The size of these sparse keci@n be determined with the function
colsNnz()

6.18.4.80 void ABA_LP::sense (conABA_OPTSENSE& newSensg [i nli ne]

Definition at line 710 of file Ip.h.

6.18.4.81 ABA OPTSENSEABA LP::sense () const [inli ne]

Definition at line 705 of file Ip.h.

6.18.4.82 int ABA_LP::setSimplexlterationLimit (int limit)
Changes the iteration limit of the Simplex algorithm.
Returns:

0 If the iteration limit could be set,
1 otherwise.

Parameters:
limit The new value of the iteration limit.

6.18.4.83 double ABA LP:slack (intc) [inline, virtual]

Definition at line 817 of file Ip.h.

6.18.4.84 ABA SLACKSTAT::STATUS ABA_LP:slackStat (inti) [inline, virtual]

Definition at line 874 of file Ip.h.

6.18.4.85 ABA_LP::SOLSTAT ABA_LP::slackStatus () const [i nli ne]
Definition at line 845 of file Ip.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

292 Reference Manual

6.18.4.86 double ABA_LP::uBound (inti) const [i nli ne]

Reimplemented idBA_LPSUB.
Definition at line 756 of file Ip.h.

6.18.4.87 double ABA LP::value ()const[inline, virtual]

Reimplemented idBA_LPSUB.
Definition at line 780 of file Ip.h.

6.18.4.88 int ABA_LP::writeBasisMatrix (const char x fleName

Writes the complete basis of an optimal linear program to a file

Returns:
0 If a basis is available and could be written,
1 otherwise.

Parameters:
fileName The name of the file the basis is written to.

6.18.4.89 double ABA_LP::xVal (inti) [inline, virtual]

Reimplemented idBA_LPSUB.
Definition at line 785 of file Ip.h.

6.18.4.90 ABA_LP::SOLSTAT ABA_LP:xValStatus () const [i nli ne]

Definition at line 825 of file Ip.h.

6.18.4.91 double ABA_LP::yVal (intc) [inline, virtual]

Definition at line 809 of file Ip.h.

6.18.4.92 ABA LP::SOLSTAT ABA LP:yValStatus () const [i nli ne]

Definition at line 840 of file Ip.h.

6.18.5 Friends And Related Function Documentation

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.18 ABA_LP Class Reference 293

6.18.5.1 ostream& operatok < (ostream & out, constABA_LP & rhs) [fri end]

The output operator writes the objective function, folld®y the constraints, the bounds on the columns and the
solution values (if available) to an output stream.

Every ten output columns we perform a line break for bettadability. This has also the advantage that LP-solvers
with an input function requiring a limited length of a linede Cplex 255 characters) have a higher chance to read
a file generated by this output operator.

Returns:
A reference to the output stream.

Parameters:
out The output stream.

rhs The linear program being output.

6.18.6 Member Data Documentation

6.18.6.1 SOLSTAT ABA_LP::barXValStatus_ [pr ot ect ed]

Definition at line 655 of file Ip.h.

6.18.6.2 SOLSTAT ABA_LP::basisStatus_ [pr ot ect ed]

This member becomedvailableif the status of the variables and the slack variables of ftenal solution can be
accessed with the functiofgVarStat()andslackStat() otherwise it has the valudissing

Definition at line 683 of file Ip.h.

6.18.6.3 ABA_CPUTIMER ABA_LP:IpSolverTime_ [prot ect ed]

Definition at line 688 of file Ip.h.

6.18.6.4 ABA_MASTER x ABA_LP::master_ [prot ect ed]

A pointer to the corresponding master of the optimization.
Definition at line 644 of file Ip.h.

6.18.6.5 IntABA LP::nOpt_ [protected]

The number of optimizations of the linear program.

Definition at line 687 of file Ip.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

294 Reference Manual

6.18.6.6 OPTSTAT ABA_LP:.optStat_ [prot ect ed]

The status of the linear program.
Definition at line 648 of file Ip.h.

6.18.6.7 SOLSTAT ABA_LP::recoStatus_ [pr ot ect ed]

This member become&vailableif the reduced costs of the optimal solution can be accesstdtie function
reco(), otherwise it has the valudissing

Definition at line 668 of file Ip.h.

6.18.6.8 SOLSTAT ABA_LP::slackStatus_ [prot ect ed]

This member becomebvailableif the values of the slack variables of the optimal solutiam be accessed with
the functionslack() otherwise it has the valudissing

Definition at line 675 of file Ip.h.

6.18.6.9 SOLSTAT ABA_LP::xValStatus [pr ot ect ed]

This member becomedvailableif the x -values of the optimal solution can be accessed with thetifomzVal(),
otherwise it has the valudissing

Definition at line 654 of file Ip.h.

6.18.6.10 SOLSTAT ABA_LP::yValStatus_ [pr ot ect ed]

This member become&vailableif the values of the dual variables of the optimal solution & accessed with
the functionyVal(), otherwise it has the valudissing/.

Definition at line 662 of file Ip.h.

The documentation for this class was generated from theviolg file:

¢ Include/abacu$g.h

6.19 ABA_OSIIF Class Reference

#include <osiif.h>
Inheritance diagram for ABA_OSIIF::

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.19 ABA_OSIIF Class Reference 295

ABA_ABACUSROOT

| ABA_OSIIF |

T

| ABA_LPSUBOSI |

Public Types

¢ enumSOLVERTYPE{ Exact Approx}

Public Member Functions

* ABA_OSIIF (ABA_MASTER xmaster)

This constructor does not initialize the problem data of the linear programubt be loaded later with the function
initialize().

ABA_OSIIF (ABA_MASTER xmasterABA_ OPTSENSEsense, int nRow, int maxRow, int nCol, int max-
Col, ABA_ARRAY < double> &obj, ABA_ARRAY < double> &lb, ABA_ARRAY < double> &ub,
ABA_ARRAY < ABA_ROW x > &rows)

* virtual ~ABA_OSIIF ()

The destructor.

SOLVERTYPE currentSolverTyp@
 OsiSolverinterface osiLP ()

Private Member Functions

« void freeDouble(const double:&)

« void freeDouble(doublex&)

« void freelnt(int x&)

« void freeCharcharx&)

« void freeCharconst chax&)

« void freeStatugCoinWarmStartBasis::Statu®)

e virtual void _initialize (ABA_OPTSENSE sense, int nRow, int maxRow, int nCol, int maxCol,
ABA_ARRAY < double > &obj, ABA_ARRAY < double > &IBound, ABA_ARRAY < double > &u-
Bound,ABA_ARRAY < ABA_ROW % > &rows)

Implements the corresponding pure virtual function of the base tlessd loads the linear program defined by the
following arguments to the solver.

« virtual void _loadBasis(ABA_ARRAY < ABA_LPVARSTAT::STATUS > &lpVarStat, ABA_ ARRAY <
ABA_SLACKSTAT::STATUS > &slackStat)

* virtual ABA_OPTSENSE _sengg const

* virtual void _sensgconstABA_OPTSENSE&newSense)

This version of the functionsense(rhanges the sense of the optimization.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

296 Reference Manual

virtual int_nRow() const

virtual int_maxRow() const

virtual int _nCol() const

virtual int_maxCol() const

virtual double_obj (int i) const

virtual double_IBound(int i) const

virtual double_uBound(int i) const

virtual double_rhs(int i) const

virtual void _row (int i, ABA_ROW &r) const
virtual int _nnz() const

Returns the number of nonzero elements in the constraint matrix (notlinglthe right hand side).

virtual OPTSTAT _primalSimplex)

virtual OPTSTAT _dualSimplex)

virtual OPTSTAT _barrie{bool doCrossover)
virtual OPTSTAT _approX)

virtual double_value() const

virtual double_xVal (int i)

virtual double_barXVal(int i)

virtual double_reco(int i)

virtual double_slack(int i)

virtual double_yVal (int i)

virtual ABA_LPVARSTAT::STATUS _IpVarStafint i)
virtual ABA_SLACKSTAT::STATUS _slackStafint i)
virtual int _getinfeagint &infeasRow, int &infeasCol, doubleblnvRow)

Can be called if the last linear program has been solved with the dual simpéxod and is infeasible. This function
is currently not supported by the interface.

virtual void _remRowgABA_BUFFER< int > &ind)

virtual void _addRowgABA_ BUFFER< ABA_ROW x > &newRows)
virtual void _remCols(ABA_BUFFER< int > &vars)

virtual void _addColfABA_BUFFER< ABA_COLUMN x > &newVars)
virtual void _changeRh§ABA_ARRAY < double> &newRhs)

virtual void _changeLBoundint i, double newLb)

virtual void _changeUBoundnt i, double newUb)

virtual int _pivotSlackVariableI{ABA_BUFFER< int > &rows)

Pivots the slack variables stored in the buffewsinto the basis. This function defines the pure virtual function of
the base claskP. This function is currently not supported by the interface.

void getSol()

Extracts the solution, i.e., the value, the status, the values of the variakdek,variables, and dual variables, the
reduced costs, and the statuses of the variables and slack variablegheinternal solver data structure.

charcsense20g/ABA_CSENSExsense) const
Converts the ABACUS representation of the row sense to the Osi rafatisa.

ABA_CSENSE::SENSE osi2csenghar sense) const
Converts the OSI representation of the row sense to the ABACUS m{aiige.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.19 ABA_OSIIF Class Reference 297

e CoinWarmsStartBasis::StatlgVarStat20s{ABA_LPVARSTAT::STATUS stat) const
Converts the ABACUS variable status to OSI format.

* ABA_LPVARSTAT::STATUS osi2lpVarStafCoinWarmStartBasis::Status stat) const
Converts the OSI variable status to ABACUS format.

e CoinWarmsStartBasis::StatgtackStat20sjABA_SLACKSTAT::STATUS stat) const
Converts the ABACUS slack status to OSI format.

e ABA_SLACKSTAT::STATUS osi2slackStgiCoinWarmStartBasis::Status stat) const
Converts the OSlI slack status to ABACUS format.

 OsiSolverinterface getDefaultinterfac€)
Allocates an Open Solver Interface of type defaultOsiSolver.

» OsiSolverinterface switchinterface4SOLVERTYPEnewMethod)
Switches between exact and approximate solvers.

« void loadDummyRow(OsiSolverinterfaces2, const doublelbounds, const doublaubounds, const double
x0bjectives)

Initializes the problem with a dummy row To be used with CPLEX if there arews.r

» void _rowReallodint newSize)

 void _colRealloq(int newSize)

e virtual int_setSimplexlterationLimigint limit)

« virtual int_getSimplexiterationLimifint &limit)

* ABA_OSIIF (constABA_OSIIF &rhs)

e constABA_OSIIF & operator5constABA_OSIIF &rhs)

« void convertSenseToBoun@ouble inf, const char sense, const double right, consbldoange, double
&lower, double &upper) const

Private Attributes

» OsiSolverinterface osiLP_

* ABA_LPMASTEROSI* IpMasterOsi_
e doublevalue_

e const double« xVal_

An array storing the values of the variables after the linear program has loptimized.

e const double: barXVal_
e const double: reco

An array storing the values of the reduced costs after the linear progesrbleen optimized.

e const double: yVal_
An array storing the values of the dual variables after the linear prograsiteen optimized.

e const chak cStat_
An array storing the statuses of the variables after the linear program kas bptimized.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

298 Reference Manual

e int numCols_

The number of columns currently used in the LP.

e int numRows_

The number of rows currently used in the LP.

e const chak rStat_

An array storing the statuses of the slack variables after the linear prognasrbeen optimized.

 const double: rhs_

An array storing the right hand sides of the linear program.

 const double: rowactivity

An array storing the row activity of the linear program.

 const chak rowsense_
An array storing the row senses of the linear program.

 const doublex colupper_
An array storing the column upper bounds of the linear program.

 const double: collower_

An array storing the column lower bounds of the linear program.

 const double: objcoeff

An array storing the objective function coefficients of the linear program.

e CoinWarmsStartBasis ws_

A warm start object storing information about a basis of the linear program

e SOLVERTYPE currentSolverType_

The type of the current solver interface.

6.19.1 Member Enumeration Documentation

6.19.1.1 enumABA_OSIIF::SOLVERTYPE
The enumeration of possible solver types

Enumeration values:
Exact

Approx
Definition at line 85 of file osiif.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.19 ABA_OSIIF Class Reference 299

6.19.2 Constructor & Destructor Documentation

6.19.2.1 ABA_OSIIF::ABA_OSIIF (ABA_MASTER x maste)

This constructor does not initialize the problem data oflitnear program. It must be loaded later with the function
initialize().

Parameters:
master A pointer to the corresponding master of the optimization.

6.19.2.2 ABA_OSIIF::ABA_OSIIF (ABA_MASTER * mastef ABA_OPTSENSE senseint nRow, int
maxRow int nCol, int maxCol ABA_ARRAY < double > & obj, ABA_ARRAY < double > & Ib,
ABA_ARRAY < double > & ub, ABA_ARRAY < ABA_ROW x > & rows)

A constructor with initialization.

Parameters:
master A pointer to the corresponding master of the optimization.

senseThe sense of the objective function.

nCol The number of columns (variables).

maxCol The maximal number of columns.

nRow The number of rows.

maxRow The maximal number of rows.

obj An array with the objective function coefficients.
Ib An array with the lower bounds of the columns.
ub An array with the upper bounds of the columns.

rows An array storing the rows of the problem.

6.19.2.3 virtual ABA_OSIIF::~ABA_OSIIF () [virtual]

The destructor.

6.19.2.4 ABA_OSIIF::ABA_OSIIF (constABA_OSIIF & rhs) [pri vat e]

6.19.3 Member Function Documentation

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

300 Reference Manual

6.19.3.1 virtual void ABA_OSIIF::_addCols (ABA_BUFFER< ABA_COLUMN x > & newVarg
[private, virtual]

Adds the columnsewColgo the linear program.
It implements the pure virtual function of the base claBs
ImplementsABA_LP.

6.19.3.2 virtual void ABA_OSIIF::_addRows (ABA_BUFFER < ABA_ROW x > & newRow$}
[private, virtual]

Adds therowsto the linear program.
It implements the pure virtual function of the base claBs
ImplementsABA_LP.

6.19.3.3 virtual OPTSTAT ABA_OSIIF::_approx () [private, virtual]

Calls an approximate method.
It implements the pure virtual function of the base claBs
ImplementsABA_LP.

6.19.3.4 virtual OPTSTAT ABA_OSIIF::_barrier (bool doCrossover [private, virtual]

Calls the barrier method.
It implements the pure virtual function of the base claBs
ImplementsABA_LP.

6.19.3.5 virtual double ABA_OSIIF::_barXVal (int i) [private, virtual]

Returns the value of the colunin
It implements the pure virtual function of the base claBs
ImplementsABA_LP.

6.19.3.6 virtual void ABA_OSIIF::_changelLBound (inti, doublenewlLb) [private, virtual]

Sets the lower bound of colunirio newLb
It implements the pure virtual function of the base claBs
ImplementsABA_LP.

6.19.3.7 virtual void ABA_OSIIF::_changeRhs ABA_ARRAY < double > & newRh3g [pri vate,
virtual]

Sets the right hand side of the linear programéwRhs

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.19 ABA_OSIIF Class Reference 301

This array must have at least length of the number of rowss fthriction implements the pure virtual function of
the base clasisP.

ImplementsABA_LP.

6.19.3.8 virtual void ABA_OSIIF::_changeUBound (inti, doublenewUbh [private, virtual]

Sets the upper bound of columto newLh
It implements the pure virtual function of the base claBs
ImplementsABA_LP.

6.19.3.9 void ABA_OSIIF::_colRealloc (intnewSiz¢ [private, virtual]

Reallocates the internal memory such thetvSizecolumns can be stored. This function is obsolete, as memory
management is completely handled by Osi.

It implements the corresponding pure virtual function &f Hase claskP.

ImplementsABA_LP.

6.19.3.10 virtualOPTSTAT ABA_OSIIF::_dualSimplex () [private, virtual]

Calls the dual simplex method.
It implements the pure virtual function of the base claBs
ImplementsABA_LP.

6.19.3.11 virtual int ABA_OSIIF::_getinfeas (int & infeasRow int & infeasCol double x bInvRow)
[private, virtual]

Can be called if the last linear program has been solved \Wwighdual simplex method and is infeasible. This
function is currently not supported by the interface.

In this case it computes the infeasible basic variable osttaimt and the corresponding ravnvRowof the basis
inverse. EitheinfeasRowor infeasColis nonnegative. Then this number refers to an infeasiblelkr or slack
variable, respectively. The function returns 0 if it is sessful, 1 otherwise.

Currently this featureis not supported by the Open Solverface, therefore a call to this function always returns
an error status.

It implements the pure virtual function of the base claBs

ImplementsABA_LP.

6.19.3.12 virtual int ABA_OSIIF::_getSimplexiterationL imit (int & limit) [private, virtual]
Defines a pure virtual function of the base cla&s
Returns:

0 If the iteration limit could be retrieved,

1 otherwise.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

302 Reference Manual

Parameters:
limit Stores the iteration limit if the return value is 0.

ImplementsABA_LP.

6.19.3.13 virtual void ABA_OSIIF::_initialize (ABA_OPTSENSE sensgint nRow, int maxRow int
nCol, int maxCol ABA_ARRAY < double > & obj, ABA_ARRAY < double > & IBound,
ABA_ARRAY < double > & uBound, ABA_ARRAY < ABA_ROW x > & rows) [private,
virtual]

Implements the corresponding pure virtual function of thsébclas&P and loads the linear program defined by
the following arguments to the solver.

Parameters:
senseThe sense of the objective function.

nCol The number of columns (variables).

maxCol The maximal number of columns.

nRow The number of rows.

maxRow The maximal number of rows.

obj An array with the objective function coefficients.
Ib An array with the lower bounds of the columns.
ub An array with the upper bounds of the columns.

rows An array storing the rows of the problem.

ImplementsABA_LP.

6.19.3.14 virtual double ABA_OSIIF::_IBound (inti) const [private, virtual]

Returns the lower bound of colunin
It implements the pure virtual function of the base claBs
ImplementsABA_LP.

6.19.3.15 virtual void ABA_OSIIF::_loadBasis ABA_ARRAY < ABA_LPVARSTAT::STATUS >
& IpVarStat ABA_ARRAY < ABA_SLACKSTAT::STATUS > & slackStaj [pri vate,
virtual]

Loads a basis to the solver

Parameters:
IpVarStat An array storing the status of the columns.

IpVarStat An array storing the status of the slack variables.

ImplementsABA_LP.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.19 ABA_OSIIF Class Reference 303

6.19.3.16 virtualABA_LPVARSTAT::STATUS ABA_OSIIF:;_IpVarStat (int i) [private, virtual]

Returns the status of the colurn
It implements the pure virtual function of the base claBs
ImplementsABA_LP.

6.19.3.17 virtual int ABA_OSIIF::_maxCol () const [private, virtual]

Returns the maximal number of columns of the linear program.
It implements the pure virtual function of the base claBs
ImplementsABA_LP.

6.19.3.18 virtual int ABA_OSIIF::_maxRow () const [private, virtual]

Returns the maximal number of rows of the linear program.
It implements the pure virtual function of the base claBs
ImplementsABA_LP.

6.19.3.19 virtual int ABA_OSIIF::_nCol ()const [private, virtual]

Returns the number of columns of the linear program.
It implements the pure virtual function of the base claBs
ImplementsABA_LP.

6.19.3.20 virtual int ABA_OSIIF::_nnz () const [private, virtual]

Returns the number of nonzero elements in the constraimbnfadt including the right hand side).
It implements the pure virtual function of the base claBs
ImplementsABA_LP.

6.19.3.21 virtual int ABA_OSIIF::_nRow () const [private, virtual]

Returns the number of rows of the linear program.
It implements the pure virtual function of the base claBs
ImplementsABA_LP.

6.19.3.22 virtual double ABA_OSIIF::_obj (inti) const [private, virtual]

Returns the objective function coefficient of column
It implements the pure virtual function of the base claBs
ImplementsABA_LP.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

304 Reference Manual

6.19.3.23 virtual int ABA_OSIIF::_pivotSlackVariableln (ABA_BUFFER< int > & rows) [private,
vi rtual]

Pivots the slack variables stored in the buff@vsinto the basis. This function defines the pure virtual funcnf
the base clasisP. This function is currently not supported by the interface.

Returns:
0 All variables could be pivoted in,
1 otherwise.

Parameters:
rows The numbers of the slack variables that should be pivoted in.

ImplementsABA_LP.

6.19.3.24 virtualOPTSTAT ABA_OSIIF::_primalSimplex () [private, virtual]

Calls the primal simplex method.
It implements the pure virtual function of the base claBs
ImplementsABA_LP.

6.19.3.25 virtual double ABA_OSIIF::_reco (inti) [private, virtual]

Returns the reduced cost of the column
It implements the pure virtual function of the base claBs
ImplementsABA_LP.

6.19.3.26 virtual void ABA_OSIIF::_remCols (ABA_BUFFER< int > & varg) [private, virtual]

Removes the columns listed viars
It implements the pure virtual function of the base claBs
ImplementsABA_LP.

6.19.3.27 virtual void ABA_OSIIF::_remRows (ABA_BUFFER< int > & ind) [private, virtual]

Removes the rows listed ind.
It implements the pure virtual function of the base claBs
ImplementsABA_LP.

6.19.3.28 virtual double ABA_OSIIF::_rhs (inti) const [private, virtual]

Returns the right hand side of raw
It implements the pure virtual function of the base claBs
ImplementsABA_LP.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.19 ABA_OSIIF Class Reference 305

6.19.3.29 virtual void ABA_OSIIF::_row (int i, ABA_ ROW & r)const [private, virtual]

Stores a copy of rowinr.
It implements the pure virtual function of the base claBs
ImplementsABA_LP.

6.19.3.30 void ABA_OSIIF::_rowRealloc (intnewSiz¢ [private, virtual]
Reallocates the internal memory such that newSize rows eastdsed. This function is obsolete, as memory
management is completely handled by Osi.

It implements the corresponding pure virtual function of thase claskP. If a reallocation is performed in the
base clas&P, we reinitialize the internal data structure. Actuallystireinitialization is redundant since it would
be performed automatically #ddRows()or addCols()fail. However, to be consistent, and if a reallocation is
performed to decrease the size of the arrays wereilitialize().

ImplementsABA_LP.

6.19.3.31 virtual void ABA_OSIIF::_sense (consABA_OPTSENSE & newSensg [pri vat e,
virtual]

This version of the functionsense(fhanges the sense of the optimization.
It implements the pure virtual function of the base claBs
ImplementsABA_LP.

6.19.3.32 virtualABA_OPTSENSEABA_ OSIIF::_sense () const [private, virtual]

Returns the sense of the optimization.
It implements the pure virtual function of the base claBs
ImplementsABA_LP.

6.19.3.33 virtual int ABA_OSIIF::_setSimplexiterationLimit (int limit) [private, virtual]

Changes the iteration limit of the Simplex algorithm.
This function defines a pure virtual function of the base<lda
Returns:

0 If the iteration limit could be set,
1 otherwise.

Parameters:
limit The new value of the iteration limit.

ImplementsABA_LP.

6.19.3.34 virtual double ABA_OSIIF::_slack (inti) [private, virtual]
Returns the value of the slack column of the riow

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

306 Reference Manual

It implements the pure virtual function of the base claBs
ImplementsABA_LP.

6.19.3.35 virtualABA_SLACKSTAT::STATUS ABA_OSIIF::_slackStat (int i) [private, virtual]

Returns the status of the slack column
It implements the pure virtual function of the base claBs
ImplementsABA_LP.

6.19.3.36 virtual double ABA_OSIIF::_uBound (inti) const [private, virtual]

Returns the upper bound of column
It implements the pure virtual function of the base claBs
ImplementsABA_LP.

6.19.3.37 virtual double ABA_OSIIF::_value () const [pri vate, virtual]

Returns the optimum value of the linear program.
It implements the pure virtual function of the base claBs
ImplementsABA_LP.

6.19.3.38 virtual double ABA_OSIIF::_xVal (inti) [private, virtual]

Returns the value of the colunin
It implements the pure virtual function of the base claBs
ImplementsABA_LP.

6.19.3.39 virtual double ABA_OSIIF::_yVal (inti) [private, virtual]

Returns the value of the dual column of the row
It implements the pure virtual function of the base claBs
ImplementsABA_LP.

6.19.3.40 void ABA_OSIIF::convertSenseToBound (doublmf, const charsenseconst doubleright, const
doublerange, double & lower, double & uppef) const [inline, private]

Definition at line 530 of file osiif.h.

6.19.3.41 char ABA_OSIIF::csense20sABA_CSENSE x sensgconst [pri vat e]

Converts the ABACUS representation of the row sense to theepgesentation.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.19 ABA_OSIIF Class Reference 307

6.19.3.42 SOLVERTYPE ABA_OSIIF:.currentSolverType () [inli ne]

Definition at line 87 of file osiif.h.

6.19.3.43 void ABA_OSIIF::freeChar (const charx&) [private]

6.19.3.44 void ABA_OSIIF::freeChar (char«&) [pri vate]

6.19.3.45 void ABA_OSIIF::freeDouble (doublex&) [pri vat e]

6.19.3.46 void ABA_OSIIF::freeDouble (const double&) [pri vat e]

6.19.3.47 void ABA_OSIIF:freelnt (int x&) [pri vat e]

6.19.3.48 void ABA_OSIIF::freeStatus (CoinWarmStartBass::Status«&) [pri vat e]

6.19.3.49 OsiSolverinterface ABA_OSIIF::getDefaultinterface () [pri vat e]

Allocates an Open Solver Interface of type defaultOsiSolve

6.19.3.50 void ABA_OSIIF::getSol () [pri vat e]

Extracts the solution, i.e., the value, the status, theegbf the variables, slack variables, and dual variables, th
reduced costs, and the statuses of the variables and slaaklea form the internal solver data structure.

6.19.3.51 void ABA_OSIIF::loadDummyRow (OsiSolverinteface x s2 const doublex Ilbounds const
double x ubounds const doublex objective¥ [pri vat e]

Initializes the problem with a dummy row To be used with CPLiEXere are no rows.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

308 Reference Manual

6.19.3.52 CoinWarmsStartBasis::Status ABA_OSIIF::IpVarStat2osi ABA_LPVARSTAT::STATUS stai
const [private]

Converts the ABACUS variable status to OSI format.

6.19.3.53 consABA_OSIIF & ABA_OSIIF::operator= (const ABA_OSIIF & rhs) [private]

6.19.3.54 ABA CSENSE::SENSEABA _ OSIIF::0si2csense (charsensgconst [pri vat e]

Converts the OSI representation of the row sense to the ABA@presentation.

6.19.3.55 ABA LPVARSTAT::STATUS ABA_OSIIF::0si2lpVarStat (CoinWarmStartBasis::Status sta
const [private]

Converts the OSI variable status to ABACUS format.

6.19.3.56 ABA_SLACKSTAT::STATUS ABA_OSIIF::0si2slackStat (CoinWarmStartBasis::Status staf
const [private]

Converts the OSI slack status to ABACUS format.

6.19.3.57 OsiSolverinterfaces ABA_OSIIF::osiLP () [inline]

Definition at line 559 of file osiif.h.

6.19.3.58 CoinWarmStartBasis::Status ABA_OSIIF::slaciStat2osi ABA_SLACKSTAT::STATUS stai
const [private]

Converts the ABACUS slack status to OSI format.

6.19.3.59 OsiSolverinterface ABA_OSIIF::switchinterfaces (SOLVERTYPE newMethod [privat e]

Switches between exact and approximate solvers.

6.19.4 Member Data Documentation

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.19 ABA_OSIIF Class Reference 309

6.19.4.1 const double ABA_OSIIF::barXVal_ [privat e]

Definition at line 464 of file osiif.h.

6.19.4.2 const double ABA_OSIIF::collower_ [pri vat e]
An array storing the column lower bounds of the linear pragra
Definition at line 512 of file osiif.h.

6.19.4.3 const double ABA_OSIIF::colupper_ [private]
An array storing the column upper bounds of the linear progra

Definition at line 508 of file osiif.h.

6.19.4.4 constchar ABA_OSIIF::cStat_ [pri vat e]

An array storing the statuses of the variables after thatipeogram has been optimized.
Definition at line 479 of file osiif.h.

6.19.4.5 SOLVERTYPE ABA_OSIIF::currentSolverType_ [pri vate]

The type of the current solver interface.

Definition at line 524 of file osiif.h.

6.19.4.6 ABA LPMASTEROSI « ABA_ OSIIF:IpMasterOsi_ [pri vat e]

Definition at line 454 of file osiif.h.

6.19.4.7 intABA_OSIIF::numCols_ [pri vat e]

The number of columns currently used in the LP.

Definition at line 483 of file osiif.h.

6.19.4.8 intABA_OSIIF::numRows_ [pri vat e]

The number of rows currently used in the LP.

Definition at line 487 of file osiif.h.

6.19.4.9 const double ABA_ OSIIF::objcoeff [privat e]

An array storing the objective function coefficients of threehr program.

Definition at line 516 of file osiif.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

310 Reference Manual

6.19.4.10 OsiSolverinterface ABA_OSIIF::osiLP_ [pri vat €]

Definition at line 100 of file osiif.h.

6.19.4.11 constdoubleABA OSIIF::reco_ [private]

An array storing the values of the reduced costs after tlaliprogram has been optimized.
Definition at line 469 of file osiif.h.

6.19.4.12 const doubleABA _OSIIF::rhs_ [pri vat e]

An array storing the right hand sides of the linear program.

Definition at line 496 of file osiif.h.

6.19.4.13 const double ABA_OSIIF::rowactivity [pri vat e]

An array storing the row activity of the linear program.

Definition at line 500 of file osiif.h.

6.19.4.14 const char ABA_OSIIF::rowsense_ [pri vat e]

An array storing the row senses of the linear program.

Definition at line 504 of file osiif.h.

6.19.4.15 constchar ABA_OSIIF::rStat [pri vat e]

An array storing the statuses of the slack variables aftelitiear program has been optimized.
Definition at line 492 of file osiif.h.

6.19.4.16 doubleABA_OSlIF::value_ [pri vat e]

The value of the optimal solution.

Definition at line 458 of file osiif.h.

6.19.4.17 CoinWarmsStartBasis ABA_OSIIF::ws_ [pri vat e]

A warm start object storing information about a basis of thedr program.
Definition at line 520 of file osiif.h.

6.19.4.18 constdoubleABA_OSIIF:xVal_ [private]

An array storing the values of the variables after the lipgagram has been optimized.

Definition at line 463 of file osiif.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.20 ABA_LPSUB Class Reference 311

6.19.4.19 const doubleABA_OSIIF::yVal_ [private]

An array storing the values of the dual variables after thedr program has been optimized.
Definition at line 474 of file osiif.h.

The documentation for this class was generated from thevioll file:

 Include/abacuskiif.h

6.20 ABA_LPSUB Class Reference

class is derived from the clag® to implement the linear programming relaxations of a sublem. We require
this class as the ABA_CONSTRAINT/ABA_VARIABLE format of éhconstraints/variables has to be transformed
to the ABA_ROW/ABA_COLUMN format required by the clak®.

#i ncl ude <l psub. h>
Inheritance diagram for ABA_LPSUB::

ABA_ABACUSROOT

| ABA_LPSUB |

T

| ABA_LPSUBOSI |

Public Member Functions

* ABA LPSUB(ABA_MASTER xmaster, conshBA_SUB xsub)
e virtual ~ABA_LPSUB ()

The destructor deletes the componentstdasCons since they might have been allocated in the constructor and
ABA_SUB::initializeLp()3deletes after having tried to add variables restoring feasibility immediately ABSUB.
Afterwards the constructor of ABA_LPSUB is called again.

e constABA_SUB * sub() const
« int trueNCol() const

« int trueNnz() const
 doublelBound(int i) const

We have to redefine the functitBound(i) since variables may have been eliminated.

 doubleuBound(int i) const
We have to redefine the functiaBound(i)since variables may have been eliminated.

« virtual doublevalue() const

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

312 Reference Manual

Since variables might be eliminated we have to add to the solution value of thelt&r the objective function part
of the eliminated variables, to get the right valuevafue()

* virtual doublexVal (int i)
We have to redefine the functigial(i) since variables may have been eliminated.

« virtual doublebarXVal (int i)
We have to redefine the functibarXVal(i) since variables may have been eliminated.

« virtual doublereco(int i)
* virtual ABA_LPVARSTAT::STATUS IpVarSta{int i)
« virtual int getinfeaqint &infeasCon, int &infeasVar, doublebinvRow)

Is called if the last linear program has been solved with the dual simplexadethd is infeasible.

« virtual boolinfeasible() const

e ABA BUFFER< ABA_INFEASCON* > x infeasCon()

« virtual void loadBasis(ABA_ARRAY < ABA LPVARSTAT::STATUS > &lpVarStat, ABA_ ARRAY <
ABA_SLACKSTAT::STATUS > &slackStat)

Protected Member Functions

« virtual voidinitialize ()

The functioninitialize() has to be called in the constructor of the class derived from this class andafrolass
implementing an LP-solver.

Private Member Functions

* virtual OPTSTAT optimizg METHOD method)

« virtual void removeCongABA_BUFFER< int > &ind)

* virtual void removeVar§ABA_ BUFFER< int > &vars)

« virtual voidaddCongABA_BUFFER< ABA_CONSTRAINT * > &newCons)

e virtual void addVars (ABA BUFFER< ABA VARIABLE =« > &vars, ABA BUFFER<
ABA_ FSVARSTAT x > &fsVarStat, ABA_ BUFFER< double > &lb, ABA BUFFER< double >
&ub)

« virtual void changeLBoundint i, double newLb)

« virtual void changeUBoundint i, double newUb)

« virtual void varReallodint newSize)

« virtual void conReallodint newSize)

e void constraint2zrow (ABA_BUFFER< ABA_CONSTRAINT * > &newCons, ABA_BUFFER<
ABA_ROW # > &newRows)

« booleliminable(int i) const

* booleliminated(int i) const

Returngrueif the variablei is actually eliminated from theP.

« virtual doubleelimVal (int i) const

« virtual doubleelimVal (ABA_FSVARSTAT xstat, double Ib, double ub) const

« voidinitialize (ABA_OPTSENSEsense, int nRow, int maxRow, int nCol, int maxCABA_ARRAY < dou-
ble > &obj, ABA_ARRAY < double> &IBound, ABA_ARRAY < double> &uBound, ABA_ARRAY <
ABA_ROW x > &rows)

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.20 ABA_LPSUB Class Reference 313

void initialize (ABA_OPTSENSEsense, int nRow, int maxRow, int nCol, int maxCABA_ARRAY < dou-
ble > &obj, ABA_ARRAY < double> &IBound, ABA_ARRAY < double> &uBound, ABA_ARRAY <
ABA ROW x > &rows, ABA ARRAY < ABA_LPVARSTAT::STATUS > &lpVarStat, ABA_ARRAY <
ABA_SLACKSTAT::STATUS > &slackStat)
This version of the functiomitialize() performs like its previous version, but also initializes the basis with the
arguments:.

int nCol () const

int maxCol() const

int nnz() const

doubleobj (int i) const

void rowRealloc(int newSize)

void colRealloc(int newSize)

ABA_LPSUB (constABA_LPSUB &rhs)
constABA_LPSUB & operator=constABA_LPSUB &rhs)

Private Attributes

constABA_SUB x sub_
ABA_ARRAY < int > orig2lp_

After the elimination of variables the internal variables are again numbeosdecutively starting with Qrig2lp_-
[i] is the internal number of the variable This is-1 if the variable is eliminated.

ABA_ARRAY < int > Ip2orig_
ABA BUFFER< ABA_ INFEASCON x > infeasCons_
doublevalueAdd_

The constant which has been added to the objective function value due tortimagon of variables.

int nOrigVar_

Friends

classABA_SUB

classABA SETBRANCHRULE
classABA_ BOUNDBRANCHRULE
classABA VALBRANCHRULE
classABA_CONBRANCHRULE
classCOPBRANCHRULE

6.20.1 Detailed Description

class is derived from the clag® to implement the linear programming relaxations of a sublem. We require
this class as the ABA_CONSTRAINT/ABA_VARIABLE format of ¢hconstraints/variables has to be transformed
to the ABA_ROW/ABA_COLUMN format required by the clak®.

Definition at line 57 of file Ipsub.h.

6.20.2 Constructor & Destructor Documentation

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

314 Reference Manual

6.20.2.1 ABA_LPSUB::ABA_LPSUB ABA_MASTER mastet constABA_SUB x sub)

The constructor.

Parameters:
master A pointer to the corresponding master of the optimization.

sub The subproblem of which the LP-relaxation is solved.

6.20.2.2 virtual ABA_LPSUB::~ABA LPSUB () [virtual]
The destructor deletes the componentsnééasCons since they might have been allocated in the constructor

andABA_SUB::initializeLp() deletes after having tried to add variables restoring bélitgiimmediately ABA_-
LPSUB. Afterwards the constructor of ABA_ LPSUB is callechag

6.20.2.3 ABA_LPSUB::ABA_LPSUB (constABA_LPSUB & rhs) [pri vat e]

6.20.3 Member Function Documentation

6.20.3.1 virtual void ABA_LPSUB::addCons ABA_BUFFER< ABA_CONSTRAINT * > & newCon3
[private, virtual]

Adds the constraintsewCongo the linear program.

6.20.3.2 virtual void ABA_LPSUB::addVars (ABA_BUFFER< ABA_VARIABLE x > & vars
ABA_BUFFER< ABA_FSVARSTAT * > & fsVarStat ABA_BUFFER < double > & Ib,
ABA_BUFFER< double > & ub) [private, virtual]

Parameters:
vars The new variables which are added to the linear program.

fsVarstat The status of fixing/setting of the new variables.
Ib The lower bounds of the new variables.
ub The upper bounds of the new variables.

6.20.3.3 virtual double ABA_LPSUB::barXVal (inti) [virtual]
We have to redefine the functidmarXVal(i) since variables may have been eliminated.

Returns:
Thex -value of variable after the solution of the linear program before crossing tv@ basic solution.

Reimplemented frorABA_LP.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.20 ABA_LPSUB Class Reference 315

6.20.3.4 virtual void ABA_LPSUB::changeLBound (inti, doublenewlLb) [private, virtual]

Sets the lower bound of variabléo newLb
It is not allowed to change the lower bound of an eliminatedide. This will cause a run-time error.
Reimplemented frorABA_LP.

6.20.3.5 virtual void ABA_LPSUB::changeUBound (inti, doublenewUlh [private, virtual]

Sets the upper bound of variables newUh
It is not allowed to change the upper bound of an eliminate@te. This will cause a run-time error.
Reimplemented frorABA_LP.

6.20.3.6 void ABA_LPSUB::colRealloc (inthewSiz¢ [pri vat e]

Performs a reallocation of the column space of the lineagnamo.

Parameters:
newSize The new maximal number of columns of the linear program.

Reimplemented frorABA_LP.

6.20.3.7 virtual void ABA_LPSUB::conRealloc (intnewSiz¢ [private, virtual]

Sets the maximal number of constraintiewSize

6.20.3.8 void ABA_LPSUB::constraint2zrow ABA_BUFFER < ABA_CONSTRAINT * > & newCons
ABA BUFFER< ABA _ROW x* > & newRow$ [pri vat e]

Generates the row format of the constraiohsand stores it imows.

6.20.3.9 bool ABA_LPSUB::eliminable (inti) const [pri vat €]

Returngtrue if the function can be eliminated.

This function may be only applied to variables which are figedet! It is sufficient for turning off any variable
elimination to return alwayfalseby this function.

6.20.3.10 bool ABA_LPSUB::eliminated (inti)) const [i nline, private]

Returngrue if the variablei is actually eliminated from theP.

This function can give different results than the functaiminate(i) since the condition to eliminate a variable
might have becomeue after theLP has been set up.

Definition at line 362 of file Ipsub.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

316 Reference Manual

6.20.3.11 virtual double ABA_LPSUB::elimVal (ABA_FSVARSTAT = stat doublelb, double ub) const
[private, virtual]

Returns the value a variable is fixed or set to.

Parameters:
fsVarStat A pointer to the status of the variable.

Ib The lower bound of the variable.
ub The upper bound of the variable.

6.20.3.12 virtual double ABA_ LPSUB::elimVal (inti) const [private, virtual]

Returns the value the varialléo which it is fixed or set to.

The value of an eliminated variable is defined by the bound hhvit is fixed or set. There is no reason to
distinguish betweesub_andmaster_in the switchstatement, since both values should be equal.

6.20.3.13 virtual int ABA_LPSUB::getInfeas (int & infeasCon int & infeasVar, double x bInvRow)
[virtual]
Is called if the last linear program has been solved with tred dimplex method and is infeasible.

In this case it computes the infeasible basic variable ostraimt and the corresponding row of the basis inverse.

Returns:
0 If no error occurs,
1 otherwise.

Parameters:
infeasCon If nonnegative, this is the number of the infeasible sladiaide.

infeasVar If nonnegative, this is the number of the infeasible strradtvariable. Note, eitheinfeasConor
infeasVaris nonnegative.

biInvRow An array containing the corresponding row of the basis swer

Reimplemented frorABA_LP.

6.20.3.14 ABA_BUFFER< ABA_INFEASCON x* > x ABA_LPSUB::infeasCon () [i nli ne]

return A pointer to the buffer holding the infeasible coastts.
Definition at line 383 of file Ipsub.h.

6.20.3.15 virtual bool ABA_LPSUB::infeasible () const [vi rt ual]

Returns:
true If theLP turned out to be infeasible either if the base claBsletected an infeasibility during the solution
of the linear program or infeasible constraints have beemonized during the construction of the LP or
during the addition of constraints, }
false otherwise.

Reimplemented frorABA_LP.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.20 ABA_LPSUB Class Reference 317

6.20.3.16 void ABA_LPSUB::initialize ABA_OPTSENSE senseint nRow, int maxRow int nCol,
int maxCol ABA_ARRAY < double > & obj, ABA_ARRAY < double > & IBound,
ABA_ARRAY < double > & uBound, ABA_ARRAY < ABA_ROW x > & rows ABA_ ARRAY <
ABA LPVARSTAT::STATUS > & IpVarStat ABA_ARRAY < ABA_SLACKSTAT::STATUS >
& slackStay [pri vat e]

This version of the functiomnitialize() performs like its previous version, but also initializeg thasis with the
arguments:.

Parameters:
IpVarStat An array storing the status of the columns.

slackStat An array storing the status of the slack variables.

Reimplemented frorABA_LP.

6.20.3.17 void ABA_LPSUB::initialize ABA_OPTSENSE senseint nRow, int maxRow int nCol, int
maxCol ABA_ARRAY < double > & obj, ABA_ARRAY < double > & IBound, ABA_ARRAY <
double > & uBound, ABA_ARRAY < ABA_ROW * > & rows) [private]

Loads the linear program defined by its arguments.

We do not perform the initialization via arguments of a camdbr, since for the most frequent application of
linear programs within , the solution of the linear prograimgrelaxations in the subproblems, the problem data
is preprocessed before it is loaded. Only after the pregsieg in the constructor of the derived class, we can call
initialize().

Of course, it would be possible to provide an extra construeith automatic initialization if required.

Parameters:
senseThe sense of the objective function.

nCol The number of columns (variables).

maxCol The maximal number of columns.

nRow The number of rows.

maxRow The maximal number of rows.

obj An array with the objective function coefficients.
Ib An array with the lower bounds of the columns.
ub An array with the upper bounds of the columns.
rows An array storing the rows of the problem.

Reimplemented frorABA_LP.

6.20.3.18 virtual void ABA_LPSUB::initialize () [protected, virtual]

The functioninitialize() has to be called in the constructor of the class derived flumdass and from a class
implementing an LP-solver.

This function will pass the linear program of the associatgoproblem to the solver.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

318 Reference Manual

6.20.3.19 double ABA_LPSUB::IBound (inti) const
We have to redefine the functidBound(i) since variables may have been eliminated.
Returns:

The lower bound of variable If a variable is eliminated, we return the value the elinbggiavariable is fixed
or set to.

Parameters:
i The number of a variable.

Reimplemented frorABA_LP.

6.20.3.20 virtual void ABA_LPSUB::loadBasis ABA_ARRAY < ABA_LPVARSTAT::STATUS > &
IpVarStat ABA_ARRAY < ABA_SLACKSTAT::STATUS > & slackSta} [virtual]

Loads a new basis for the linear program.

The function redefines a virtual function of the base clda<Eliminated variables have to be considered when the
basis is loaded.

Parameters:
IpVarStat An array storing the status of the columns.

slackStat An array storing the status of the slack variables.

Reimplemented frorABA_LP.

6.20.3.21 virtualABA_LPVARSTAT::STATUS ABA_LPSUB::IpVarStat (int i) [virtual]

Returns:
The status of the variable in the linear program. If the \adeai is eliminated, then
ABA_ | PVARSTAT::Eliminatedis returned.

Reimplemented frorABA_LP.

6.20.3.22 int ABA_LPSUB::maxCol () const [pri vat e]

Reimplemented frorABA_LP.

6.20.3.23 int ABA_LPSUB::nCol () const [pri vat e]

Reimplemented frorABA_LP.

6.20.3.24 int ABA_LPSUB::nnz () const [pri vat e]

Reimplemented frorABA_LP.

6.20.3.25 double ABA_LPSUB::0bj (inti) const [pri vat e]
Reimplemented frorABA_LP.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.20 ABA_LPSUB Class Reference 319

6.20.3.26 consABA_LPSUB& ABA LPSUB:.operator= (const ABA_LPSUB & rhs) [privat e]

6.20.3.27 virtual OPTSTAT ABA_LPSUB::optimize (METHOD method [private, virtual]

Performs the optimization of the linear program with methoethod

This function redefines a virtual function of the base claBs
We have to reimplemertptimize()since there might be infeasible constraints. If a lineagpm turns out
to be infeasible but has not been solved with the dual simplethod we solve it again to find a dual feasible
basis which can be used to determine inactive variablesriegtfeasibility. Before the optimization can be
performed the infeasible constraints must be removed Wwétfunction_initMakeFeas()then thelLP should
be deleted and reconstructed. This is done by the funstbreLp()in the cutting plane algorithm of the class
ABA_SUB.

Reimplemented frorABA_LP.

6.20.3.28 virtual double ABA_LPSUB::reco (inti) [virtual]

We define the reduced costs of eliminated variables as 0.

Returns:
The reduced cost of variabie

Reimplemented frorABA_LP.

6.20.3.29 virtual void ABA_LPSUB::removeCons ABA_BUFFER< int > & ind) [private,
virtual]

Removes all constraints listed in the buffied from the linear program.

6.20.3.30 virtual void ABA_LPSUB::removeVars ABA_BUFFER< int > & varg [private,
vi rtual]

Removes the variables with names givewansfrom the linear program.

6.20.3.31 void ABA_LPSUB::rowRealloc (inthewSiz¢ [pri vat e]

Performs a reallocation of the row space of the linear progra

Parameters:
newSize The new maximal number of rows of the linear program.

Reimplemented frorABA_LP.

6.20.3.32 consABA_SUB x ABA_LPSUB::sub () const [i nli ne]
Definition at line 357 of file Ipsub.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

320 Reference Manual

6.20.3.33 int ABA_LPSUB::trueNCol () const [i nl i ne]

Returns:
The number of columns which are passed to the LP-solverthenumber of active variables of the subprob-
lem minus the number of eliminated variables.

Definition at line 368 of file Ipsub.h.

6.20.3.34 int ABA_LPSUB::trueNnz () const [i nl i ne]

Returns:
The number of nonzeros which are currently present in thetcaint matrix of the LP-solver.

Definition at line 373 of file Ipsub.h.

6.20.3.35 double ABA LPSUB::uBound (int) const

We have to redefine the functiaBound(i)since variables may have been eliminated.

Returns:
The upper bound of variabie If a variable is eliminated, we return the value the elinhédavariable is fixed
or set to.

Parameters:
i The number of a variable.

Reimplemented frorABA_LP.

6.20.3.36 double ABA LPSUB::value () const[i nline, virtual]

Since variables might be eliminated we have to add to thdieolwalue of the LP-solver the objective function
part of the eliminated variables, to get the right valueatie()

Returns:
The objective function value of the linear program.

Reimplemented frorABA_LP.
Definition at line 378 of file Ipsub.h.
6.20.3.37 virtual void ABA_LPSUB::varRealloc (intnewSiz¢ [private, virtual]

Sets the maximal number of variables®wSize

6.20.3.38 virtual double ABA_LPSUB::xVal (inti) [virtual]

We have to redefine the functioval(i) since variables may have been eliminated.

Returns:
Thex -value of variable after the solution of the linear program.

Reimplemented frorABA_LP.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.20 ABA_LPSUB Class Reference 321

6.20.4 Friends And Related Function Documentation

6.20.4.1 friend classABA_BOUNDBRANCHRULE [fri end]

Definition at line 60 of file Ipsub.h.

6.20.4.2 friend classABA_CONBRANCHRULE [fri end]

Definition at line 62 of file Ipsub.h.

6.20.4.3 friend clasABA_SETBRANCHRULE [fri end]

Definition at line 59 of file Ipsub.h.

6.20.4.4 friend classABA _SUB [fri end]

Definition at line 58 of file Ipsub.h.

6.20.4.5 friend classABA_VALBRANCHRULE [fri end]

Definition at line 61 of file Ipsub.h.

6.20.4.6 friend class COPBRANCHRULE [fri end]

Definition at line 63 of file Ipsub.h.

6.20.5 Member Data Documentation

6.20.5.1 ABA_BUFFER<ABA_INFEASCON «> ABA_LPSUB::infeasCons_ [pri vat €]

Buffer storing the infeasible constraints found be the troasor.

Definition at line 342 of file Ipsub.h.

6.20.5.2 ABA ARRAY <int> ABA LPSUB::lp2orig_ [pri vat e]

Orignial number of a (non-eliminated) variable.

Definition at line 338 of file Ipsub.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

322 Reference Manual

6.20.5.3 IintABA_LPSUB::nOrigVar_ [pri vat e]

The number of original variables of the linear program.

Definition at line 351 of file Ipsub.h.

6.20.5.4 ABA_ARRAY <int> ABA_LPSUB::orig2lp_ [pri vate]

After the elimination of variables the internal variables again numbered consecutively starting witlog2Ip_-
[] is the internal number of the variabie This is-1 if the variable is eliminated.

Definition at line 334 of file Ipsub.h.

6.20.5.5 consABA SUBx ABA LPSUB:sub_ [private]

A pointer to the corresponding subproblem.

Definition at line 327 of file Ipsub.h.

6.20.5.6 doubleABA LPSUB::valueAdd_ [pri vat e]

The constant which has been added to the objective funcibe\due to the elimination of variables.
Definition at line 347 of file Ipsub.h.

The documentation for this class was generated from theviail file:

* Include/abacufigsub.h

6.21 ABA _LPSUBOSI Class Reference

#i ncl ude <l psubosi . h>
Inheritance diagram for ABA_LPSUBOSI::

ABA_ABACUSROOT| | ABA_ABACUSROOT

; ABA_LP . ABA_LP
____________ T T
ABA_LPSUB | | ABA_OSIIF

t f
N

| ABA_LPSUBOSI |

Public Member Functions

« ABA_LPSUBOSI(ABA_MASTER smasterABA_SUB xsub)

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.21 ABA_LPSUBOSI Class Reference 323

The constructor calls the functidnitialize() of the base classABA_LPSUB, which sets up the linear program and
passes the data to the LP-solver.

« virtual ~ABA_LPSUBOSI()

The destructor.

Private Member Functions

* ABA_LPSUBOSI(constABA_LPSUBOSI&rhs)
e constABA_LPSUBOSI& operator5constABA _LPSUBOSI&rhs)

6.21.1 Constructor & Destructor Documentation

6.21.1.1 ABA_LPSUBOSI::ABA_LPSUBOSI ABA_MASTER = master ABA_SUB x sub)

The constructor calls the functignitialize() of the base classABA_LPSUB, which sets up the linear prograth
passes the data to the LP-solver.

Parameters:
master A pointer to the corresponding master of the optimization.

sub The subproblem of which the LP-relaxation is solved.

6.21.1.2 virtual ABA_LPSUBOSI::~ABA_LPSUBOSI () [virtual]

The destructor.

6.21.1.3 ABA_LPSUBOSI::ABA_LPSUBOSI (constABA_LPSUBOSI & rhs) [pri vate]

6.21.2 Member Function Documentation

6.21.2.1 consABA_ LPSUBOSI& ABA_LPSUBOSI::operator= (const ABA LPSUBOSI & rhs)
[private]

The documentation for this class was generated from thevioll file:

¢ Include/abacufigsubosi.h

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

324 Reference Manual

6.22 ABA LPMASTER Class Reference

The class ABA_LPMASTER is an abstract base class. A LP sapecific master class has to be derived from
this class.

#i ncl ude <l pmaster. h>
Inheritance diagram for ABA_LPMASTER::

| ABA_ABACUSROOT|

T

| ABA_LPMASTER |

| ABA_LPMASTEROSI|

Public Member Functions

 ABA LPMASTER (ABA_MASTER xmaster)
e virtual ~ABA_LPMASTER ()

« virtual voidinitializeLpParameter§=0

« virtual void setDefaultLpParamete(s=0

* virtual void printLpParameter§=0

« virtual void outputLpStatisticg)=0

Protected Attributes

« ABA_MASTER * master_

6.22.1 Detailed Description

The class ABA_LPMASTER is an abstract base class. A LP sapecific master class has to be derived from
this class.

Definition at line 40 of file Ipmaster.h.

6.22.2 Constructor & Destructor Documentation

6.22.2.1 ABA_LPMASTER: ABA_LPMASTER (ABA_MASTER x maste) [inli ne]

Definition at line 42 of file [pmaster.h.

6.22.2.2 virtual ABA_LPMASTER:: ~ABA_LPMASTER () [inline, virtual]
Definition at line 43 of file Ipmaster.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.23 ABA_LPMASTEROSI Class Reference 325

6.22.3 Member Function Documentation

6.22.3.1 virtual void ABA_LPMASTER::initializeLpParamet ers () [pure virtual]

Implemented ilMBA_LPMASTEROSI

6.22.3.2 virtual void ABA_LPMASTER::outputLpStatistics () [pure virtual]

Implemented ilPABA_LPMASTEROSI

6.22.3.3 virtual void ABA_LPMASTER::printLpParameters () [pure virtual]

Implemented irABA_LPMASTEROSI

6.22.3.4 virtual void ABA_LPMASTER::setDefaultLpParameters () [pure virtual]

Implemented iMBA_LPMASTEROSI

6.22.4 Member Data Documentation

6.22.4.1 ABA MASTER x ABA_LPMASTER::master_ [prot ect ed]

Definition at line 50 of file Ipmaster.h.

The documentation for this class was generated from theviolg file:

« Include/abacufgmaster.h

6.23 ABA LPMASTEROSI Class Reference

#i ncl ude <l pnasterosi.h>
Inheritance diagram for ABA_LPMASTEROSI::

| ABA_ABACUSROOT|

T

| ABA_LPMASTER |

T

| ABA_LPMASTEROSI|

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

326 Reference Manual

Public Member Functions

ABA_LPMASTEROSI(ABA_MASTER +master)
« virtual ~ABA_LPMASTEROSI()

The destructor.

« virtual voidinitializeLpParameter§)

« virtual void setDefaultLpParamete(s
* virtual void printLpParameter§

« virtual void outputLpStatisticg)

Friends

* classABA_OSIIF

6.23.1 Constructor & Destructor Documentation

6.23.1.1 ABA_LPMASTEROSI::ABA_LPMASTEROSI (ABA_MASTER x maste)
The constructor.

Parameters:
master The master of the optimization.

6.23.1.2 virtual ABA_LPMASTEROSI:: ~ABA LPMASTEROSI () [virtual]

The destructor.

6.23.2 Member Function Documentation

6.23.2.1 virtual void ABA_LPMASTEROSI::initializeLpPara meters () [vi rtual]
Initializes the LP solver specific Parameters.

ImplementsABA_LPMASTER.

6.23.2.2 virtual void ABA_LPMASTEROSI::outputLpStatisti cs () [vi rtual]

Prints LP solver specific Statistics.
ImplementsABA_LPMASTER.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.24 ABA_BRANCHRULE Class Reference 327

6.23.2.3 virtual void ABA_LPMASTEROSI::printLpParameter s () [virtual]

Prints the settings of the LP solver specific Parameters.
ImplementsABA_LPMASTER.

6.23.2.4 virtual void ABA_LPMASTEROSI::setDefaultLpParameters () [virtual]

Sets default values of the LP solver specific Parameters.
ImplementsABA_ LPMASTER.

6.23.3 Friends And Related Function Documentation

6.23.3.1 friend clasABA_OSIIF [fri end]

Definition at line 40 of file Ipmasterosi.h.

The documentation for this class was generated from theviolg file:

¢ Include/abacufgmasterosi.h

6.24 ABA BRANCHRULE Class Reference

class is an abstract base class for all branching rulesmititiis framework.
#i ncl ude <branchrul e. h>
Inheritance diagram for ABA_BRANCHRULE::

| ABA_ABACUSROOT |

T

| ABA_BRANCHRULE |

f
I I

[\
ABA_BOUNDBRANCHRULEH ABA_CONBRANCHRULE || ABA_SETBRANCHRULE || ABA_VALBRANCHRULE

Public Member Functions

« ABA BRANCHRULE (ABA_MASTER xmaster)
« virtual ~ABA_BRANCHRULE ()

« virtual int extract(ABA_SUB xsub)=0

« virtual void extract(ABA _LPSUB xIp)

Should modify the linear programming relaxatidp| in order to determine the quality of the branching rule in a
linear programming based branching rule selection.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

328 Reference Manual

« virtual void unExtract(ABA_LPSUB xIp)
* virtual boolbranchOnSetVaf)

Should indicate if the branching is performed by setting a binary variable.
« virtual voidinitialize (ABA_SUB xsub)
The function initialize is a virtual dummy function doing nothing. It is called fronttrestructor of the subproblem

and can be used to perform initializations of the branching rule that can hedwone after the generation of the
subproblem.

Protected Attributes

« ABA_MASTER % master_

6.24.1 Detailed Description

class is an abstract base class for all branching rulesmititig framework.

Parameters:
ABA_MASTER xmaster_ A pointer to the corresponding master of the opétitn.

Definition at line 63 of file branchrule.h.

6.24.2 Constructor & Destructor Documentation

6.24.2.1 ABA BRANCHRULE:ABA BRANCHRULE (ABA_MASTER x* maste)
The constructor.

Parameters:
master A pointer to the corresponding master of the optimization.

6.24.2.2 virtual ABA_BRANCHRULE:: ~ABA_BRANCHRULE () [virtual]

The destructor.

6.24.3 Member Function Documentation

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.24 ABA_BRANCHRULE Class Reference 329

6.24.3.1 virtual bool ABA_ BRANCHRULE::branchOnSetVar () [virtual]

Should indicate if the branching is performed by settingreabj variable.

This is only required as in the current version of the GNU-pden run time type information is not satisfactorily
implemented.

This function is currently required to determine globalidi#y of Gomory cuts for general

Returns:
The default implementation returns always false. This fiomc must be redefined in the class
ABA SETBRANCHRULE, where it has to returtrue.

Reimplemented idBA_SETBRANCHRULE

6.24.3.2 virtual void ABA_ BRANCHRULE::extract (ABA_LPSUB xIp) [virtual]

Should modify the linear programming relaxatidp| in order to determine the quality of the branching rule in a
linear programming based branching rule selection.

The default implementation does nothing except writing anivey to the error stream. If a derived concrete
branching rule should be used in LP-based branching ruéetieh then this function has to be redefined.

Parameters:
Ip A pointer to a the linear programming relaxtion of a a subjaob

Reimplemented inABA_BOUNDBRANCHRULE, ABA_CONBRANCHRULE, ABA_SETBRANCHRULE
andABA_VALBRANCHRULE.

6.24.3.3 virtual int ABA_ BRANCHRULE::extract (ABA_SUB xsub) [pure virtual]

Modifies a subproblem by setting the branching variable.

Returns:
0 If the subproblem can be modified according to the branchileg
1 If a contradiction occurs.

Parameters:
sub The subproblem being modified.

Implemented inABA_BOUNDBRANCHRULE, ABA_CONBRANCHRULE, ABA_SETBRANCHRULE and
ABA_VALBRANCHRULE.

6.24.3.4 virtual void ABA_ BRANCHRULE::initialize (ABA_SUB x sub) [virtual]

The function initialize is a virtual dummy function doingthang. It is called from the constructor of the subprob-
lem and can be used to perform initializations of the bramghule that can be only done after the generation of
the subproblem.

Parameters:
sub A pointer to the subproblem that should be used for the iigtigion.}

Reimplemented iBA_CONBRANCHRULE

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

330 Reference Manual

6.24.3.5 virtual void ABA_BRANCHRULE::unExtract (ABA_LPSUB * Ip) [vi rtual]

Should undo the modifictions of the linear programming redeox|Ip|.
This function has to be redefined in a derived class, if aldoact(ABA_LPSUB) is redefined there.

Parameters:
Ip A pointer to a the linear programming relaxtion of a a subjewb

Reimplemented inABA_BOUNDBRANCHRULE, ABA_CONBRANCHRULE, ABA_SETBRANCHRULE
andABA_VALBRANCHRULE.

6.24.4 Member Data Documentation

6.24.4.1 ABA_MASTER x ABA_BRANCHRULE:master_ [prot ect ed]

Definition at line 157 of file branchrule.h.

The documentation for this class was generated from theviolg file:

¢ Include/abacustanchrule.h

6.25 ABA_ SETBRANCHRULE Class Reference

The data members of the class ABA_SETBRANCHRULE.
#i ncl ude <setbranchrul e. h>
Inheritance diagram for ABA_SETBRANCHRULE::

| ABA_ABACUSROOT |

T

| ABA_BRANCHRULE |

| ABA_SETBRANCHRULE|

Public Member Functions

« ABA SETBRANCHRULE(ABA_MASTER xmaster, int variableABA FSVARSTAT::STATUSstatus)
« virtual ~ABA_SETBRANCHRULE()

The destructor.
« virtual int extract(ABA_SUB xsub)

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.25 ABA_SETBRANCHRULE Class Reference 331

« virtual void extract(ABA _LPSUB xIp)
The functiorextract()is overloaded to modify directly the linear programming relaxation.

« virtual void unExtract(ABA_LPSUB xIp)
The functiorunExtract()

« virtual boolbranchOnSetVa()

Redefines the virtual function of the base cl&®A BRANCHRULESs this branching rule is setting a binary
variable.

* bool setToUpperBoung) const
« int variable() const
Private Attributes

* int variable_
* ABA_FSVARSTAT::STATUS status_
 doubleoldLpBound_

Friends

» ostream &operatox < (ostream &out, consABA SETBRANCHRULE&rhs)
The output operator writes the number of the branching variable and itestan an output stream.

6.25.1 Detailed Description
The data members of the class ABA_SETBRANCHRULE.

Parameters:
int variable_The branching variable.

ABA_FSVARSTAT::STATUSstatus _ The status of the branching varial#etToLowerBounar SetTo-
UpperBound.

double oldLpbound_ The bound of the branching variable in the lin@@agram, before it is temporarily
modified for testing the quality of this branching rule.

Definition at line 43 of file setbranchrule.h.

6.25.2 Constructor & Destructor Documentation

6.25.2.1 ABA_SETBRANCHRULE::ABA_SETBRANCHRULE (ABA_MASTER x master int variable
ABA_FSVARSTAT::STATUS statug

The constructor.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

332 Reference Manual

Parameters:
master A pointer to the corresponding master of the optimization.

variable The branching variable.
status The status the variable is set to (SetToLowerBoun8etiToUpperBound

6.25.2.2 virtual ABA_SETBRANCHRULE:: ~ABA_SETBRANCHRULE () [virtual]

The destructor.

6.25.3 Member Function Documentation

6.25.3.1 virtual bool ABA SETBRANCHRULE::branchOnSetVar () [virtual]

Redefines the virtual function of the base clA#A BRANCHRULE as this branching rule is setting a binary
variable.

Returns:
Alwaystrue.

Reimplemented froABA_BRANCHRULE.

6.25.3.2 virtual void ABA_SETBRANCHRULE::extract (ABA_LPSUB x Ip) [virtual]

The functionextract()is overloaded to modify directly the linear programmingasedtion.

This required to evaluate the quality of a branching ruléwitear programming methods. The changes have to
be undone with the functionnextract()before the next linear program is solved.

Parameters:
Ip A pointer to the linear programming relaxation of a subpeof!

Reimplemented froABA_BRANCHRULE.

6.25.3.3 virtual int ABA_SETBRANCHRULE::extract (ABA_SUB x sub) [virtual]
Modifies a subproblem by setting the branching variable.
Returns:

0 If the subproblem can be modified according to the branchileg
1 If a contradiction occurs.

Parameters:
sub The subproblem being modified.

ImplementsABA_BRANCHRULE.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.25 ABA_SETBRANCHRULE Class Reference 333

6.25.3.4 bool ABA_SETBRANCHRULE::setToUpperBound () cost

Returns:
true If the branching variable is set to the upper bound,
false otherwise.

6.25.3.5 virtual void ABA_SETBRANCHRULE::unExtract (ABA_LPSUB «Ip) [virtual]

The functionunExtract()
Reimplemented frorABA_BRANCHRULE.

6.25.3.6 int ABA_SETBRANCHRULE::variable () const [i nl i ne]

Returns:
The number of the branching variable.

Definition at line 151 of file setbranchrule.h.

6.25.4 Friends And Related Function Documentation

6.25.4.1 ostream& operatok < (ostream & out, constABA_SETBRANCHRULE & rhs) [friend]

The output operator writes the number of the branching lliand its status on an output stream.

Returns:
A reference to the output stream.

Parameters:
out The output stream.

rhs The branching rule being output.

6.25.5 Member Data Documentation

6.25.5.1 doubleABA SETBRANCHRULE::oldLpBound_ [pri vat €]

Definition at line 146 of file setbranchrule.h.

6.25.5.2 ABA_ FSVARSTAT::STATUS ABA_SETBRANCHRULE::status_ [pri vat €]
Definition at line 145 of file setbranchrule.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

334 Reference Manual

6.25.5.3 IntABA_SETBRANCHRULE::variable_ [pri vat e]

Definition at line 144 of file setbranchrule.h.

The documentation for this class was generated from theviolg file:

¢ Include/abacusktbranchrule.h

6.26 ABA_BOUNDBRANCHRULE Class Reference

class implements a branching rule for modifying the lowet e upper bound of a variable.
#i ncl ude <boundbranchrul e. h>
Inheritance diagram for ABA_ BOUNDBRANCHRULE::

| ABA_ABACUSROOT |

T

| ABA_BRANCHRULE |

T

| ABA_BOUNDBRANCHRULE |

Public Member Functions

« ABA_BOUNDBRANCHRULE (ABA_MASTER xmaster, int variable, double IBound, double uBound)
* virtual ~ABA_BOUNDBRANCHRULE ()
e virtual int extract(ABA_SUB xsub)

Modifies a subproblem by changing the lower and the upper bound oféinetting variable.

« virtual void extract(ABA_LPSUB xIp)
Is overloaded to modify directly the linear programming relaxation.

« virtual void unExtract(ABA_LPSUB xIp)
« int variable() const

¢ doublelBound() const
 doubleuBound() const

Private Attributes

* int variable_
 doublelBound_

e doubleuBound_

* doubleoldLpLBound_
e doubleoldLpUBound_

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.26 ABA_BOUNDBRANCHRULE Class Reference 335

Friends

» ostream &operatox < (ostream &out, consABA_BOUNDBRANCHRULE &rhs)
The output operator writes the branching variable together with its lowerwgger bound to an output stream.

6.26.1 Detailed Description

class implements a branching rule for modifying the lowet #re upper bound of a variable.

Parameters:
int variable_The branching variable.

double IBound_ The lower bound of the branching variable.
double uBound_ The upper bound of the branching variable.

Definition at line 40 of file boundbranchrule.h.

6.26.2 Constructor & Destructor Documentation

6.26.2.1 ABA BOUNDBRANCHRULE::ABA BOUNDBRANCHRULE (ABA_MASTER x master int
variable, doublelBound, double uBound)

The constructor.

Parameters:
master A pointer to the corresponding master of the optimization.

variable The branching variable.
IBound The lower bound of the branching variable.
uBound The upper bound of the branching variable.

6.26.2.2 virtual ABA_BOUNDBRANCHRULE:: ~ABA_BOUNDBRANCHRULE () [virtual]

The destructor.

6.26.3 Member Function Documentation

6.26.3.1 virtual void ABA_ BOUNDBRANCHRULE::extract (ABA_LPSUB xIp) [virtual]

Is overloaded to modify directly the linear programmingasedtion.
This required to evaluate the quality of a branching rule.
Reimplemented frorABA_BRANCHRULE.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

336 Reference Manual

6.26.3.2 virtual int ABA_BOUNDBRANCHRULE::extract (ABA_SUB * sub) [vi rtual]

Modifies a subproblem by changing the lower and the upperdoiithe branching variable.

Returns:
0 If the subproblem is successfully modified.
1 If the modification causes a contradiction.

Parameters:
sub The subproblem being modified.

ImplementsABA_BRANCHRULE.

6.26.3.3 double ABA_BOUNDBRANCHRULE::IBound () const [i nl i ne]

Returns:
The lower bound of the branching variable.

Definition at line 139 of file boundbranchrule.h.

6.26.3.4 double ABA_ BOUNDBRANCHRULE::uBound () const [i nl i ne]

Returns:
The upper bound of the branching variable.

Definition at line 144 of file boundbranchrule.h.

6.26.3.5 virtual void ABA_BOUNDBRANCHRULE::unExtract (ABA_LPSUB «Ip) [virtual]

Should undo the modifictions of the linear programming rideox|Ip|.
This function has to be redefined in a derived class, if aldeact(ABA_LPSUB) is redefined there.

Parameters:
Ip A pointer to a the linear programming relaxtion of a a subfewb

Reimplemented frorABA_BRANCHRULE.
6.26.3.6 int ABA_BOUNDBRANCHRULE::variable () const [i nli ne]

Returns:
The number of the branching variable.

Definition at line 134 of file boundbranchrule.h.

6.26.4 Friends And Related Function Documentation

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.27 ABA_VALBRANCHRULE Class Reference 337

6.26.4.1 ostream& operatok < (ostream & out, constABA_BOUNDBRANCHRULE & rhs) [fri end]
The output operator writes the branching variable togettitrits lower and upper bound to an output stream.

Returns:
A reference to the output stream.

Parameters:
out The output stream.

rhs The branch rule being output.

6.26.5 Member Data Documentation

6.26.5.1 doubleABA_ BOUNDBRANCHRULE::IBound_ [pri vat €]

Definition at line 127 of file boundbranchrule.h.

6.26.5.2 doubleABA_BOUNDBRANCHRULE::oldLpLBound_ [pri vat e]

Definition at line 129 of file boundbranchrule.h.

6.26.5.3 doubleABA_BOUNDBRANCHRULE::0oldLpUBound_ [pri vat €]

Definition at line 130 of file boundbranchrule.h.

6.26.5.4 doubleABA BOUNDBRANCHRULE::uBound_ [pri vat e]

Definition at line 128 of file boundbranchrule.h.

6.26.5.5 intABA_BOUNDBRANCHRULE::variable_ [pri vat €]

Definition at line 126 of file boundbranchrule.h.

The documentation for this class was generated from theviall file:

¢ Include/abacusbundbranchrule.h

6.27 ABA_VALBRANCHRULE Class Reference

class implements a branching rule for setting a variabledertain value.
#i ncl ude <val branchrul e. h>
Inheritance diagram for ABA_VALBRANCHRULE::

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

338 Reference Manual

| ABA_ABACUSROOT |

T

| ABA_BRANCHRULE |

| ABA_VALBRANCHRULE |

Public Member Functions

« ABA VALBRANCHRULE (ABA_ MASTER xmaster, int variable, double value)
e virtual ~ABA_VALBRANCHRULE ()

The destructor.

* virtual int extract(ABA_SUB xsub)
* virtual void extract(ABA_LPSUB xIp)

The functiorextract()is overloaded to modify directly the linear programming relaxation. Thisiregito evaluate
the quality of a branching rule.

* virtual void unExtract(ABA_LPSUB xIp)
The functiorunExtract()

« int variable() const
 doublevalue() const
Private Attributes

* int variable_

 doublevalue

 doubleoldLpLBound_

e doubleoldLpUBound_
Friends

 ostream &operatox < (ostream &out, consABA_VALBRANCHRULE &rhs)

The output operator writes the branching variable together with its value toudiput stream.

6.27.1 Detailed Description
class implements a branching rule for setting a variabledertain value.

Parameters:
int variable_ The branching variable.

double value_ The value the branching variable is set to.

Definition at line 42 of file valbranchrule.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.27 ABA_VALBRANCHRULE Class Reference 339

6.27.2 Constructor & Destructor Documentation

6.27.2.1 ABA_VALBRANCHRULE::ABA_VALBRANCHRULE (ABA_MASTER x master int variable,
double value)

The constructor.

Parameters:
master The corresponding master of the optimization.

variable The branching variable.
value The value the branching variable is set to.

6.27.2.2 virtual ABA_VALBRANCHRULE:: ~ABA_VALBRANCHRULE () [Virtual]

The destructor.

6.27.3 Member Function Documentation

6.27.3.1 virtual void ABA_VALBRANCHRULE::extract (ABA_LPSUB xIp) [virtual]

The functionextract()is overloaded to modify directly the linear programmingwaltion. This required to evaluate
the quality of a branching rule.

Reimplemented froABA_BRANCHRULE.

6.27.3.2 virtual int ABA_VALBRANCHRULE::extract (ABA_SUB xsub) [virtual]
Modifies a subproblem by setting the branching variable.

Returns:

0 If the subproblem can be modified according to the branchileg
1 If a contradiction occurs.

Parameters:
sub The subproblem being modified.

ImplementsABA_BRANCHRULE.

6.27.3.3 virtual void ABA_VALBRANCHRULE::unExtract (ABA_LPSUB * Ip) [vi rtual]

The functionunExtract()
Reimplemented frorABA_BRANCHRULE.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

340 Reference Manual

6.27.3.4 double ABA_VALBRANCHRULE::value () const [inli ne]

Returns:
The value of the branching variable.

Definition at line 136 of file valbranchrule.h.

6.27.3.5 int ABA_VALBRANCHRULE::variable () const [i nli ne]

Returns:
The number of the branching variable.

Definition at line 131 of file valbranchrule.h.

6.27.4 Friends And Related Function Documentation

6.27.4.1 ostream& operatok < (ostream & out, constABA_VALBRANCHRULE & rhs) [fri end]

The output operator writes the branching variable togetlitrits value to an output stream.

Returns:
A reference to the output stream.

Parameters:
out The output stream.

rhs The branching rule being output.

6.27.5 Member Data Documentation

6.27.5.1 doubleABA_VALBRANCHRULE::oldLpLBound_ [pri vat €]

Definition at line 126 of file valbranchrule.h.

6.27.5.2 doubleABA_VALBRANCHRULE::oldLpUBound_ [pri vat €]

Definition at line 127 of file valbranchrule.h.

6.27.5.3 doubleABA VALBRANCHRULE:value_ [private]
Definition at line 125 of file valbranchrule.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.28 ABA_CONBRANCHRULE Class Reference 341

6.27.5.4 intABA_VALBRANCHRULE:variable [pri vat €]

Definition at line 124 of file valbranchrule.h.

The documentation for this class was generated from thevioll file:

¢ Include/abacusalbranchrule.h

6.28 ABA_ CONBRANCHRULE Class Reference

class implements the branching by adding a constraint teghef active constraints.
#i ncl ude <conbranchrul e. h>
Inheritance diagram for ABA_CONBRANCHRULE::

| ABA_ABACUSROOT |

|

| ABA_BRANCHRULE |

|

| ABA_CONBRANCHRULE|

Public Member Functions

* ABA_CONBRANCHRULE (ABA_MASTER sxmaster, ABA_POOLSLOT< ABA_CONSTRAINT,
ABA_VARIABLE > xpoolSlot)

« virtual ~ABA_CONBRANCHRULE()

e virtual int extract(ABA_SUB xsub)

* virtual void extract(ABA_LPSUB xIp)

The functiorextract()is overloaded to modify directly the linear programming relaxation.

« virtual void unExtract(ABA_LPSUB xIp)
« virtual voidinitialize (ABA_SUB xsub)

Redefines the virtual function of the base claB®_BRANCHRULIh order to initialize the subproblem associated
with the branching constraint.

o ABA_CONSTRAINT * constraint()

Private Member Functions

e constABA_CONBRANCHRULE & operator5constABA_CONBRANCHRULE &rhs)

Private Attributes

* ABA_POOLSLOTREK ABA_CONSTRAINT, ABA_VARIABLE > poolSlotRef_

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

342 Reference Manual

Friends

» ostream &operatox < (ostream &out, consABA CONBRANCHRULE &rhs)

6.28.1 Detailed Description

class implements the branching by adding a constraint teghef active constraints.

Parameters:
ABA_ POOLSLOTREF poolSlotRef A reference to the pool slot of the branchingstints.

Definition at line 46 of file conbranchrule.h.

6.28.2 Constructor & Destructor Documentation

6.28.2.1 ABA_CONBRANCHRULE::ABA_CONBRANCHRULE (ABA_MASTER * master
ABA_POOLSLOT < ABA_CONSTRAINT , ABA_VARIABLE > x poolSlo)

The constructor.
Note:
The subproblem associated with the branching constralhib@modified in the constructor of the subproblem

generated with this branching rule such that later the clieclocal validity of the branching constraint is
performed correcly.

Parameters:
master A pointer to the corresponding master of the optimization.

poolSlot A pointer to the pool slot of the branching constraint.

6.28.2.2 virtual ABA_CONBRANCHRULE:: ~ABA_CONBRANCHRULE () [virtual]

The destructor.

6.28.3 Member Function Documentation

6.28.3.1 ABA_CONSTRAINT x* ABA_CONBRANCHRULE::constraint ()

Returns:
A pointer to the branching constraint or a O-pointer, if higmstraint is not available.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.28 ABA_CONBRANCHRULE Class Reference 343

6.28.3.2 virtual void ABA_CONBRANCHRULE::extract (ABA_LPSUB «Ip) [vi rtual]

The functionextract()is overloaded to modify directly the linear programmingasetion.
This required to evaluate the quality of a branching rule.
Reimplemented froABA_BRANCHRULE.

6.28.3.3 virtual int ABA_ CONBRANCHRULE::extract (ABA_SUB xsub) [virtual]

Adds the branching constraint to the subproblem.

Instead of adding it directly to the set of active constisihis added to the cut buffer.

Returns:
Always 0, since there cannot be a contractiction.

Parameters:
sub The subproblem being modified.

ImplementsABA_BRANCHRULE.

6.28.3.4 virtual void ABA_ CONBRANCHRULE::initialize (ABA_SUB x sub) [virtual]

Redefines the virtual function of the base cla&A\ BRANCHRULE in order to initialize the subproblem asso-
ciated with the branching constraint.

Parameters:
sub A pointer to the subproblem that is associated with the bregcconstraint.

Reimplemented froABA_BRANCHRULE.

6.28.3.5 const\BA_CONBRANCHRULE & ABA_CONBRANCHRULE::operator= (const
ABA_CONBRANCHRULE & rhs) [pri vat e]

6.28.3.6 virtual void ABA_ CONBRANCHRULE::unExtract (ABA_ LPSUB xIp) [virtual]

Should undo the modifictions of the linear programming rietex|Ip|.
This function has to be redefined in a derived class, if aldcact(ABA LPSUB) is redefined there.

Parameters:
Ip A pointer to a the linear programming relaxtion of a a subjewb

Reimplemented frorABA_BRANCHRULE.

6.28.4 Friends And Related Function Documentation

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

344 Reference Manual

6.28.4.1 ostream& operatok < (ostream & out, constABA_ CONBRANCHRULE & rhs) [fri end]

The output operator writes the branching constraint on apubstream.

Returns:
A reference to the output stream.

Parameters:
out The output stream.

rhs The branch rule being output.

6.28.5 Member Data Documentation

6.28.5.1 ABA POOLSLOTREF <ABA_CONSTRAINT , ABA_VARIABLE >
ABA CONBRANCHRULE::poolSlotRef [pri vat €]

Definition at line 135 of file conbranchrule.h.

The documentation for this class was generated from theviall file:

 Include/abacusbnbranchrule.h

6.29 ABA_ POOL< BaseType, CoType> Class Template Reference

The public enumerations of ABA_POOL.
#i ncl ude <pool . h>

Inheritance diagram for ABA_POGt. BaseType, CoType-::

| ABA_ABACUSROOT |

T

| ABA_POOL< BaseType, CoType > |

T

| ABA_STANDARDPOOL< BaseType, CoType|>

T

| ABA_NONDUPLPOOL< BaseType, CoType %

Public Types

« enumRANKING { NO_RANK, RANK, ABS_RANK }

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.29 ABA POOL< BaseType, CoType> Class Template Reference 345

Public Member Functions

« ABA POOL (ABA_MASTER xmaster)
* virtual ~ABA_POOL ()

The destructor.

* virtual ABA_POOLSLOT< BaseType, CoType- * insert(BaseTypexcv)=0
* void removeConVafABA_POOLSLOT< BaseType, CoType- xslot)

Removes the constraint/variable stored in a pool slot and adds the slot listtbéfree slots.
« int number() const
* virtual int separate(double xz, ABA_ACTIVE< CoType, BaseType> sxactive, ABA_SUB xsub,
ABA_CUTBUFFER< BaseType, CoType- xcutBuffer, double minAbsViolation=0.001, int ranking=@)

Protected Member Functions

« virtual int softDeleteConVa(ABA_POOLSLOT< BaseType, CoType xslot)
Removes the constraint/variable stored in the pool slatfrom the pool if the constraint/variable can be deleted.

« virtual void hardDeleteConVafABA_POOLSLOT< BaseType, CoType x*slot)
Removes a constraint/variable from the pool and adds the slot to the seeddldrts.

* virtual ABA_POOLSLOT< BaseType, CoType * getSlot()=0
« virtual void putSlot(ABA POOLSLOT< BaseType, CoType xslot)=0

Protected Attributes

« ABA MASTER x master_
e int number_

6.29.1 Detailed Description
template<class BaseType, class CoTypeclass ABA POOL< BaseType, CoType>

The public enumerations of ABA_POOL.

Definition at line 65 of file pool.h.

6.29.2 Member Enumeration Documentation

6.29.2.1 templatecclass BaseType, class CoTypeenum ABA_POOL::RANKING

Enumeration values:
NO_RANK

RANK
ABS_RANK

Definition at line 67 of file pool.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

346 Reference Manual

6.29.3 Constructor & Destructor Documentation

6.29.3.1 templatecclass BaseType, class CoTypeABA POOL < BaseType, CoType>::ABA_POOL
(ABA_MASTER x maste)

The constructor initializes an empty pool.

Parameters:
master A pointer to the corresponding master of the optimization.

6.29.3.2 templatecclass BaseType, class CoTypevirtual ABA_POOL < BaseType, CoType
>::~ABA_POOL () [virtual]

The destructor.

6.29.4 Member Function Documentation

6.29.4.1 templatecclass BaseType, class CoTypevirtual ABA_POOLSLOT <BaseType, CoType-*
ABA_POOL < BaseType, CoType>::getSlot () [protected, pure virtual]

Implemented ilABA_STANDARDPOOL< BaseType, CoType, ABA_STANDARDPOOL< ABA_VARIABLE, ABA_CONSTF
andABA_STANDARDPOOL< ABA_CONSTRAINT, ABA_VARIABLE >.

6.29.4.2 templateclass BaseType, class CoTypevirtual void ABA_POOL < BaseType, CoType
>::hardDeleteConVar (ABA_POOLSLOT < BaseType, CoType> * slot) [prot ect ed,
virtual]

Removes a constraint/variable from the pool and adds thécstbe set of free slots.

Parameters:
slot A pointer to the pool slot from wich the constraint/variableuld be deleted.

Reimplemented idBA_NONDUPLPOOL< BaseType, CoType-.

6.29.4.3 templatecclass BaseType, class CoTypevirtual ABA_POOLSLOT <BaseType, CoType-x
ABA POOL < BaseType, CoType>::insert (BaseTypex cv) [pure virtual]

Implemented ilABA_NONDUPLPOOL< BaseType, CoType, andABA_STANDARDPOOL< BaseType, CoType-.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.29 ABA POOL< BaseType, CoType> Class Template Reference 347

6.29.4.4 templatecclass BaseType, class CoTypeint ABA_POOL < BaseType, CoType>::number ()
const

Returns:
The current number of items in the pool.

6.29.4.5 templatecclass BaseType, class CoTypevirtual void ABA_POOL < BaseType, CoType
>::putSlot (ABA_POOLSLOT < BaseType, CoType> * slot) [protected, pure
virtual]

Implemented ilrABA_STANDARDPOOL< BaseType, CoType-.

6.29.4.6 templateclass BaseType, class CoTypevoid ABA_POOL < BaseType, CoType
>::removeConVar (ABA_POOLSLOT < BaseType, CoType> « slof)

Removes the constraint/variable stored in a pool slot add #tk slot to the list of free slots.

Parameters:
slot The pool slot from which the constraint/variable is remaved

6.29.4.7 templatecclass BaseType, class CoTypevirtual int ABA POOL < BaseType, CoType
>:.separate (doublex z, ABA_ACTIVE < CoType, BaseType> x active ABA_SUB x sub,
ABA_CUTBUFFER < BaseType, CoType> « cutBuffer, double minAbsViolation= 0. 001, int
ranking=0) [pure virtual]

Implemented ilPMBA_STANDARDPOOL< BaseType, CoType-.

6.29.4.8 templatecclass BaseType, class CoTypevirtual int ABA_POOL < BaseType, CoType
>::softDeleteConVar (ABA_POOLSLOT < BaseType, CoType> « slof) [pr ot ect ed,
virtual]

Removes the constraint/variable stored in the poolstitfrom the pool if the constraint/variable can be deleted.
If the constraint/variable can be removed the slot is addede set of free slots.

Returns:
0 If the constraint/variable could be deleted.
1 otherwise.

Parameters:
slot A pointer to the pool slot from wich the constraint/variableould be deleted.

Reimplemented idBA_NONDUPLPOOL< BaseType, CoType-.

6.29.5 Member Data Documentation

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

348 Reference Manual

6.29.5.1 templatecclass BaseType, class CoTypeABA_MASTER x ABA_POOL < BaseType, CoType
>:master_ [protected]

Definition at line 136 of file pool.h.

6.29.5.2 templatecclass BaseType, class CoTypeint ABA_POOL < BaseType, CoType>::number_
[protected]
Definition at line 137 of file pool.h.

The documentation for this class was generated from thevioll file:

* Include/abacugbol.h

6.30 ABA_STANDARDPOOL< BaseType, CoType> Class Template
Reference

class provides a very simple implementation of a pool whichufficient for a large class of applications. pool
slots stored in array, set of free slots is managed by a lirsar

#i ncl ude <standardpool . h>
Inheritance diagram for ABA_STANDARDPOGQGL BaseType, CoType-::

| ABA_ABACUSROOT |

T

| ABA_POOL< BaseType, CoType > |

T

| ABA_STANDARDPOOL< BaseType, CoType|>

T

| ABA_NONDUPLPOOL< BaseType, CoType #

Public Member Functions

« ABA_STANDARDPOOL (ABA_MASTER xmaster, int size, bool autoRealloc=false)
* virtual ~ABA_STANDARDPOOL ()

The destructor deletes all slots. The destructor of a pool slot deleteatbethe respective constraint or variable.

* virtual ABA_POOLSLOT< BaseType, CoType * insert(BaseTypexcv)
« virtual voidincreasgint size)
* int cleanup()

Scans the pool, removes all deletable items, i.e., those items without heférences, and adds the corresponding
slots to the list of free slots.

* int size() const

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.30 ABA_STANDARDPOOL< BaseType, CoType> Class Template Referedé@

* ABA_POOLSLOT< BaseType, CoType * slot(int i)

* virtual int separate(double xx, ABA_ACTIVE< CoType, BaseType> xactive, ABA_SUB xsub,
ABA CUTBUFFER< BaseType, CoType *cutBuffer, double minAbsViolation=0.001, int ranking=0)

Checks if a pair of a vector and an active constraint/variable set violatgsitem in the pool. If the pool is a
constraint pool, then the vector is an LP-solution and the active set thé aetige variables. Otherwise, if the pool
is a variable pool, then the vector stores the values of the dual variabléghenactive set the associated active
constraints.

Protected Member Functions

« int removeNonActivgint maxRemove)
* virtual ABA_POOLSLOT< BaseType, CoType x getSlot()

Returns a free slot, or 0 if no free slot is available. A returned slot is rechéreen the list of free slots.

« virtual void putSlot(ABA_POOLSLOT< BaseType, CoType xslot)

Protected Attributes

* ABA_ARRAY < ABA_POOLSLOT< BaseType, CoType * > pool_
* ABA_LIST< ABA_POOLSLOT< BaseType, CoType * > freeSlots_
e boolautoRealloc_

Private Member Functions
* ABA_STANDARDPOOL (constABA_STANDARDPOOL &rhs)
» constABA_STANDARDPOOL & operator<constABA_STANDARDPOOL &rhs)

Friends

» ostream &operatox < (ostream &out, consABA STANDARDPOOL &rhs)

The output operator calls the output operator of each item of a non-vaid got.

6.30.1 Detailed Description
template<class BaseType, class CoTypeclass ABA_STANDARDPOOL< BaseType, CoType>

class provides a very simple implementation of a pool whechufficient for a large class of applications. pool
slots stored in array, set of free slots is managed by a lirstar

Definition at line 58 of file standardpool.h.

6.30.2 Constructor & Destructor Documentation

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

350 Reference Manual

6.30.2.1 templatecclass BaseType, class CoTypeABA_STANDARDPOOL < BaseType, CoType
>::ABA_STANDARDPOOL (ABA_ MASTER x master int sizg bool autoRealloc=f al se)
The constructor for an empty pool.

All slots are inserted in the linked list of free slots.

Parameters:
master A pointer to the corresponding master of the optimization.

size The maximal number of items which can be inserted in the patblout reallocation.

autoRealloc If this argument igrue an automatic reallocation is performed if the pool is full.

6.30.2.2 templatecclass BaseType, class CoTypevirtual ABA_STANDARDPOOL < BaseType, CoType
>::~ABA_STANDARDPOOL ()

The destructor deletes all slots. The destructor of a podldgletes then also the respective constraint or variable.

6.30.2.3 templatecclass BaseType, class CoTypeABA_STANDARDPOOL < BaseType, CoType
>::ABA_STANDARDPOOL (constABA_STANDARDPOOL < BaseType, CoType> & rhs)
[private]

6.30.3 Member Function Documentation

6.30.3.1 templatecclass BaseType, class CoTypeint ABA_STANDARDPOOL < BaseType, CoType
>::cleanup ()

Scans the pool, removes all deletable items, i.e., thosesitethout having references, and adds the corresponding
slots to the list of free slots.

Returns:
The number of “cleaned” slots.

6.30.3.2 templatecclass BaseType, class CoTypevirtual ABA_POOLSLOT <BaseType,CoType-*
ABA_STANDARDPOOL < BaseType, CoType>::getSlot () [protected, virtual]

Returns a free slot, or 0 if no free slot is available. A reaatslot is removed from the list of free slots.
This function defines the pure virtual function of the basesshABA POOL.
ImplementsABA_POOL< BaseType, CoType-.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.30 ABA_STANDARDPOOL< BaseType, CoType> Class Template RefereBse

6.30.3.3 templatecclass BaseType, class CoTypevirtual void ABA_STANDARDPOOL < BaseType,
CoType >:increase (intsize [virtual]

Enlarges the pool to store.

To avoid fatal errors we do not allow decreasing the size @fibol.

Parameters:
size The new size of the pool.

Reimplemented idBA_NONDUPLPOOL< BaseType, CoType-.

6.30.3.4 templatecclass BaseType, class CoTypevirtual ABA_POOLSLOT <BaseType,CoType-x
ABA_STANDARDPOOL < BaseType, CoType>::insert (BaseTypesxcv) [virtual]
Tries to insert a constraint/variable in the pool.

If there is no free slot available, we try to generate freésdhy removing redundant items, i.e., items which have
no reference to them. If this fails, we either perform an eatic reallocation of the pool or remove non-active
items.

Returns:
A pointer to the pool slot where the item has been inserte@,iothe insertion failed.

Parameters:

cv The constraint/variable being inserted.
ImplementsABA_POOL< BaseType, CoType-.
Reimplemented idBA_NONDUPLPOOL< BaseType, CoType-.

6.30.3.5 templatecclass BaseType, class CoTypeconst ABA STANDARDPOOL &
ABA_STANDARDPOOL < BaseType, CoType>::operator= (const ABA_STANDARDPOOL <
BaseType, CoType> & rhs) [pri vat €]

6.30.3.6 templatecclass BaseType, class CoTypevirtual void ABA_STANDARDPOOL < BaseType,
CoType >::putSlot (ABA_POOLSLOT < BaseType, CoType> * slof) [prot ect ed,
vi rtual]

Inserts theslotin the list of free slots.

It is an error to insert a slot which is not empty.

This function defines the pure virtual function of the bassshABA POOL.

ImplementsABA POOL< BaseType, CoType-.

6.30.3.7 templatecclass BaseType, class CoTypeint ABA_STANDARDPOOL < BaseType, CoType
>::removeNonActive (int maxRemovg [pr ot ect ed]

Tries to remove at moshaxRemovaactive items from the pool.

A minimum heap of the items with the reference counter as &dyilt up and items are removed in this order.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

352 Reference Manual

6.30.3.8 templatecclass BaseType, class CoTypevirtual int ABA_STANDARDPOOL < BaseType,
CoType >::separate (doublex x, ABA_ACTIVE < CoType, BaseType> x activg ABA_SUB x
sub, ABA_CUTBUFFER < BaseType, CoType> * cutBuffer, double minAbsViolation= 0. 001,
int ranking =0) [virtual]

Checks if a pair of a vector and an active constraint/vagiagt violates any item in the pool. If the pool is a
constraint pool, then the vector is an LP-solution and thivaset the set of active variables. Otherwise, if the
pool is a variable pool, then the vector stores the valueseofltial variables and the active set the associated active
constraints.

Before a constraint or variable is generated we check ifvigl for the subproblersuh

The function defines the pure virtual function of the basesAB8A POOL

This is a very simple version of the pool separation. Futersiens might scan a priority queue of the available
constraints until a limited number of constraints is tesiedeparated.

Returns:
The number of violated items.

Parameters:
z The vector for which violation is checked.

active The constraint/variable set associated vgith
sub The subproblem for which validity of the violated item is végd.
cutBuffer The violated constraints/variables are added to this buffe

minAbsViolation A violated constraint/variable is only added to tbetBufferif the absolute value of its
violation is at leastinAbsViolation The default value i6.001.

ranking If 1, the violation is associated with a rank of item in thefbufif 2 the absolute violation is used, if
3 the functionABA_CONVAR::rank()is used, if 0 no rank is associated with the item.

ImplementsABA_POOL< BaseType, CoType-.
6.30.3.9 templatecclass BaseType, class CoTypeint ABA_STANDARDPOOL < BaseType, CoType
>::size () const

Returns:
The maximal number of constraints/variables that can berted in the pool.

6.30.3.10 templatecclass BaseType, class CoTypeABA_POOLSLOT <BaseType,CoType-x
ABA_STANDARDPOOL < BaseType, CoType>::slot (int i)

Returns:
A pointer to thei-th slot in the pool.

Parameters:
i The number of the slot being accessed.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.30 ABA_STANDARDPOOL< BaseType, CoType> Class Template Referes@

6.30.4 Friends And Related Function Documentation

6.30.4.1 templatecclass BaseType, class CoTypeostream& operator<< (ostream & out, const
ABA_STANDARDPOOL < BaseType, CoType> & rhs) [fri end]

The output operator calls the output operator of each iteenrain-void pool slot.

Returns:
A reference to the output stream.

Parameters:
out The output stream.

rhs The pool being output.

6.30.5 Member Data Documentation

6.30.5.1 templatecclass BaseType, class CoTypebool ABA_STANDARDPOOL < BaseType, CoType
>:rautoRealloc_ [prot ect ed]

If the pool becomes full and this membettige, then an automatic reallocation is performed.

Definition at line 245 of file standardpool.h.

6.30.5.2 templatecclass BaseType, class CoTypeABA_LIST <ABA_POOLSLOT <BaseType,CoType-
x> ABA_STANDARDPOOL < BaseType, CoType>::freeSlots_ [pr ot ect ed]

The linked lists of unused slots.

Definition at line 239 of file standardpool.h.

6.30.5.3 templatecclass BaseType, class CoTypeABA_ARRAY <ABA_POOLSLOT <Base-
Type,CoType> x> ABA_STANDARDPOOL < BaseType, CoType>::pool_
[protect ed]

The array with the pool slots.
Definition at line 235 of file standardpool.h.

The documentation for this class was generated from thevioig file:

« Include/abacustandardpool.h

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

354 Reference Manual

6.31 ABA_NONDUPLPOOL< BaseType, CoType> Class Template Ref-
erence

class ABA_NONDUPLPOOL provides aABA_STANDARDPOOL with the additional feature that the same
constraint is at most stored once in the pool. For consiant variables inserted in this pool the virtual member
functionsname() hashKey() andequal()of the base clasaBA_CONVAR have to be defined

#i ncl ude <nondupl pool . h>
Inheritance diagram for ABA_NONDUPLPOQt.BaseType, CoType-::

| ABA_ABACUSROOT |

T

[ABA_POOL< BaseType, CoType > |

T

| ABA_STANDARDPOOL< BaseType, CoType|>

T

| ABA_NONDUPLPOOL< BaseType, CoType %

Public Member Functions

ABA _NONDUPLPOOL(ABA MASTER xmaster, int size, bool autoRealloc=false)
« virtual ~ABA_NONDUPLPOOL ()

The destructor.

* virtual ABA_POOLSLOT< BaseType, CoType * insert(BaseTypexcv)

Before the functionnsert()tries to insert a constraint/variable in the pool, it checks if the constraintA\deias
already contained in the pool. If the constraint/varialsleis contained in the pool, it is deleted.

« virtual ABA_POOLSLOT< BaseType, CoType x presen{BaseTypexcv)
* virtual voidincreasgint size)
« void statisticg(int &nDuplications, int &nCollisions) const

Determines the number of constraints that have not been inserted intodhebpcause an equivalent was already
present.

Private Member Functions

« virtual int softDeleteConVa(ABA POOLSLOT< BaseType, CoType xslot)

Has to be redefined because the slot has to be removed from the hasif tladleonstraint/variable can be deleted.

« virtual void hardDeleteConVafABA_POOLSLOT< BaseType, CoType- xslot)
ABA_NONDUPLPOOL (constABA_NONDUPLPOOL&rhs)
e constABA_NONDUPLPOOL& operator5constABA_NONDUPLPOOL&rhs)

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.31 ABA_NONDUPLPOOL< BaseType, CoType> Class Template Referenc855

Private Attributes
e ABA_HASH< unsignedABA_POOLSLOT< BaseType, CoType * > hash_

« int nDuplications_

6.31.1 Detailed Description
template<class BaseType, class CoTypeclass ABA_NONDUPLPOOL< BaseType, CoType>

class ABA_NONDUPLPOOL provides aABA_STANDARDPOOL with the additional feature that the same
constraint is at most stored once in the pool. For consiant! variables inserted in this pool the virtual member
functionsname() hashKey() andequal()of the base clasaBA_CONVAR have to be defined

Parameters:
hash_ A hash table for a fast access to the pool slot storing a caingtrariable.

nDuplications_ The number of insertions of constraints/variables thatewegjected since the con-
straint/variable is stored already in the pool.

Definition at line 52 of file nonduplpool.h.

6.31.2 Constructor & Destructor Documentation

6.31.2.1 templateclass BaseType, class CoTypeABA_NONDUPLPOOL < BaseType, CoType
>::ABA_NONDUPLPOOL (ABA_MASTER x master int size bool autoRealloc=f al se)

The constructor for an empty pool.

Parameters:
master A pointer to the corresponding master of the optimization.

size The maximal number of items which can be inserted in the patblout reallocation.
autoRealloc If this argument igrue an automatic reallocation is performed if the pool is full.

6.31.2.2 templatecclass BaseType, class CoTypevirtual ABA_NONDUPLPOOL < BaseType, CoType
>::~ABA_NONDUPLPOOL () [virtual]

The destructor.

6.31.2.3 templateclass BaseType, class CoTypeABA_NONDUPLPOOL < BaseType, CoType
>::ABA_NONDUPLPOOL (constABA_NONDUPLPOOL < BaseType, CoType> & rhs)
[private]

6.31.3 Member Function Documentation

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

356 Reference Manual

6.31.3.1 templatecclass BaseType, class CoTypevirtual void ABA_NONDUPLPOOL < BaseType,
CoType >::hardDeleteConVar (ABA_POOLSLOT < BaseType, CoType> « slof) [pri vate,
virtual]

Has to be redefined because the pool slot has to be removediednash table.

Parameters:
slot A pointer to the pool slot from wich the constraint/variableould be deleted.

Reimplemented frolABA_POOL< BaseType, CoType-.

6.31.3.2 templatecclass BaseType, class CoTypevirtual void ABA_NONDUPLPOOL < BaseType,
CoType >:increase (intsizg [virtual]

Enlarges the pool to store.

To avoid fatal errors we do not allow decreasing the size efabol. This function redefines the virtual function
of the base clasaBA_STANDARDPOOL because we have to reallocate the hash table.

Parameters:
size The new size of the pool.

Reimplemented frorABA_STANDARDPOOL< BaseType, CoType-.

6.31.3.3 templatecclass BaseType, class CoTypevirtual ABA_POOLSLOT <BaseType, CoType-x
ABA_NONDUPLPOOL < BaseType, CoType>::insert (BaseTypesx cv) [virtual]

Before the functiorinsert() tries to insert a constraint/variable in the pool, it cheifkbe constraint/variable is
already contained in the pool. If the constraint/variatMés contained in the pool, it is deleted.

Returns:
A pointer to the pool slot where the item has been inserted,ointer to the pool slot if the item is already
contained in the pool, or 0 if the insertion failed.

Parameters:
cv The constraint/variable being inserted.

Reimplemented fromABA_STANDARDPOOL< BaseType, CoType-.

6.31.3.4 templatecclass BaseType, class CoTypeconst ABA_ NONDUPLPOOL &
ABA_NONDUPLPOOL < BaseType, CoType>::operator= (const ABA_NONDUPLPOOL <
BaseType, CoType> & rhs) [pri vat €]

6.31.3.5 templatecclass BaseType, class CoTypevirtual ABA_POOLSLOT <BaseType, CoType-x
ABA_NONDUPLPOOL < BaseType, CoType>::present (BaseTypex cv) [virtual]

Checks if a constraint/variables is already containedémpitol.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.31 ABA_NONDUPLPOOL< BaseType, CoType> Class Template Referencd57

Returns:
A pointer to the pool slot storing a constraint/variablettlgequivalent tocv according to the function
ABA_CONVAR::equal() If there is no such constraint/variable O is returned.

Parameters:
cv A pointer to a constraint/variable for which it should be cked if an equivalent item is already contained
in the pool.

6.31.3.6 templatecclass BaseType, class CoTypevirtual int ABA_NONDUPLPOOL < BaseType,
CoType >::softDeleteConVar (ABA_POOLSLOT < BaseType, CoType> « slot) [private,
virtual]

Has to be redefined because the slot has to be removed froraghédble if the constraint/variable can be deleted.

Returns:
0 If the constraint/variable could be deleted.
1 otherwise.

Parameters:
slot A pointer to the pool slot from wich the constraint/variableuld be deleted.

Reimplemented fromABA_POOL< BaseType, CoType-.

6.31.3.7 templatecclass BaseType, class CoTypevoid ABA_NONDUPLPOOL < BaseType, CoType
>::statistics (int & nDuplications int & nCollisions) const

Determines the number of constraints that have not beertéasiato the pool, because an equivalent was already
present.

Also the number of collisions in the hash table is comput&thi$ number is high, it might indicate that your hash
function is not chosen very well.

Parameters:
nDuplications The number of constraints that have not been inserted ietpdbl because an equivalent one
was already present.

nCollisions The number of collisions in the hash table.

6.31.4 Member Data Documentation

6.31.4.1 templatecclass BaseType, class CoTypeABA HASH <unsigned,ABA_POOLSLOT <Base-
Type, CoType>*> ABA_NONDUPLPOOL < BaseType, CoType>::hash_
[private]

Definition at line 142 of file nonduplpool.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

358 Reference Manual

6.31.4.2 templatecclass BaseType, class CoTypeint ABA_NONDUPLPOOL < BaseType, CoType
>::nDuplications_ [pri vat e]

Definition at line 143 of file nonduplpool.h.

The documentation for this class was generated from theviol file:

* Include/abacusbnduplpool.h

6.32 ABA POOLSLOT< BaseType, CoType> Class Template Refer-
ence

Constraints or variables are not directly stored in a poat @&e stored in a pool slot.
#i ncl ude <poolslot.h>
Inheritance diagram for ABA_POOLSLGI BaseType, CoType-::

| ABA_ABACUSROOT |

T

| ABA_POOLSLOT< BaseType, CoType|>

Public Member Functions

« ABA_POOLSLOT (ABA_MASTER sxmaster, ABA_POOL< BaseType, CoType> xpool, BaseType
xconvar=0)

The constructor sets the version number to 1, if already a constraintéstetsin this slot, otherwise it is set to 0.

« ~ABA_POOLSLOT()

The destructor for the poolslot must not be called if there are referetocies constraint/variable.

« BaseTypex conVar() const

Private Member Functions

« void insert(BaseTypexconvar)

« int softDelete()

« void hardDeletd)

« void removeConVarFromPod)

« unsigned longersion() const

* ABA_MASTER x master)

* ABA_POOLSLOT(constABA_POOLSLOT< BaseType, CoType &rhs)

» constABA_POOLSLOT< BaseType, CoType- & operator=(constABA_POOLSLOT< BaseType, Co-
Type > &rhs)

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.32 ABA_POOLSLOT< BaseType, CoType> Class Template Reference 359

Private Attributes

ABA_MASTER * master_

» BaseTypex conVar_

 unsigned longersion_

ABA POOL< BaseType, CoType * pool_

Friends

e classABA POOLSLOTREK BaseType, CoType

 classABA POOL< BaseType, CoType

 classABA STANDARDPOOL< BaseType, CoType

 classABA CUTBUFFER< BaseType, CoType

* classABA_SUB

e classABA POOLSLOTRER ABA_CONSTRAINT, ABA VARIABLE >

e classABA POOLSLOTRER ABA_VARIABLE, ABA CONSTRAINT >

e classABA POOL< ABA CONSTRAINT, ABA_VARIABLE >

e classABA POOL< ABA VARIABLE, ABA_ CONSTRAINT >

e classABA_STANDARDPOOL< ABA CONSTRAINT, ABA VARIABLE >
e classABA_ STANDARDPOOL< ABA VARIABLE, ABA CONSTRAINT >
e classABA_NONDUPLPOOL< ABA_CONSTRAINT, ABA VARIABLE >
e classABA_NONDUPLPOOL< ABA VARIABLE, ABA_ CONSTRAINT >
 classABA CUTBUFFER< ABA_CONSTRAINT, ABA_ VARIABLE >

e classABA CUTBUFFER< ABA_VARIABLE, ABA_CONSTRAINT >

6.32.1 Detailed Description
template<class BaseType, class CoTypeclass ABA POOLSLOT< BaseType, CoType>

Constraints or variables are not directly stored in a poat &e stored in a pool slot.

Definition at line 76 of file poolslot.h.

6.32.2 Constructor & Destructor Documentation

6.32.2.1 templatecclass BaseType, class CoType ABA_POOLSLOT < BaseType, CoType
>::ABA_POOLSLOT (ABA MASTER x master ABA POOL < BaseType, CoType> * pool,
BaseTypex convar=0)

The constructor sets the version number to 1, if already atcaint is inserted in this slot, otherwise it is set to 0.

Parameters:
master A pointer to the corresponding master of the optimization.

pool The pool this slot belongs to.
conVar The constraint/variable inserted in this slot if not 0. Tieéadilt value is O.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

360 Reference Manual

6.32.2.2 templatecclass BaseType, class CoTypeABA_POOLSLOT < BaseType, CoType
>::~ABA_POOLSLOT ()

The destructor for the poolslot must not be called if thegeraferences to its constraint/variable.

6.32.2.3 templatecclass BaseType, class CoTypeABA_POOLSLOT < BaseType, CoType
>::ABA_POOLSLOT (constABA_POOLSLOT < BaseType, CoType> & rhs) [pri vat e]

6.32.3 Member Function Documentation

6.32.3.1 templatecclass BaseType, class CoTypeBaseType: ABA_POOLSLOT < BaseType, CoType
>:.conVar () const

Returns:
A pointer to the constraint/variable in the pool slot.

6.32.3.2 templatecclass BaseType, class CoTypevoid ABA_POOLSLOT < BaseType, CoType
>::hardDelete () [pri vate]

Deletes the constraint/variable in the slot.

Warning:
This function should be used very carefully.

6.32.3.3 templatecclass BaseType, class CoTypevoid ABA_POOLSLOT < BaseType, CoType>::insert
(BaseTypex convan [private]

Inserts a constraint/variable in the slot, and updatesengian number.
If the slot still contains a constraint, the program stops.
The constanULONG_MAXis defined in the file { limits.h}.

Parameters:
conVar The constraint/variable that is inserted.

6.32.3.4 templatecclass BaseType, class CoTypeABA _MASTER x« ABA_POOLSLOT < BaseType,
CoType >:master () [private]

Returns:
A pointer to the corresponding master of the optimization.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.32 ABA_POOLSLOT< BaseType, CoType> Class Template Reference 361

6.32.3.5 templatecclass BaseType, class CoTypeconstABA_POOLSLOT <BaseType, CoType-&
ABA_POOLSLOT < BaseType, CoType>::operator= (const ABA_POOLSLOT < BaseType,
CoType > & rhs) [private]

6.32.3.6 templatecclass BaseType, class CoTypevoid ABA_POOLSLOT < BaseType, CoType
>::removeConVarFromPool () [pri vat e]

Removes the constraint contained in this ABA_POOLSLOT fimnownABA_POOL.

6.32.3.7 templatecclass BaseType, class CoTypeint ABA_POOLSLOT < BaseType, CoType
>:softDelete () [pri vate]

Tries to remove the item from the slot.
This is possible if the functioABA CONVAR::deletable(yeturnstrue.

Returns:

0 If the constraint/variable in the slot could be deleted,
1 otherwise.

6.32.3.8 templatecclass BaseType, class CoTypeunsigned longABA_POOLSLOT < BaseType, CoType
>:version () const [pri vat e]

Returns:
The version number of the constraint/variable of the slot.

6.32.4 Friends And Related Function Documentation

6.32.4.1 templatecclass BaseType, class CoTypefriend class ABA CUTBUFFER <
ABA CONSTRAINT , ABA_VARIABLE > [friend]

Definition at line 91 of file poolslot.h.

6.32.4.2 templatecclass BaseType, class CoTypefriend classABA_CUTBUFFER < ABA_VARIABLE ,
ABA_CONSTRAINT > [friend]

Definition at line 92 of file poolslot.h.

6.32.4.3 template:class BaseType, class CoTypefriend classABA_CUTBUFFER < BaseType, CoType
> [friend]

Definition at line 80 of file poolslot.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

362 Reference Manual

6.32.4.4 templatecclass BaseType, class CoTypefriend class ABA_NONDUPLPOOL <
ABA_CONSTRAINT , ABA_VARIABLE > [friend]

Definition at line 89 of file poolslot.h.

6.32.4.5 templatecclass BaseType, class CoTypefriend class ABA_NONDUPLPOOL <
ABA_VARIABLE , ABA CONSTRAINT > [friend]

Definition at line 90 of file poolslot.h.

6.32.4.6 templatecclass BaseType, class CoTypefriend classABA_POOL < ABA_CONSTRAINT ,
ABA_VARIABLE > [friend]

Definition at line 85 of file poolslot.h.

6.32.4.7 templatecclass BaseType, class CoTypefriend classABA_POOL < ABA_VARIABLE ,
ABA_CONSTRAINT > [friend]

Definition at line 86 of file poolslot.h.

6.32.4.8 templatecclass BaseType, class CoTypefriend classABA_POOL < BaseType, CoType>
[friend]

Definition at line 78 of file poolslot.h.

6.32.4.9 templatecclass BaseType, class CoTypefriend class ABA_POOLSLOTREF <
ABA_CONSTRAINT , ABA_VARIABLE > [friend]

Definition at line 83 of file poolslot.h.

6.32.4.10 template:class BaseType, class CoTypefriend class ABA POOLSLOTREF <
ABA VARIABLE ,ABA_CONSTRAINT > [fri end]

Definition at line 84 of file poolslot.h.

6.32.4.11 templateclass BaseType, class CoTypefriend classABA_POOLSLOTREF < BaseType,
CoType> [friend]

Definition at line 77 of file poolslot.h.

6.32.4.12 templateclass BaseType, class CoTypefriend class ABA_STANDARDPOOL <
ABA_CONSTRAINT , ABA_VARIABLE > [friend]

Definition at line 87 of file poolslot.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.32 ABA_POOLSLOT< BaseType, CoType> Class Template Reference 363

6.32.4.13 templateclass BaseType, class CoTypefriend class ABA_STANDARDPOOL <
ABA_VARIABLE , ABA_CONSTRAINT > [friend]

Definition at line 88 of file poolslot.h.

6.32.4.14 templateclass BaseType, class CoTypefriend classABA_STANDARDPOOL < BaseType,
CoType> [friend]

Definition at line 79 of file poolslot.h.

6.32.4.15 templatecclass BaseType, class CoTypefriend classABA_SUB [fri end]

Definition at line 82 of file poolslot.h.

6.32.5 Member Data Documentation

6.32.5.1 templatecclass BaseType, class CoTypeBaseType: ABA POOLSLOT < BaseType, CoType
>:conVar_ [private]

A pointer to the constraint/variable.

Definition at line 186 of file poolslot.h.

6.32.5.2 templatecclass BaseType, class CoTypeABA _MASTER x« ABA_POOLSLOT < BaseType,
CoType >::master_ [pri vat €]

A pointer to the corresponding master of the optimization.

Definition at line 182 of file poolslot.h.

6.32.5.3 templatecclass BaseType, class CoType ABA_POOL <BaseType, CoType-x*
ABA POOLSLOT < BaseType, CoType>::pool_ [privat e]

A pointer to the corresponding pool.

Definition at line 194 of file poolslot.h.

6.32.5.4 templatecclass BaseType, class CoTypeunsigned longABA_POOLSLOT < BaseType, CoType
>:version_ [private]

The version of the constraint in the slot.
Definition at line 190 of file poolslot.h.

The documentation for this class was generated from theviollg file:

* Include/abacugbolslot.h

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

364 Reference Manual

6.33 ABA_POOLSLOTREF< BaseType, CoType> Class Template Ref-
erence

we do not refer directly to constraints/variables but stopminter to a pool slot and memorize the version number
of the slot at initialization time of the class ABA_POOLSLRIEF.

#i ncl ude <pool slotref.h>
Inheritance diagram for ABA POOLSLOTREMBaseType, CoType-::

| ABA_ABACUSROOT |

T

| ABA_POOLSLOTREF< BaseType, COTypq >

Public Member Functions

« ABA_POOLSLOTRERABA_MASTER xmaster)
* ABA_POOLSLOTREHABA_POOLSLOT< BaseType, CoType xslot)
* ABA_POOLSLOTREHRconstABA POOLSLOTREK BaseType, CoType &rhs)

The copy constructor may increments the reference counter of theaiotigariable only if version number of the
slot and version number of the reference are equal, since otherwise tiosa correct reference talot_->conVar()

« ~ABA_POOLSLOTREK)

The destructor sends a message to the constraint that it will no longesfeéead from this place in the program.

» BaseTyperx conVar() const

 unsigned longersion() const

* ABA_POOLSLOT< BaseType, CoType x* slot() const
* void slot (ABA_POOLSLOT< BaseType, CoType *S)

This version of the functioslot() initializes the referenced pool slot.

Private Member Functions

« void printDifferent\ersionErroK) const

» constABA_POOLSLOTREK BaseType, CoType- & operator=(constABA_POOLSLOTREK Base-
Type, CoType> &rhs)

Private Attributes

« ABA_MASTER * master_
* ABA_POOLSLOT< BaseType, CoType * slot_
« unsigned longersion_

The version number of the slot at construction/initialization time of this referen

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.33 ABA_POOLSLOTREF< BaseType, CoType> Class Template Reference365

Friends

» ostream &operatox < (ostream &out, consABA POOLSLOTREFR&rhs)
The output operator writes the constraint/variable stored in the referesldo an output stream.

6.33.1 Detailed Description
template<class BaseType, class CoTypeclass ABA_POOLSLOTREF< BaseType, CoType>

we do not refer directly to constraints/variables but stopminter to a pool slot and memaorize the version number
of the slot at initialization time of the class ABA_POOLSLRIEF.

Definition at line 54 of file poolslotref.h.

6.33.2 Constructor & Destructor Documentation

6.33.2.1 templatecclass BaseType, class CoTypeABA_POOLSLOTREF < BaseType, CoType
>::ABA_POOLSLOTREF (ABA_MASTER * maste)

This constructor generates an object referencing to nogiobl

Parameters:
master A pointer to the corresponding master of the optimization.

6.33.2.2 templatecclass BaseType, class CoTypeABA POOLSLOTREF < BaseType, CoType
>::ABA_POOLSLOTREF (ABA_POOLSLOT < BaseType, CoType> * slot)

This constructor initializes the reference to a pool slahvai given slot.
Also the constraint/variable contained in this slot reesig message that a new references to it is created.

Parameters:
slot The pool slot that is referenced now.

6.33.2.3 templatecclass BaseType, class CoTypeABA_POOLSLOTREF < BaseType, CoType
>::ABA_ POOLSLOTREF (constABA_POOLSLOTREF < BaseType, CoType> & rhs)

The copy constructor may increments the reference couhtéeaonstraint/variable only if version number of
the slot and version number of the reference are equal, sith@Fwise this is not a correct referencestot_-
>conVar()

Parameters:
rhs The pool slot that is copied in the initialization process.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

366 Reference Manual

6.33.2.4 templatecclass BaseType, class CoTypeABA_POOLSLOTREF < BaseType, CoType
>::~ABA_POOLSLOTREF ()
The destructor sends a message to the constraint that itavidinger be referred from this place in the program.

If the version number of the reference and the version numibitie slot do not equal, we must not decrement the
reference counter aflot_->conVar()because this is not a correct reference to this constranble.

6.33.3 Member Function Documentation

6.33.3.1 templatecclass BaseType, class CoTypeBaseTypes ABA POOLSLOTREF < BaseType,
CoType >::conVar () const

Returns:
A pointer to the constraint/variable stored in the refeeghslot if the version number of the slot is equal to
the version number at construction/initialization timettog slot. Otherwise, it returns 0.

6.33.3.2 templatecclass BaseType, class CoTypeconstABA_POOLSLOTREF <BaseType, CoType-&
ABA POOLSLOTREF < BaseType, CoType>::operator= (const ABA_POOLSLOTREF <
BaseType, CoType> & rhs) [pri vate]

6.33.3.3 templatecclass BaseType, class CoTypevoid ABA_POOLSLOTREF < BaseType, CoType
>::printDifferentVersionError () const [pri vat e]

6.33.3.4 templatecclass BaseType, class CoTypevoid ABA POOLSLOTREF < BaseType, CoType
>::slot (ABA_POOLSLOT < BaseType, CoType> x 9)

This version of the functioslot() initializes the referenced pool slot.

The functionslot() may decrement the reference countesstoft_->conVar() only if the version number of the
reference and the version number of the slot are equal stheevaise this is not a valid reference.

Parameters:
s The new slot that is referenced. This must not be a O-pointer.

6.33.3.5 templatecclass BaseType, class CoTypeABA POOLSLOT <BaseType, CoType-x
ABA_POOLSLOTREF < BaseType, CoType>::slot () const

Returns:
A pointer to the referenced slot.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.33 ABA_POOLSLOTREF< BaseType, CoType> Class Template Reference367

6.33.3.6 templatecclass BaseType, class CoTypeunsigned longABA_POOLSLOTREF < BaseType,
CoType >::version () const

Returns:
The version number of the constraint/variable stored in¢ferenced slot at construction time of the reference
to this slot.

6.33.4 Friends And Related Function Documentation

6.33.4.1 templateclass BaseType, class CoTypeostream& operator<< (ostream & out, const
ABA POOLSLOTREF < BaseType, CoType> & rhs) [friend]

The output operator writes the constraint/variable stangbe referenced slot to an output stream.

Returns:
A reference to the output stream.

Parameters:
out The output stream.

rhs The reference to a pool slot being output.

6.33.5 Member Data Documentation

6.33.5.1 templatecclass BaseType, class CoTypeABA_MASTER x« ABA_POOLSLOTREF < BaseType,
CoType >::master_ [pri vat €]

A pointer to the corresponding master of the optimization.

Definition at line 151 of file poolslotref.h.

6.33.5.2 templatecclass BaseType, class CoTypeABA_POOLSLOT <BaseType, CoType-*
ABA_POOLSLOTREF < BaseType, CoType>::slot_ [privat e]

A pointer to the referenced pool slot.

Definition at line 155 of file poolslotref.h.

6.33.5.3 templatecclass BaseType, class CoTypeunsigned longABA_POOLSLOTREF < BaseType,
CoType >::version_ [private]

The version number of the slot at construction/initiali@aattime of this reference.

Definition at line 160 of file poolslotref.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

368 Reference Manual

The documentation for this class was generated from theviall file:

* Include/abacugbolslotref.h

6.34 ABA_ROW Class Reference

class refines its base claBBA SPARVECfor the representation of constraints in the row format
#i ncl ude <row h>
Inheritance diagram for ABA_ROW::

| ABA_ABACUSROOT|

T

| ABA_SPARVEC |

T

| ABA_ROW |

Public Member Functions

* ABA_ROW (ABA_GLOBAL xglob, int nnz, consABA_ARRAY < int > &s, constABA_ARRAY < dou-
ble > &c, constABA_CSENSEsense, double r)

« ABA_ROW (ABA_GLOBAL xglob, int nnz, consABA_ARRAY < int > &s, constABA_ARRAY < dou-
ble > &c, constABA_CSENSE::SENSEense, double r)

This is an equivalent constructor usidddA_CSENSE::SENSEstead of an object of the claSENSEto initialize
the sense of the constraint.

« ABA ROW (ABA_GLOBAL xglob, int nnz, int«s, doublexc, ABA_ CSENSE::SENSEense, double r)
This is also an equivalent constructor except thahdc are C-style arrays.

« ABA_ROW (ABA_GLOBAL xglob, int size)
« ~ABA_ROW ()

The destructor.

 doublerhs() const
« void rhs(double r)

This version ofhs() sets the right hand side of the row.

e ABA CSENSEx* sensd)
¢ void sensg ABA_CSENSE&Ss)

This version otense(pets the sense of the row.

» void sens§ABA_CSENSE::SENSE)
And another version afense(}o set the sense of the row.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.34 ABA_ROW Class Reference 369

* void copy(constABA_ROW &row)

Behaves like an assignment operator, however, the maximal nurhiee elements of this row only has to be at
least the number of nonzerosrofw.

* void delind (ABA_BUFFER< int > &buf, double rhsDelta)

Removes the indices listedbonf from the support of the row and subtractsDeltafrom its right hand side.

Protected Attributes

« ABA_CSENSE sense_
 doublerhs_

Friends

» ostream &operatox < (ostream &out, consABA ROW &rhs)

The output operator writes the row on an output stream in format like {x2.%5 3 x3<=7}.

6.34.1 Detailed Description

class refines its base claBBA_SPARVECfor the representation of constraints in the row format

Definition at line 48 of file row.h.

6.34.2 Constructor & Destructor Documentation

6.34.2.1 ABA_ROW:ABA ROW (ABA_GLOBAL x glob, int nnz, constABA_ARRAY < int > & s, const
ABA_ARRAY < double > & c, constABA_CSENSEsensedoubler)

A constructor.

Parameters:
glob A pointer to the corresponding global object.

nnz The number of nonzero elements of the row.

s The array storing the nonzero elements.

¢ The array storing the nonzero coefficients of the elemenss of
senseThe sense of the row.

r The right hand side of the row.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

370 Reference Manual

6.34.2.2 ABA_ROW:ABA_ ROW (ABA_GLOBAL = glob, int nnz, constABA_ARRAY < int > & s, const
ABA_ARRAY < double > & c, constABA_CSENSE::SENSEsensedoubler)

This is an equivalent constructor usingA_CSENSE::SENSknstead of an object of the claSENSHo initialize
the sense of the constraint.

6.34.2.3 ABA_ROW: ABA_ROW (ABA_GLOBAL =x glob, int nnz, int % s, double x c,
ABA_CSENSE::SENSEsensedoubler)

This is also an equivalent constructor except geandc are C-style arrays.

6.34.2.4 ABA_ROW:ABA_ROW (ABA_GLOBAL x glob, int siz
A constructor without initialization of the nonzeros of tiuav.

Parameters:
glob A pointer to the corresponding global object.

size The maximal numbers of nonzeros.

6.34.2.5 ABA_ROW:~ABA_ROW ()

The destructor.

6.34.3 Member Function Documentation

6.34.3.1 void ABA_ROW::copy (constABA_ROW & row)

Behaves like an assignment operator, however, the maxiomabar of the elements of this row only has to be at
least the number of nonzerosrofv.

Parameters:
row The row that is copied.

6.34.3.2 void ABA_ROW::delind (ABA_BUFFER< int > & buf, doublerhsDelta)
Removes the indices listed buf from the support of the row and subtradtsDeltafrom its right hand side.

Parameters:
buf The components being removed from the row.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.34 ABA_ROW Class Reference 371

rhsDelta The correction of the right hand side of the row.

6.34.3.3 void ABA_ROW::rhs (doubler) [i nli ne]
This version ofrhs() sets the right hand side of the row.

Parameters:
r The new value of the right hand side.

Definition at line 195 of file row.h.

6.34.3.4 double ABA_ROW::rhs () const [i nl i ne]

Returns:
The right hand side stored in the row format.

Definition at line 190 of file row.h.

6.34.3.5 void ABA_ROW::senseABA CSENSE::SENSEs) [inli ne]
And another version afense(Jo set the sense of the row.

Parameters:
s The new sense of the row.

Definition at line 210 of file row.h.

6.34.3.6 void ABA_ROW::senseABA_CSENSE& s) [inli ne]
This version ofsense(ksets the sense of the row.

Parameters:
s The new sense of the row.

Definition at line 205 of file row.h.

6.34.3.7 ABA CSENSEx ABA ROW::sense () [inline]

Returns:
A pointer to the sense of the row.

Definition at line 200 of file row.h.

6.34.4 Friends And Related Function Documentation

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

372 Reference Manual

6.34.4.1 ostream& operatok < (ostream & out, constABA_ROW & rhs) [fri end]

The output operator writes the row on an output stream in &ifike { -2.5 x1 + 3 x3<=7}.

Only variables with nonzero coefficients are output. Thepoubperator does neither outputta before the first
coefficient of a row, if it is positive, nor outputs coeffictsrwith absolute value 1.

Returns:
A reference to the output stream.

Parameters:
out The output stream.

rhs The row being output.

6.34.5 Member Data Documentation

6.34.5.1 doubleABA_ROW::irhs_ [pr ot ect ed]

The right hand side of the row.

Definition at line 186 of file row.h.

6.34.5.2 ABA_CSENSE ABA_ROW::sense_ [pr ot ect ed]

The sense of the row.
Definition at line 182 of file row.h.

The documentation for this class was generated from theviolg file:

¢ Include/abacusdw.h

6.35 ABA_COLUMN Class Reference

class ABA_COLUMN refine\BA_SPARVECfor the representation of variables in column format.
#i ncl ude <col um. h>
Inheritance diagram for ABA_COLUMN::

| ABA_ABACUSROOT|

T

| ABA_SPARVEC |

T

| ABA_COLUMN |

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.35 ABA_COLUMN Class Reference 373

Public Member Functions

* ABA_COLUMN (ABA_GLOBAL xglob, double obj, double Ib, double ub, int niBA_ARRAY < int >

&s,

ABA_ARRAY < double> &c)

* ABA_COLUMN (ABA_GLOBAL xglob, int maxNnz)
« ABA_ COLUMN (ABA_GLOBAL xglob, double obj, double Ib, double UBBA SPARVEC&vec)

.NA

BA_COLUMN ()

 doubleobj () const
« void obj (double c)

This version of the functioobj() sets the objective function coefficient of the column.

e doublelBound() const
« void IBound(double I)

This version of the functiolBound() sets the lower bound of the column.

 doubleuBound() const
« void uBound(double u)

This version of the functionBound()sets the upper bound of the column.

* void copy (constABA_COLUMN &col)

Private

Is very similar to the assignment operator, yet the columns do not hdeedbequal size. A reallocation is performed
if required.

Attributes

 doubleobj
 doublelBound_

e doubleuBound_

Friends

» ostream &operatox < (ostream &out, consABA_COLUMN &rhs)

6.35.1

Detailed Description

class ABA_COLUMN refineABA_SPARVECfor the representation of variables in column format.

Definition at line 44 of file column.h.

6.35.2

Constructor & Destructor Documentation

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

374 Reference Manual

6.35.2.1 ABA_COLUMN: ABA_COLUMN (ABA_GLOBAL = glob, double obj, doublelb, double ub, int
nnz, ABA_ARRAY < int > & s, ABA_ARRAY < double > & ¢)

A constructor.

Parameters:
glob A pointer to the corresponding global object.

obj {The objective function coefficient.

Ib The lower bound.

ub The upper bound.

nnz The number of nonzero elements stored in the arjshyand |c|.

s An array of the nonzero elements of the column.

¢ An array of the nonzero coefficients associated with the efesof|s|.

6.35.2.2 ABA_COLUMN:ABA_ COLUMN (ABA_GLOBAL x* glob, int maxNn2

Another constructor generating an uninitialized column.

Parameters:
glob A pointer to the corresponding global object.

maxNnz The maximal number of nonzero elements that can be storé irotv.

6.35.2.3 ABA_COLUMN:ABA_COLUMN (ABA_GLOBAL = glob, double obj, double Ib, double ub,
ABA_SPARVEC & veq

A constructor using a sparse vector for the initialization.

Parameters:
glob A pointer to the corresponding global object.

obj The objective function coefficient.

Ib The lower bound.

ub The upper bound.

vec A sparse vector storing the support and the coefficientseofthumn.

6.35.2.4 ABA_COLUMN::~ABA_COLUMN ()

6.35.3 Member Function Documentation

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.35 ABA_COLUMN Class Reference 375

6.35.3.1 void ABA_COLUMN::copy (constABA_COLUMN & col)

Is very similar to the assignment operator, yet the columm$at have to be of equal size. A reallocation is
performed if required.

Parameters:
col The column that is copied.

6.35.3.2 void ABA_COLUMN::IBound (doublel) [i nli ne]

This version of the functiotBound()sets the lower bound of the column.

Parameters:
| The new value of the lower bound.

Definition at line 187 of file column.h.

6.35.3.3 double ABA_COLUMN::IBound () const [i nli ne]

Returns:
The lower bound of the column.

Definition at line 182 of file column.h.

6.35.3.4 void ABA_COLUMN::0bj (doublec) [inline]
This version of the functionbj() sets the objective function coefficient of the column.

Parameters:
¢ The new value of the objective function coefficient.

Definition at line 177 of file column.h.

6.35.3.5 double ABA_COLUMN::0bj () const [i nline]

Returns:
The objective function coefficient of the column.

Definition at line 172 of file column.h.

6.35.3.6 void ABA_COLUMN::uBound (doubleu) [i nli ne]
This version of the functionBound()sets the upper bound of the column.

Parameters:
u The new value of the upper bound.

Definition at line 197 of file column.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

376 Reference Manual

6.35.3.7 double ABA_COLUMN::uBound () const [i nl i ne]

Returns:
The upper bound of the column.

Definition at line 192 of file column.h.

6.35.4 Friends And Related Function Documentation

6.35.4.1 ostream& operatok < (ostream & out, constABA_COLUMN & rhs) [fri end]
The output operator.

Returns:
A reference to the output stream.

Parameters:
out The output stream.

rhs The column being output.

6.35.5 Member Data Documentation

6.35.5.1 doubleABA_COLUMN::IBound_ [pri vate]

The lower bound of the column.

Definition at line 164 of file column.h.

6.35.5.2 doubleABA _COLUMN:0bj_ [private]

The objective function coefficient of the column.

Definition at line 160 of file column.h.

6.35.5.3 doubleABA_COLUMN::uBound_ [pri vat e]

The upper bound of the column.
Definition at line 168 of file column.h.

The documentation for this class was generated from theviolg file:

¢ Include/abacusblumn.h

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.36 ABA_NUMCON Class Reference 377

6.36 ABA_NUMCON Class Reference

Like the classABA_NUMVAR for variables we provide the class ABA_NUMCON for consttaiwhich are
uniquely defined by an integer number.

#i ncl ude <nunton. h>
Inheritance diagram for ABA_NUMCON::

| ABA_ABACUSROOT|

T

| ABA_CONVAR |

| ABA_CONSTRAINT |

T

| ABA_NUMCON |

Public Member Functions
 ABA_NUMCON (ABA_MASTER xmaster, consABA_SUB xsub, ABA_CSENSE::SENSEense, bool

dynamic, bool local, bool liftable, int number, double rhs)
* virtual ~ABA_NUMCON ()

The destructor.

« virtual doublecoeff (ABA_VARIABLE xv)
« virtual void print (ostream &out)
« int number() const

Private Attributes

e int number_

Friends

 ostream &operatox < (ostream &out, consABA_NUMCON &rhs)

6.36.1 Detailed Description

Like the classABA_NUMVAR for variables we provide the class ABA_NUMCON for consttaimhich are
uniquely defined by an integer number.

Parameters:
int number_ The identification number of the constraint.

Definition at line 38 of file numcon.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

378 Reference Manual

6.36.2 Constructor & Destructor Documentation

6.36.2.1 ABA_NUMCON::ABA_NUMCON (ABA_MASTER = master constABA_SUB x sub,
ABA_CSENSE::SENSEsensebool dynamig bool local, bool liftable, int number, double rhs)

The constructor.

Parameters:
master A pointer to the corresponding master of the optimization.

sub A pointer to the subproblem associated with the constrainis can be also the O-pointer.
senseThe sense of the constraint.

dynamic If this argument igrue, then the constraint can be removed from the active conssat during the
cutting plane phase of the subproblem optimization.

local If this argument idrue, then the constraint is considered to be only locally vafid.a local constraint
is associated with a subproblesybmust not be 0 ifocal is true.

liftable If this argument idrue, then a lifting procedure must be available, i.e., that tefficients of variables
which have not been active at generation time of the cométcan be computed.

number The identification number of the constraint.
rhs The right hand side of the constraint.

6.36.2.2 virtual ABA_NUMCON::~ABA_NUMCON () [virtual]

The destructor.

6.36.3 Member Function Documentation

6.36.3.1 virtual double ABA_NUMCON::coeff (ABA_VARIABLE xV) [virtual]

Returns:
The coefficient of the variabie

Parameters:
v The variable of which the coefficient is determined. It musinpto an object of the classBA COLVAR.

ImplementsABA_CONSTRAINT.

6.36.3.2 int ABA_NUMCON::number () const [i nline]

Returns:
Returns the identification number of the constraint.

Definition at line 130 of file numcon.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.37 ABA_ROWCON Class Reference 379

6.36.3.3 virtual void ABA_NUMCON::print (ostream & out) [virtual]

Writes the row format of the constraint on an output stream.
It redefines the virtual functioprint() of the base clasABA_CONVAR.

Parameters:
out The output stream.

Reimplemented frorABA_CONVAR.

6.36.4 Friends And Related Function Documentation

6.36.4.1 ostream& operatok < (ostream & out, constABA_NUMCON & rhs) [friend]

The output operator writes the identification number anditjie hand side to an output stream.

Returns:
A reference to the output stream.

Parameters:
out The output stream.

rhs The variable being output.

6.36.5 Member Data Documentation

6.36.5.1 intABA_NUMCON:number_ [private]

Definition at line 126 of file numcon.h.

The documentation for this class was generated from theviol file:

¢ Include/abacustimcon.h

6.37 ABA_ROWCON Class Reference

class ABA_ROWCON implements constraints stored in the &dd%s ROW.
#i ncl ude <rowcon. h>
Inheritance diagram for ABA_ROWCON::

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

380 Reference Manual

| ABA_ABACUSROOT|

|

| ABA_CONVAR |

| ABA_CONSTRAINT |

T

| ABA_ROWCON |

|

| ABA_SROWCON |

Public Member Functions

« ABA_ ROWCON(ABA_MASTER xmaster, consABA_SUB xsub,ABA_CSENSE::SENSEense, int nnz,
constABA_ARRAY < int > &support, consABA_ARRAY < double> &coeff, double rhs, bool dynamic,
bool local, bool liftable)

 ABA_ROWCON(ABA_MASTER xmaster, consABA_SUB xsub,ABA_CSENSE::SENSEense, int nnz,
int xsupport, doublecoeff, double rhs, bool dynamic, bool local, bool liftable)

This constructor is equivalent to the previous constructor except thatek C-style arrays fasupportand coeff.

* virtual ~ABA_ROWCON()

The destructor.

« virtual doublecoeff (ABA_VARIABLE V)
Computes the coefficient of a variable which must be of A NUMVAR

« virtual void print (ostream &out)
* ABA_ROW x row ()

Protected Attributes

* ABA_ROW row_

6.37.1 Detailed Description

class ABA_ ROWCON implements constraints stored in the A5 ROW.

Definition at line 44 of file rowcon.h.

6.37.2 Constructor & Destructor Documentation

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.37 ABA_ROWCON Class Reference 381

6.37.2.1 ABA_ROWCON:ABA_ROWCON (ABA_MASTER x master constABA_SUB x sub,
ABA_CSENSE::SENSEsensegint nnz, constABA_ARRAY < int > & support const
ABA_ ARRAY < double > & coeff, doublerhs, bool dynamig bool local, bool liftable)

The constructor.

Parameters:
master A pointer to the corresponding master of the optimization.

sub A pointer to the subproblem associated with the constrdinis can also be the 0-pointer.
senseThe sense of the constraint.

nnz The number of nonzero elements of the constraint.

support The array storing the variables with nonzero coefficients.

coeff The nonzero coefficients of the variables storedupport

rhs The right hand side of the constraint.

dynamic If this argument igrue, then the constraint can be removed from the active conssat during the
cutting plane phase of the subproblem optimization.

local If this argument igrue, then the constraint is considered to be only locally valié a locally valid
constraint is associated with a subproblesomust not be 0 ifocal is true.

liftable If this argument idrue, then a lifting procedure must be available, i.e., that tefficients of variables
which have not been active at generation time of the comstcan be computed.

6.37.2.2 ABA_ROWCON:ABA ROWCON (ABA_MASTER s master constABA_SUB x sub,
ABA_ CSENSE::SENSEsenseint nnz, int « support double x coeff, double rhs, bool dynamicg
bool local, bool liftable)

This constructor is equivalent to the previous construek@ept that it uses C-style arrays gupportandcoeff.

6.37.2.3 virtual ABA_ROWCON::~ABA_ROWCON () [virtual]

The destructor.

6.37.3 Member Function Documentation

6.37.3.1 virtual double ABA_ROWCON::coeff ABA_VARIABLE V) [virtual]

Computes the coefficient of a variable which must be of #p& NUMVAR.
It redefines the virtual functioooeff()of the base clasBBA_CONSTRAINT.

Warning:
The worst case complexity of the call of this function is theniber of nonzero elements of the constraint.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

382 Reference Manual

Returns:
The coefficient of the variable

Parameters:
v The variable of which the coefficient is determined.

ImplementsABA_CONSTRAINT.

6.37.3.2 virtual void ABA_ROWCON::print (ostream & out) [virtual]

Writes the row format of the constraint on an output stream.
It redefines the virtual functioprint() of the base clasaBA_CONVAR.

Parameters:
out The output stream.

Reimplemented frorABA_CONVAR.

6.37.3.3 ABA ROW x ABA_ROWCON:row () [inli ne]

Returns:
A pointer to the object of the clagsBA_ROW representing the constraint.

Definition at line 158 of file rowcon.h.

6.37.4 Member Data Documentation

6.37.4.1 ABA ROW ABA ROWCON:row_ [protected]

The representation of the constraint.
Definition at line 154 of file rowcon.h.

The documentation for this class was generated from theviolg file:

¢ Include/abacusdwcon.h

6.38 ABA_ NUMVAR Class Reference

class is derived from the clas®8A_VARIABLE and implements a variable which is uniquely defined by a numbe
#i ncl ude <nunvar. h>
Inheritance diagram for ABA_NUMVAR::

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.38 ABA_NUMVAR Class Reference 383

| ABA_ABACUSROOT|

T

| ABA_CONVAR |

T

| ABA_VARIABLE |

T

| ABA_NUMVAR |

Public Member Functions

« ABA_ NUMVAR (ABA_MASTER xmaster, consABA_SUB xsub, int number, bool dynamic, bool local,
double obj, double IBound, double uBouBA_VARTYPE:: TYPE type)
* virtual ~ABA_NUMVAR ()

The destructor.

* int number() const

Protected Attributes

* int number_

Friends

» ostream &operatox < (ostream &out, consABA NUMVAR &rhs)

6.38.1 Detailed Description

class is derived from the clas8A VARIABLE and implements a variable which is uniquely defined by a numbe

Definition at line 38 of file numvar.h.

6.38.2 Constructor & Destructor Documentation

6.38.2.1 ABA_NUMVAR:ABA NUMVAR (ABA_MASTER x master constABA_SUB x sub, int number,
bool dynamig bool local, double obj, double IBound, double uBound, ABA_VARTYPE::TYPE

typo
The constructor.

Parameters:
master A pointer to the corresponding master of the optimization.

sub A pointer to the subproblem associated with variable. Thisa@so be the 0-pointer.
number The number of the column associated with the variable.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

384 Reference Manual

dynamic If this argument igrue, then the variable can also be removed again from the setigéa@riables
after it is added once.

local If this argument igrue, then the variable is only locally valid, otherwise it is dly valid. As a locally
valid variable is associated with a subproblembmust not be 0, ifocal is true.

obj The objective function coefficient of the variable.
IBound The lower bound of the variable.

uBound The upper Bound of the variable.

type The type of the variable.

6.38.2.2 virtual ABA_NUMVAR:: ~ABA NUMVAR () [vVirtual]

The destructor.

6.38.3 Member Function Documentation

6.38.3.1 int ABA_NUMVAR:number () const [i nli ne]

Returns:
The number of the variable.

Definition at line 133 of file numvar.h.

6.38.4 Friends And Related Function Documentation

6.38.4.1 ostream& operatok < (ostream & out, constABA_NUMVAR & rhs) [fri end]

Writes the number of the variable to an output stream.

Returns:
A reference to the output stream.

Parameters:
out The output stream.

rhs The variable being output.

6.38.5 Member Data Documentation

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.39 ABA_SROWCON Class Reference 385

6.38.5.1 IntABA_NUMVAR::number_ [pr ot ect ed]

The identification number of the variable.
Definition at line 129 of file numvar.h.

The documentation for this class was generated from theviollg file:

* Include/abacustimvar.h

6.39 ABA_ SROWCON Class Reference

The member functiongenRow()and slack() of the classABA_ROWCON can be significantly improved if the
variable set is static, i.e., no variables are added or rechduring the optimization.

#i ncl ude <srowcon. h>
Inheritance diagram for ABA_SROWCON::

| ABA_ABACUSROOT|

|

| ABA_CONVAR |

I

| ABA_CONSTRAINT |

|

| ABA_ROWCON |

T

| ABA_SROWCON |

Public Member Functions

 ABA_SROWCON (ABA_MASTER xmaster, consABA_SUB xsub, ABA_CSENSE::SENSEense, int
nnz, constABA_ARRAY < int > &support, constABA_ARRAY < double > &coeff, double rhs, bool
dynamic, bool local, bool liftable)

« ABA_SROWCON(ABA_MASTER xmaster, consABA_SUB xsub, ABA_ CSENSE::SENSEsense, int
nnz, intxsupport, doublecoeff, double rhs, bool dynamic, bool local, bool liftable)

This constructor is equivalent to the previous constructor except thatg C-style arrays fasupportand coeff.

e virtual ~ABA_SROWCON()
The destructor.

* virtual int genRow (ABA_ACTIVE < ABA_VARIABLE, ABA_CONSTRAINT > xvar, ABA_ROW
&row)

Generates the row format of the constraint associated with the variabl@set

« virtual doubleslack(ABA_ACTIVE < ABA_VARIABLE , ABA_CONSTRAINT > xvariables, doublex)

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

386 Reference Manual

6.39.1 Detailed Description

The member functiongenRow()and slack() of the classABA_ROWCON can be significantly improved if the
variable set is static, i.e., no variables are added or rechduring the optimization.

Definition at line 39 of file srowcon.h.

6.39.2 Constructor & Destructor Documentation

6.39.2.1 ABA_SROWCON:ABA_SROWCON ABA_MASTER x master constABA_SUB x sub,
ABA_CSENSE::SENSEsensegint nnz, constABA_ARRAY < int > & support const
ABA_ ARRAY < double > & coeff, doublerhs, bool dynamig bool local, bool liftable)

The constructor.

Parameters:
master A pointer to the corresponding master of the optimization.

sub A pointer to the subproblem associated with the constrainis can be also the O-pointer.
senseThe sense of the constraint.

nnz The number of nonzero elements of the constraint.

support The array storing the variables with nonzero coefficients.

coeff The nonzero coefficients of the variables storedupport

rhs The right hand side of the constraint.

dynamic If this argument igrue, then the constraint can be removed from the active conssat during the
cutting plane phase of the subproblem optimization.

local If this argument igrue, then the constraint is considered to be only locally vakié a locally valid
constraint is associated with a subproblsomust not be 0 ifocal is true.

liftable If this argument idrue, then a lifting procedure must be available, i.e., that tefficients of variables
which have not been active at generation time of the comstcain be computed.

6.39.2.2 ABA_ SROWCON:ABA SROWCON ABA_MASTER x mastet constABA_SUB x* suh,
ABA CSENSE::SENSEsenseint nnz, int « support double x coeff, double rhs, bool dynamicg
bool local, bool liftable)

This constructor is equivalent to the previous construek@ept that it uses C-style arrays fupportandcoeff.

6.39.2.3 virtual ABA_SROWCON::~ABA_SROWCON () [virtual]

The destructor.

6.39.3 Member Function Documentation

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.40 ABA_COLVAR Class Reference 387

6.39.3.1 virtual int ABA_SROWCON::.genRow (ABA_ACTIVE < ABA VARIABLE ,
ABA CONSTRAINT > x var, ABA_ ROW & row) [virtual]

Generates the row format of the constraint associated hetlvariable setar.

This function redefines a virtual function of the base claB& ROWCON.

Returns:
It returns the number of nonzero elements in the row format.

Parameters:
var The variable set for which the row format is generated is alygummy since the the variable set is
assumed to be fixed for this constraint class.

row Holds the row format of the constraint after the executiothad function.

Reimplemented frorABA_CONSTRAINT.

6.39.3.2 virtual double ABA_SROWCON::slack ABA_ACTIVE < ABA_VARIABLE ,
ABA_CONSTRAINT > * variables doublex x) [virtual]

Computes the slack of a vector associated with the variableasiables

This function redefines a virtual function of the base claB& ROWCON.

Returns:
The slack of the vector.

Parameters:
variable The variable set for which the row format is generated is antfymmy since the the variable set is
assumed to be fixed for this constraint class.

X An array of length equal to the number of variables.

Reimplemented frorABA_CONSTRAINT.

The documentation for this class was generated from thevioll file:

 Include/abacusfowcon.h

6.40 ABA_ COLVAR Class Reference

Some optimization problems, in particular column generafiroblems, are better described from a variable point
of view instead of a constraint point of view. For such cohte provide the class ABA_COLVAR.

#i ncl ude <col var. h>
Inheritance diagram for ABA_COLVAR::

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

388 Reference Manual

| ABA_ABACUSROOT|

T

| ABA_CONVAR |

T

| ABA_VARIABLE |

T

| ABA_COLVAR |

Public Member Functions
 ABA_COLVAR (ABA_MASTER xmaster, consABA_SUB xsub, bool dynamic, bool local, double I-
Bound, double uBoundABA_VARTYPE:: TYPE varType, double obj, int nnzABA_ARRAY < int >
&support,ABA_ ARRAY < double> &coeff)

 ABA_COLVAR (ABA_MASTER sxmaster, consABA_SUB xsub, bool dynamic, bool local, double I-
Bound, double uBoundABA_VARTYPE:: TYPE varType, double objABA_SPARVEC&vector)

A constructor substitutingnz, support and coeff of the previous constructor by an object of the class
ABA_SPARVEC

* virtual ~ABA_COLVAR ()

« virtual void print (ostream &out)

« virtual doublecoeff (ABA_CONSTRAINT xcon)
 doublecoeff (int i)

« ABA_COLUMN x column()

Protected Attributes

e ABA_COLUMN column_

Friends

* ostream &operatok < (ostream &out, consABA_COLVAR &rhs)

6.40.1 Detailed Description

Some optimization problems, in particular column generafiroblems, are better described from a variable point
of view instead of a constraint point of view. For such cohtes provide the class ABA_ COLVAR.

Parameters:
ABA_COLUMN column_ The column representing the variable.

Definition at line 49 of file colvar.h.

6.40.2 Constructor & Destructor Documentation

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.40 ABA_COLVAR Class Reference 389

6.40.2.1 ABA_COLVAR::ABA_COLVAR (ABA_MASTER x master constABA_SUB x sub, bool
dynamig boollocal, double IBound, double uBound, ABA VARTYPE::TYPE varType double
obj, int nnz, ABA_ARRAY < int > & support ABA_ARRAY < double > & coeff)

The constructor.

Parameters:
master A pointer to the corresponding master of the optimization.

sub A pointer to the subproblem associated with the variablés Tan be also the 0-pointer.

dynamic If this argument idrue, then the variable can be removed from the active varialilelwing the
subproblem optimization.

local If this argument idrue, then the constraint is considered to be only locally vafid.a local variable is
associated with a subproblesybmust not be 0 if local isrue.

IBound The lower bound of the variable.

uBound The upper bound of the variable.

varType The type of the variable.

obj The objective function coefficient of the variable.

nnz The number of nonzero elements of the variable.

support The array storing the constraints with the nonzero coeffisie
coeff The nonzero coefficients of the constraints storeslipport

6.40.2.2 ABA_COLVAR::ABA_COLVAR (ABA_MASTER x master constABA_SUB x sub, bool
dynamig boollocal, double IBound, double uBound, ABA VARTYPE::TYPE varType double
obj, ABA_SPARVEC & vecto)

A constructor substitutinghnz support and coeff of the previous constructor by an object of the class
ABA_SPARVEC

6.40.2.3 virtual ABA_COLVAR:: ~ABA COLVAR () [virtual]

The destructor.

6.40.3 Member Function Documentation

6.40.3.1 double ABA_COLVAR::coeff (inti)

This version of the functiosoeff()computes the coefficient of a constraint with a given number.

Returns:
The coefficient of constraint

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

390 Reference Manual

Parameters:
i The number of the constraint.

6.40.3.2 virtual double ABA_COLVAR::coeff (ABA_CONSTRAINT xcon) [virtual]

Returns:
The coefficient of the constraiabn

Parameters:
con The constraint of which the coefficient is computed. This tiyesa pointer to the clagsBA_ NUMCON.

Reimplemented fro/ABA_VARIABLE .

6.40.3.3 ABA_COLUMN x ABA_COLVAR::column ()

Returns:
A pointer to the column representing the variable.

6.40.3.4 virtual void ABA_COLVAR::print (ostream & out) [virtual]

Writes the column representing the variable to an outpuastre
It redefines the virtual functioprint() of the base clasaBA_CONVAR.

Parameters:
out The output stream.

Reimplemented frorABA_CONVAR.

6.40.4 Friends And Related Function Documentation

6.40.4.1 ostream& operatok < (ostream & out, constABA_COLVAR & rhs) [fri end]

The output operator writes the column representing thekibgito an output stream.

Returns:
A reference to the output stream.

Parameters:
out The output stream.

rhs The variable being output.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.41 ABA_ACTIVE < BaseType, CoType> Class Template Reference 391

6.40.5 Member Data Documentation

6.40.5.1 ABA_COLUMN ABA_COLVAR:column_ [protected]

Definition at line 161 of file colvar.h.

The documentation for this class was generated from theviiolg file:

Include/abacusblvar.h

6.41 ABA_ACTIVE < BaseType, CoType> Class Template Reference

template class implements the sets of act ive constraintsanables which are associated w ith each subproblem

#i ncl ude <active. h>

Inheritance diagram for ABA_ACTIVE BaseType, CoType-::

| ABA_ABACUSROOT |

T

| ABA_ACTIVE< BaseType, CoType i>

Public Member Functions

ABA_ACTIVE (ABA_MASTER xmaster, int max)
ABA ACTIVE (ABA_MASTER sxmasterABA_ACTIVE xa, int max)

In addition to the previous constructor, this constructor initializes the actite se

ABA_ACTIVE (constABA_ACTIVE < BaseType, CoType &rhs)
~ABA_ACTIVE ()

The destructor.

int number() const

int max() const

BaseTypex operator[](int i)

ABA_POOLSLOTREK BaseType, CoType * poolSlotRef(int i)

void insert(ABA _POOLSLOT< BaseType, CoType *ps)

void insert(ABA_BUFFER< ABA_POOLSLOT< BaseType, CoType * > &ps)

Is overloaded that also several items can be added at the same time.

void remove(ABA_BUFFER< int > &del)
Removes items from the list of active items.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

392 Reference Manual

« void realloc(int newSize)
Changes the maximum number of active items which can be stored in ahafijss class.

« int redundantAgé€int i) const
« void incrementRedundantAdent i)

Increments the number of iterations the iteiw already redundant by 1.

« void resetRedundantAg@nt i)

Private Member Functions

« constABA_ACTIVE < BaseType, CoType- & operator=(constABA_ACTIVE < BaseType, CoType-
&rhs)

Private Attributes
« ABA_MASTER * master_
e intn_
* ABA_ARRAY < ABA_POOLSLOTREK BaseType, CoType * > active_
e ABA_ARRAY < int > redundantAge_

Friends

 ostream &operatox < (ostream &out, consABA_ACTIVE < BaseType, CoType &rhs)

The output operator writes all active constraints and variables to an owgppeam. If an associated pool slot is
void, or the item is newer than the one we refer to, themnd" is output.

6.41.1 Detailed Description
template<class BaseType, class CoTypeclass ABA_ACTIVE< BaseType, CoType>

template class implements the sets of act ive constraidtsanmables which are associated w ith each subproblem

Definition at line 62 of file active.h.

6.41.2 Constructor & Destructor Documentation

6.41.2.1 templatecclass BaseType, class CoTypeABA ACTIVE < BaseType, CoType>::ABA_ACTIVE
(ABA_MASTER * master int max)

The constructor.

Parameters:
master A pointer to the corresponding master of the optimization.

max The maximal number of active constraints/variables.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.41 ABA_ACTIVE < BaseType, CoType> Class Template Reference 393

6.41.2.2 templatecclass BaseType, class CoTypeABA_ ACTIVE < BaseType, CoType>::ABA_ACTIVE
(ABA_MASTER =« master ABA_ACTIVE < BaseType, CoType> x a, int max)

In addition to the previous constructor, this construahitidlizes the active set.

Parameters:
master A pointer to the corresponding master of the optimization.

a At mostmaxactive constraints/variables are taken from this set.
max The maximal number of active constraints/variables.

6.41.2.3 templatecclass BaseType, class CoTypeABA ACTIVE < BaseType, CoType>::ABA_ACTIVE
(constABA_ACTIVE < BaseType, CoType> & rhs)

The copy constructor.

Parameters:
rhs The active set that is copied.

6.41.2.4 templatecclass BaseType, class CoType ABA_ACTIVE < BaseType, CoType
>::~ABA_ACTIVE ()

The destructor.

6.41.3 Member Function Documentation

6.41.3.1 templatecclass BaseType, class CoTypevoid ABA_ACTIVE < BaseType, CoType
>:incrementRedundantAge (inti)

Increments the number of iterations the iteim already redundant by 1.

Parameters:
i The index of the constraint/variable.

6.41.3.2 templateclass BaseType, class CoTypevoid ABA_ACTIVE < BaseType, CoType>::insert
(ABA_BUFFER< ABA_POOLSLOT < BaseType, CoType> * > & p9

Is overloaded that also several items can be added at thetsame

Parameters:
ps The buffer storing the pool slots of all constraints/valéstthat are added.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

394 Reference Manual

6.41.3.3 templatecclass BaseType, class CoTypevoid ABA_ACTIVE < BaseType, CoType>::insert
(ABA_POOLSLOT < BaseType, CoType> * ps)

Adds a constraint/variable to the active items.

Parameters:
ps The pool slot storing the constraint/variable being added.

6.41.3.4 templatecclass BaseType, class CoTypeint ABA_ACTIVE < BaseType, CoType>::imax ()
const

Returns:
The maximum number of storable active items (without reatmn).

6.41.3.5 templateclass BaseType, class CoTypeint ABA_ACTIVE < BaseType, CoType>::number ()
const

Returns:
The current number of active items.

6.41.3.6 templatecclass BaseType, class CoTypeconstABA_ACTIVE <BaseType, CoType-&
ABA_ACTIVE < BaseType, CoType>:.operator= (const ABA_ACTIVE < BaseType, CoType>
& rhs) [private]

6.41.3.7]

templatecclass BaseType, class CoTyp®8aseType ABA_ACTIVE < BaseType, CoType-::operator[] (inti)

The operator [].

Returns:
A pointer to thei-th active item or
0 if this item has been removed in the meantime.

Parameters:
i The number of the active item.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.41 ABA_ACTIVE < BaseType, CoType> Class Template Reference 395

6.41.3.8 templatecclass BaseType, class CoTypeABA_POOLSLOTREF <BaseType, CoType-x
ABA_ACTIVE < BaseType, CoType>::poolSlotRef (int i)

Returns:
Thei-th entry in theABA_ARRAY active

Parameters:
i The number of the active item.

6.41.3.9 templatecclass BaseType, class CoTypevoid ABA_ACTIVE < BaseType, CoType>::realloc
(int newSizg

Changes the maximum number of active items which can bedsio@n object of this class.

Parameters:
newSize The new maximal number of active items.

6.41.3.10 template:class BaseType, class CoTypeint ABA_ACTIVE < BaseType, CoType
>::redundantAge (int i) const

Returns:
The number of iterations a constraint/variable is alreadiundant.

6.41.3.11 template:class BaseType, class CoTypevoid ABA_ACTIVE < BaseType, CoType>::remove
(ABA_BUFFER< int > & del)

Removes items from the list of active items.

Parameters:
del The numbers of the items that should be removed. These nemhest be upward sorted.

6.41.3.12 templateclass BaseType, class CoTypevoid ABA_ACTIVE < BaseType, CoType
>::resetRedundantAge (inti)

the number of iterations iteims redundant to O.
Parameters:

i The index of the constraint/variable.

6.41.4 Friends And Related Function Documentation

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

396 Reference Manual

6.41.4.1 templatecclass BaseType, class CoTypeostream& operator<< (ostream & out, const
ABA_ACTIVE < BaseType, CoType> & rhs) [fri end]

The output operator writes all active constraints and Wéemto an output stream. If an associated pool slot is
void, or the item is newer than the one we refer to, themd" is output.

Returns:
A reference to the output stream.

Parameters:
out The output stream.

rhs The active set being output.

6.41.5 Member Data Documentation

6.41.5.1 templatecclass BaseType, class CoTypeABA_ARRAY <ABA POOLSLOTREF <BaseType,
CoType> x> ABA_ACTIVE < BaseType, CoType>::active_ [pri vat e]

The array storing references to the pool slots of the adtaras.

Definition at line 263 of file active.h.

6.41.5.2 templatecclass BaseType, class CoTypeABA MASTER x ABA_ACTIVE < BaseType, CoType
> master_ [private]

A pointer to corresponding master of the optimization.

Definition at line 256 of file active.h.

6.41.5.3 templatecclass BaseType, class CoTypeint ABA_ACTIVE < BaseType, CoType>::in_
[private]

The number of active items.

Definition at line 259 of file active.h.

6.41.5.4 templatecclass BaseType, class CoTypeABA_ARRAY <int> ABA_ACTIVE < BaseType,
CoType >::redundantAge_ [pri vate]

The number of iterations a constraint is already redundant.
Definition at line 267 of file active.h.

The documentation for this class was generated from theviolg file:

* Include/abacusfttive.h

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.42 ABA_CUTBUFFER< BaseType, CoType> Class Template Reference 397

6.42 ABA_ CUTBUFFER< BaseType, CoType> Class Template Refer-

ence

template class implements a buffer for constraints anchlsles which are generated during the cutting plane or
column generation phase.

#i ncl ude <cutbuffer. h>
Inheritance diagram for ABA_CUTBUFFERBaseType, CoType-::

| ABA_ABACUSROOT |

T

| ABA_CUTBUFFER< BaseType, CoType|>

Public Member Functions

ABA_CUTBUFFER(ABA_MASTER xmaster, int size)

~ABA_CUTBUFFER()

int size() const

int number() const

int space) const

intinsert(ABA_POOLSLOT< BaseType, CoType- *slot, bool keeplnPool)
intinsert(ABA_POOLSLOT< BaseType, CoType xslot, bool keepinPool, double rank)

In addition to the previous version of the functiorsert() this version also adds a rank to the item such that all
buffered items can be sorted with the functsmmt().

void remove(ABA_BUFFER< int > &index)
ABA POOLSLOT< BaseType, CoType « slot(int i)

Private Member Functions

void extract(int max,ABA_BUFFER< ABA_POOLSLOT< BaseType, CoType * > &newsSlots)

void sort(int threshold)

ABA_CUTBUFFER(constABA_CUTBUFFER< BaseType, CoType &rhs)
constABA_CUTBUFFER< BaseType, CoType- & operator=(constABA_CUTBUFFER< BaseType,
CoType> &rhs)

Private Attributes

ABA_MASTER * master_

intn_

ABA_ARRAY < ABA_POOLSLOTREK BaseType, CoType * > psRef_
ABA_ARRAY < bool > keepInPool_

If keepInPool[i] is truefor a buffered constraint/variables, then it is not removed from its pool aljhat might be
discarded inextract()

ABA_ARRAY < double> rank_

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

398 Reference Manual

¢ boolranking_

This flag istrueif a rank for each buffered item is available. As soon as an item without rainkésted it becomes
false

Friends

* classABA_SUB

6.42.1 Detailed Description
template<class BaseType, class CoTypeclass ABA CUTBUFFER< BaseType, CoType>

template class implements a buffer for constraints andakées which are generated during the cutting plane or
column generation phase.

Definition at line 49 of file cutbuffer.h.

6.42.2 Constructor & Destructor Documentation

6.42.2.1 templatecclass BaseType, class CoTypeABA CUTBUFFER < BaseType, CoType
>::ABA_CUTBUFFER (ABA_MASTER s mastet int size

The constructor.

Parameters:
master A pointer to the corresponding master of the optimization.

size The maximal number of constraints/variables which can betad.

6.42.2.2 templatecclass BaseType, class CoTypeABA CUTBUFFER < BaseType, CoType
>::~ABA_CUTBUFFER ()

The destructor.

If there are still items buffered when this object is deseddhen we have to unset the locks of the buffered items.
This can happen if in the feasibility test constraints aneegated but for some reason (e.g., due to tailing off) the
optimization of the subproblem is terminated.

6.42.2.3 templateclass BaseType, class CoTypeABA_CUTBUFFER < BaseType, CoType
>::ABA_CUTBUFFER (constABA_CUTBUFFER < BaseType, CoType> & rhs) [pri vat e]

6.42.3 Member Function Documentation

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.42 ABA_CUTBUFFER< BaseType, CoType> Class Template Reference 399

6.42.3.1 templatecclass BaseType, class CoTypevoid ABA_CUTBUFFER < BaseType, CoType
>:extract (int max, ABA_BUFFER < ABA_POOLSLOT < BaseType, CoType> *« > & newSl|ot3
[private]

Takes the firsthaxitems from the buffer and clears the buffer.

Constraints or variables stored in slots which are not eté¢chare also removed from their pool&é&eplnPoohas
not been set ttrue at insertion time.

Parameters:
max The maximal number of extracted items.

newSlots The extracted items are inserted into this buffer.

6.42.3.2 templatecclass BaseType, class CoTypeint ABA_CUTBUFFER < BaseType, CoType>::insert
(ABA_POOLSLOT < BaseType, CoType> * slot, bool keeplnPoo] doublerank)

In addition to the previous version of the functiorsert() this version also adds a rank to the item such that all
buffered items can be sorted with the functgort().

Returns:
0 If the item can be inserted.
1 If the buffer is already full.

Parameters:
rank A rank associated with the constraint/variable.

6.42.3.3 templatecclass BaseType, class CoTypeint ABA_CUTBUFFER < BaseType, CoType>::insert
(ABA_POOLSLOT < BaseType, CoType> * slot, bool keepInPoo)

Adds a slot to the buffer.

The memberanking_has to be set ttalse because since no rank is added together with this item anguok all
items is impossible. Such that newly generated items cdmotmoved immediately in a cleaning up process of
the pool we set a lock which will be removed in the functéextract()

Returns:
0 If the item can be inserted.
1 If the buffer is already full.

Parameters:
slot The inserted pool slot.

keeplInPool If the flagkeeplnPoois true, then the item stored in th&ot is not removed from the pool, even
if it is discarded inextract() Items regenerated from a pool should always have this flic seie.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

400 Reference Manual

6.42.3.4 templatecclass BaseType, class CoTypeint ABA_CUTBUFFER < BaseType, CoType
>::number () const

Returns:
The number of buffered items.

6.42.3.5 templatecclass BaseType, class CoTypeconstABA_CUTBUFFER <BaseType, CoType-&
ABA_CUTBUFFER < BaseType, CoType>::operator= (const ABA_CUTBUFFER < BaseType,
CoType> & rhs) [privat e]

6.42.3.6 templatecclass BaseType, class CoTypevoid ABA_CUTBUFFER < BaseType, CoType
>::remove (ABA_BUFFER< int > & index)

Removes the specified elements from the buffer.

Parameters:
index The numbers of the elements which should be removed.

6.42.3.7 templatecclass BaseType, class CoTypeint ABA_CUTBUFFER < BaseType, CoType>::size ()
const

Returns:
The maximal number of items that can be buffered.

6.42.3.8 templatecclass BaseType, class CoTypeABA POOLSLOT <BaseType, CoType-x*
ABA_CUTBUFFER < BaseType, CoType>::slot (int i)

Returns:
A pointer to thei-th ABA_POOLSLOTthat is buffered.

6.42.3.9 templatecclass BaseType, class CoTypevoid ABA_CUTBUFFER < BaseType, CoType>::sort
(int thresholg [pri vat e]

Sorts the items according to their ranks.

Parameters:
threshold Only if more tharnthresholditems are buffered, the sorting is performed.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.42 ABA_CUTBUFFER< BaseType, CoType> Class Template Reference 401

6.42.3.10 templatecclass BaseType, class CoTypeint ABA_CUTBUFFER < BaseType, CoType
>::space () const

Returns:
The number of items which can still be inserted into the buffe

6.42.4 Friends And Related Function Documentation

6.42.4.1 templatecclass BaseType, class CoTypefriend classABA_SUB [fri end]

Definition at line 50 of file cutbuffer.h.

6.42.5 Member Data Documentation

6.42.5.1 templatecclass BaseType, class CoTypeABA_ARRAY <bool> ABA_CUTBUFFER <
BaseType, CoType>::keepInPool_ [pri vat e]

If keepInPoolli] is true for a buffered constraint/variables, then it is not remofredh its pool although it might
be discarded imextract()

Definition at line 164 of file cutbuffer.h.
6.42.5.2 templatecclass BaseType, class CoTypeABA MASTER x ABA_CUTBUFFER < BaseType,
CoType >::master_ [pri vat €]

A pointer to the corresponding master of the optimization.
Definition at line 150 of file cutbuffer.h.

6.42.5.3 templatecclass BaseType, class CoTypeint ABA_ CUTBUFFER < BaseType, CoType>::n_
[private]

The number of buffered items.

Definition at line 154 of file cutbuffer.h.

6.42.5.4 templateclass BaseType, class CoTypeABA_ARRAY <ABA_POOLSLOTREF <BaseType,
CoType>x*> ABA_CUTBUFFER < BaseType, CoType>::psRef_ [pri vat e]

References to the pool slots of the buffered constrainisivies.

Definition at line 158 of file cutbuffer.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

402 Reference Manual

6.42.5.5 templatecclass BaseType, class CoTypeABA_ARRAY <double> ABA_ CUTBUFFER <
BaseType, CoType>::rank_ [privat €]

This array stores optionally the rank of the buffered items.
Definition at line 168 of file cutbuffer.h.

6.42.5.6 template:class BaseType, class CoTypebool ABA CUTBUFFER < BaseType, CoType
>:uranking_ [private]

This flag istrueif a rank for each buffered item is available. As soon as an itgthout rank is inserted it becomes
false

Definition at line 173 of file cutbuffer.h.

The documentation for this class was generated from thevioll file:

« Include/abacusutbuffer.h

6.43 ABA_INFEASCON Class Reference

If a constraint is transformed from its pool to the row forrtahay turn out that the constraint is infeasible since
variables are fixed or set such that all nonzero coefficiehtiseoleft hand side are eliminated and the right hand
side has to be updated.

#i ncl ude <i nfeascon. h>
Inheritance diagram for ABA_INFEASCON::

| ABA_ABACUSROOT|

T

| ABA_INFEASCON |

Public Types

e enumINFEAS{ TooSmall= -1, Feasible TooLarge}

Public Member Functions

ABA_INFEASCON (ABA_MASTER xmasterABA_CONSTRAINT xcon,INFEAS inf)
e ABA_CONSTRAINT = constraint)) const

INFEAS infeaq() const

e boolgoodVar(ABA_VARIABLE xv)

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.43 ABA_INFEASCON Class Reference 403

Private Attributes

 ABA_MASTER * master_
* ABA_CONSTRAINT « constraint_
* INFEAS infeas_

6.43.1 Detailed Description
If a constraint is transformed from its pool to the row forriiahay turn out that the constraint is infeasible since

variables are fixed or set such that all nonzero coefficiehtiseoleft hand side are eliminated and the right hand
side has to be updated.

Definition at line 48 of file infeascon.h.

6.43.2 Member Enumeration Documentation

6.43.2.1 enumABA_INFEASCON::INFEAS
The different ways of infeasibility of a constraint.

Parameters:
TooSmall The left hand side is too small for the right hand side.

Feasible The constraint is not infeasible.
ToolLarge The left hand side is too large for the right hand side.

Enumeration values:
TooSmall

Feasible
Toolarge

Definition at line 57 of file infeascon.h.

6.43.3 Constructor & Destructor Documentation

6.43.3.1 ABA_INFEASCON::ABA_INFEASCON (ABA_MASTER * maste; ABA_CONSTRAINT con,
INFEAS inf)

The constructor.

Parameters:
master A pointer to the corresponding master of the optimization.

con The infeasible constraint.
inf The way of infeasibility.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

404 Reference Manual

6.43.4 Member Function Documentation

6.43.4.1 ABA_CONSTRAINT x ABA_INFEASCON::constraint () const [i nli ne]

Returns:
A pointer to the infeasible constraint.

Definition at line 99 of file infeascon.h.

6.43.4.2 bool ABA_INFEASCON::goodVar ABA_VARIABLE V)

Returns:
true If the variabler might reduce the infeasibility,
false otherwise.

Parameters:
v A variable for which we test if its addition might reduce iagbility.

6.43.4.3 ABA_INFEASCON:INFEAS ABA_INFEASCON::infeas () const [i nli ne]

Returns:
The way of infeasibility of the constraint.

Definition at line 104 of file infeascon.h.

6.43.5 Member Data Documentation

6.43.5.1 ABA_ CONSTRAINT x ABA_INFEASCON::constraint_ [pri vat e]
A pointer to the infeasible constraint.

Definition at line 91 of file infeascon.h.

6.43.5.2 INFEAS ABA_INFEASCON::infeas_ [pri vat e]

The way of infeasibility.

Definition at line 95 of file infeascon.h.

6.43.5.3 ABA_MASTER x ABA_INFEASCON::master_ [pri vat e]

A pointer to the corresponding master of the optimization.

Definition at line 87 of file infeascon.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.44 ABA_OPENSUB Class Reference 405

The documentation for this class was generated from theviall file:

¢ Include/abacusifeascon.h

6.44 ABA OPENSUB Class Reference

New subproblems are inserted in this set after a branchieyg sir when a subproblem becomes dormant. A
subproblem is extracted from this list if it becomes thevacsiubproblem which is optimized.

#i ncl ude <opensub. h>
Inheritance diagram for ABA_ OPENSUB::

| ABA_ABACUSROOT|

T

| ABA_OPENSUB |

Public Member Functions

* ABA_OPENSUB(ABA_MASTER xmaster)

The constructor does not initialize the membderlBound_since this can only be done if we know the sense of the
objective function which is normally unknown when the constructor of the 8B&_MASTERS called which again
calls this constructor.

* int number() const
* boolempty() const
 doubledualBound() const

Private Member Functions

e ABA_SUB x select()

Selects a subproblem according to the strategmasterand removes it from the list of open subproblems.

« void insert(ABA_SUB xsub)

« void remove(ABA_SUB xsub)
* void prune()

« void updateDualBoung)

Updates the membelualBound_according to the dual bounds of the subproblems contained in this set.

ABA_OPENSUB(constABA_OPENSUB&rhs)
e constABA_OPENSUB& operator5constABA_OPENSUB&rhs)

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

406 Reference Manual

Private Attributes

ABA_ MASTER x master_

* ABA_DLIST< ABA_SUB * > list_
e intn_

 doubledualBound_

Friends

e classABA_SUB
* classABA_MASTER

6.44.1 Detailed Description

New subproblems are inserted in this set after a branchieyg str when a subproblem becomes dormant. A
subproblem is extracted from this list if it becomes thewvacsiubproblem which is optimized.

Definition at line 50 of file opensub.h.

6.44.2 Constructor & Destructor Documentation

6.44.2.1 ABA_OPENSUB: ABA_OPENSUBABA_MASTER x maste)

The constructor does not initialize the membealBound_since this can only be done if we know the sense of the
objective function which is normally unknown when the coustor of the clas®\BA_MASTER is called which
again calls this constructor.

Parameters:
master A pointer to the corresponding master of the optimization.

6.44.2.2 ABA_OPENSUB::ABA_OPENSUB (constBA_OPENSUB& rhs) [pri vat e]

6.44.3 Member Function Documentation

6.44.3.1 double ABA OPENSUB::dualBound () const

Returns:
The value of the dual bound of all subproblems in the list.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.44 ABA_OPENSUB Class Reference 407

6.44.3.2 bool ABA_OPENSUB::empty () const[i nl i ne]

Returns:
true If there is no subproblem in the set of open subproblems,
false otherwise.

Definition at line 179 of file opensub.h.

6.44.3.3 void ABA_OPENSUB::insert ABA_SUB s« sub) [pri vat e]
Adds a subproblem to the set of open subproblems.

Parameters:
sub The subproblem that is inserted.

6.44.3.4 int ABA_OPENSUB::number () const [i nl i ne]

Returns:
The current number of open subproblems contained in this set

Definition at line 174 of file opensub.h.

6.44.3.5 consABA_OPENSUB& ABA OPENSUB::operator= (const ABA_OPENSUB & rhs)
[private]

6.44.3.6 void ABA_OPENSUB::prune () [pri vat e]

Removes all elements from the set of opens subproblems.

6.44.3.7 void ABA_OPENSUB::removeABA_SUB x sub) [pri vat e]

Removes subproblem from the set of open subproblems.

Parameters:
sub The subproblem that is removed.

6.44.3.8 ABA_SUBx ABA_ _OPENSUB::select () [pri vat €]

Selects a subproblem according to the strategyasterand removes it from the list of open subproblems.

The functionselect()scans the list of open subproblems, and selects the sulbpnakith highest priority from the
set of open subproblems. Dormant subproblems are ignopesdible.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

408 Reference Manual

Returns:
The selected subproblem. If the set of open subproblemspsyefis returned.

6.44.3.9 void ABA_OPENSUB::updateDualBound () [pri vat €]

Updates the membelualBound_according to the dual bounds of the subproblems containtdsrset.

6.44.4 Friends And Related Function Documentation

6.44.4.1 friend classABA_MASTER [fri end]

Definition at line 52 of file opensub.h.

6.44.4.2 friend classABA _SUB [fri end]

Definition at line 51 of file opensub.h.

6.44.5 Member Data Documentation

6.44.5.1 doubleABA OPENSUB::dualBound_ [pri vat e]

The dual bound of all open subproblems.

Definition at line 167 of file opensub.h.

6.44.5.2 ABA_DLIST <ABA_SUB«> ABA_OPENSUB::list_ [pri vat e]
The doubly linked list storing the open subproblems.

Definition at line 159 of file opensub.h.

6.44.5.3 ABA_MASTER x« ABA_OPENSUB:master_ [pri vat e]

A pointer to corresponding master of the optimization.

Definition at line 137 of file opensub.h.

6.44.5.4 intABA_OPENSUB:n_ [private]

The number of open subproblems.
Definition at line 163 of file opensub.h.

The documentation for this class was generated from theviall file:

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.45 ABA_FIXCAND Class Reference 409

¢ Include/abacuspensub.h

6.45 ABA_FIXCAND Class Reference

candidates for fixing
#i ncl ude <fixcand. h>
Inheritance diagram for ABA_FIXCAND::

| ABA_ABACUSROOT|

T

| ABA_FIXCAND |

Public Member Functions

« ABA_FIXCAND (ABA_MASTER xmaster)
« ~ABA_FIXCAND ()

The destructor.

Private Member Functions

« void saveCandidatgABA_SUB xsub)

« void fixByRedCost(ABA_CUTBUFFER< ABA_VARIABLE , ABA_CONSTRAINT > «addVarBuffer)
« void deleteAll()

« void allocate(int nCand)

* ABA_FIXCAND (constABA_FIXCAND &rhs)

» constABA_FIXCAND & operator(constABA_FIXCAND &rhs)

Private Attributes

ABA_MASTER s master_

 ABA BUFFER< ABA_POOLSLOTRERK ABA_ VARIABLE , ABA_CONSTRAINT > * > x candidates_
* ABA_BUFFER< ABA_FSVARSTAT * > « fsVarStat_

* ABA_ BUFFER< double> x lhs_

Friends

» classABA_SUB
 classABA_MASTER

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

410 Reference Manual

6.45.1 Detailed Description
candidates for fixing

Definition at line 60 of file fixcand.h.

6.45.2 Constructor & Destructor Documentation

6.45.2.1 ABA_FIXCAND:ABA_ FIXCAND (ABA_MASTER x maste)
The constructor.

Parameters:
master A pointer to the corresponding master of the optimization.

6.45.2.2 ABA_FIXCAND::~ABA_FIXCAND ()

The destructor.

6.45.2.3 ABA_FIXCAND::ABA_FIXCAND (const ABA_FIXCAND & rhs) [private]

6.45.3 Member Function Documentation

6.45.3.1 void ABA_FIXCAND::allocate (intnCand) [pri vate]

Allocates memory to stoneCandcandidates for fixing.

6.45.3.2 void ABA_FIXCAND::deleteAll () [private]

Deletes all allocated memory of members.

The member pointers are set to 0 that multiple deletion daceugse any error.

6.45.3.3 void ABA_FIXCAND::fixByRedCost (ABA_ CUTBUFFER < ABA VARIABLE ,
ABA_CONSTRAINT > x addVarBuffer) [pri vate]

Tries to fix as many candidates as possible.

The new variable status is both stored in the global variatd&us of the clasBBA_MASTER and in the local
variable status oABA_SUB. Candidates which are fixed are removed from the candidate se

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.45 ABA_FIXCAND Class Reference 411

Returns:
1 If contradictions to the variables statusesolbare detected.
0 otherwise.

Parameters:
addVarBuffer Inactive variables which are fixed to a nonzero value arectlmiaddVarBufferto be activated
in the next iteration.

We do not used the functioABA MASTER::primalViolated()for checking of a variable can be fixed, because
here we also have to be careful for integer objective functio

6.45.3.4 consABA_FIXCAND & ABA FIXCAND::operator= (const ABA_FIXCAND & rhs)
[private]

6.45.3.5 void ABA_FIXCAND::saveCandidatesABA SUB x sub) [pri vate]

Memorizes suitable variables for fixing.

Parameters:
sub A pointer to the root node of the remainifydree.

6.45.4 Friends And Related Function Documentation

6.45.4.1 friend classABA_MASTER [fri end]

Definition at line 62 of file fixcand.h.

6.45.4.2 friend clasABA_SUB [fri end]

Definition at line 61 of file fixcand.h.

6.45.5 Member Data Documentation

6.45.5.1 ABA_BUFFER<ABA_POOLSLOTREF <ABA_VARIABLE , ABA_CONSTRAINT >>x
ABA_FIXCAND::candidates_ [pri vat e]

The candidates for fixing.

Definition at line 119 of file fixcand.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

412 Reference Manual

6.45.5.2 ABA_BUFFER<ABA FSVARSTAT x> ABA_ FIXCAND::fsVarStat_ [pri vat e]
The fixing status of the candidates.

Definition at line 123 of file fixcand.h.

6.45.5.3 ABA_BUFFER<double>x ABA_FIXCAND:lhs_ [privat e]

The left hand side of the expression evaluated for fixing.

Definition at line 127 of file fixcand.h.

6.45.5.4 ABA MASTER x ABA_FIXCAND::master_ [pri vate]

A pointer to the corresponding master of the optimization.
Definition at line 115 of file fixcand.h.

The documentation for this class was generated from theviail file:

¢ Include/abacu$ikcand.h

6.46 ABA_TAILOFF Class Reference

This class stores the history of the values of the last LBt&ols and implements all functions to control tailing-off
effect.

#include <tailoff.h>
Inheritance diagram for ABA_TAILOFF::

| ABA_ABACUSROOT|

T

| ABA_TAILOFF |

Public Member Functions

¢ ABA_TAILOFF (ABA_MASTER sxmaster)
The constructor takes the length of the tailing off history fiBA_MASTER::tailOffNLp()

e ABA_TAILOFF (ABA_MASTER xmaster, int NLp)
An alternative constructor takes the length of the tailing off history from tharpater NLp.

e ~ABA_TAILOFF ()
The destructor.

* booltailOff () const

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.46 ABA_TAILOFF Class Reference 413

e int diff (int nLps, double &d) const
Can be used to retrieve the difference between the last and a previossluffon in percent.

Private Member Functions

* void update(double value)
« void reset()

Private Attributes

* ABA_MASTER * master_
* ABA_RING< double> x IpHistory

Friends

* classABA_SUB
 ostream &operatox < (ostream &out, consABA_TAILOFF &rhs)

The output operator writes the memorized LP-values on an output stream

6.46.1 Detailed Description

This class stores the history of the values of the last LBt®ols and implements all functions to control tailing-off
effect.

Definition at line 53 of file tailoff.h.

6.46.2 Constructor & Destructor Documentation

6.46.2.1 ABA_TAILOFF::ABA_TAILOFF (ABA_MASTER x maste)

The constructor takes the length of the tailing off histagni ABA_MASTER::tailOffNLp().

Parameters:
master A pointer to the corresponding master of the optimization.

6.46.2.2 ABA_TAILOFF::ABA_TAILOFF (ABA_MASTER * master int NLp)

An alternative constructor takes the length of the tailiffiistory from the parameter NLp.

Parameters:
master A pointer to the corresponding master of the optimization.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

414 Reference Manual

NLp The length of the tailing off history.

6.46.2.3 ABA_TAILOFF::~ABA_TAILOFF ()

The destructor.

6.46.3 Member Function Documentation

6.46.3.1 int ABA_TAILOFF::diff (int nLps, double & d) const

Can be used to retrieve the difference between the last arelmps LP-solution in percent.

Returns:
0 If the difference could be computed, i.e., the old LP-valuPsbefore the last one is store in the history,
1 otherwise.

Parameters:
nLps The number of LPs before the last solved linear program witftkvthe last solved LP-value should be
compared.

d Contains the absolute difference bewteen the value of gtestdved linear program and the value of the
linear program solvedLPsbefore in percent relative to the older value.

6.46.3.2 void ABA_TAILOFF:reset() [private]

Clears the solution history.

This function should be called if variables are added, beeawormally the solution value of the LP-relaxation
gets worse after the addition of variables. Such a change €alsely indicate a tailing-off effect if the history of
LP-values is not reset.

6.46.3.3 bool ABA_TAILOFF::tailOff () const

Checks if there is a tailing-off effect.

We assume a tailing-off effect if during the last ABA_MASTERIIOffNLps() iterations of the cutting plane
algorithms the dual bound changed at mdBA MASTER::tailOffPercent(percent.

Returns:
true If a tailing off effect is observed,
false otherwise.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.46 ABA_TAILOFF Class Reference 415

6.46.3.4 void ABA_TAILOFF::update (doublevalug) [pri vat e]

A new LP-solution value can be stored by calling the functipdate()

This update should be performed after every solution of annLfRe cutting plane generation phase of the sub-
problem optimization process.

Parameters:
value The LP-solution value.

6.46.4 Friends And Related Function Documentation

6.46.4.1 friend classABA_SUB [fri end]

Definition at line 54 of file tailoff.h.

6.46.4.2 ostream& operatok < (ostream & out, constABA_TAILOFF & rhs) [fri end]
The output operator writes the memorized LP-values on goubgtream.

Returns:
A reference to the output stream.

Parameters:
out The output stream.

rhs The tailing-off manager being output.

6.46.5 Member Data Documentation

6.46.5.1 ABA_RING <double>x ABA TAILOFF::IpHistory [pri vat €]

The LP-values considered in the tailing off analysis.
Definition at line 143 of file tailoff.h.

6.46.5.2 ABA_MASTER « ABA_TAILOFF:master_ [pri vat e]

A pointer to the corresponding master of the optimization.
Definition at line 139 of file tailoff.h.

The documentation for this class was generated from thevigil file:

 Include/abacusiiloff.h

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

416 Reference Manual

6.47 ABA _HISTORY Class Reference

class implements the storage of the solution history.
#i ncl ude <history. h>
Inheritance diagram for ABA_HISTORY::

| ABA_ABACUSROOT|

T

| ABA_HISTORY |

Public Member Functions

« ABA_HISTORY (ABA_MASTER «master)
« virtual ~ABA_HISTORY ()

The destructor.

« void update()

Adds an additional line to the history table, primal bound, dual bound,thadime are taken from the corresponding
master object. The history table is automatically reallocated if necessary.

Private Member Functions

* int size() const
« void realloc()

The functiorrealloc()enlarges the history table by 100 components.

Private Attributes

« ABA_MASTER * master_

* ABA_ARRAY < double> primalBound_
* ABA_ARRAY < double> dualBound_

* ABA_ARRAY < long > time_

e intn_

Friends

 ostream &operatox < (ostream &out, consABA_HISTORY &rhs)

6.47.1 Detailed Description

class implements the storage of the solution history.

Definition at line 43 of file history.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.47 ABA_HISTORY Class Reference 417

6.47.2 Constructor & Destructor Documentation

6.47.2.1 ABA_HISTORY:ABA_HISTORY (ABA_MASTER + maste)

The constructor initializes a history table with 100 pokes#ntries.

If this number is exceeded an automatic reallocation isoperéd.

Parameters:
master A pointer to the corresponding master of the optimization.

6.47.2.2 virtual ABA_HISTORY:: ~ABA HISTORY () [virtual]

The destructor.

6.47.3 Member Function Documentation

6.47.3.1 void ABA_HISTORY::realloc () [private]

The functionrealloc() enlarges the history table by 100 components.

6.47.3.2 int ABA_HISTORY::size () const [inline, private]

Returns the length of the history table.
Definition at line 107 of file history.h.

6.47.3.3 void ABA_HISTORY::update ()

Adds an additional line to the history table, primal boungiidound, and the time are taken from the correspond-
ing master object. The history table is automatically mdted if necessary.

Usually an explicit call to this function from an applicaticlass is not required sinagdate()is automatically
called if a new global primal or dual bound is found.

6.47.4 Friends And Related Function Documentation

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

418 Reference Manual

6.47.4.1 ostream& operatok < (ostream & out, constABA_HISTORY & rhs) [fri end]

The output operator.

Returns:
A reference to the output stream.

Parameters:
out The output stream.

rhs The solution history being output.

6.47.5 Member Data Documentation

6.47.5.1 ABA_ARRAY <double> ABA_HISTORY::dualBound_ [pri vat e]
The array storing the value of the best dual solution.

Definition at line 95 of file history.h.

6.47.5.2 ABA_MASTER « ABA_HISTORY::master_ [pri vate]

A pointer to corresponding master of the optimization.

Definition at line 87 of file history.h.

6.47.5.3 intABA_HISTORY::n_ [private]

The number of entries in the history table.

Definition at line 103 of file history.h.

6.47.5.4 ABA_ARRAY <double> ABA_HISTORY::primalBound_ [pri vate]
The array storing the value of the best primal solution.

Definition at line 91 of file history.h.

6.47.5.5 ABA_ARRAY <long> ABA_HISTORY:time_ [pri vate]

The CPU time in seconds, when the entry in the table was made.
Definition at line 99 of file history.h.

The documentation for this class was generated from theviall file:
« Include/abacusbistory.h

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.48 Basic Data Structures 419

6.48 Basic Data Structures

This subsection documents various basic data structuriehwie have used withihBACUS. They can also be
used within an application. The templated basic data strestare documented in Sectiéb3

6.49 ABA_SPARVEC Class Reference

Since other classes, e.g., the class ABA_RO are derivedtfinelass, all data members are protected in order to
provide efficient access also in these derived classes.

#i ncl ude <sparvec. h>

Inheritance diagram for ABA_SPARVEC::

| ABA_ABACUSROOT|

T

| ABA_SPARVEC |

t
[|

ABA_COLUMN | | ABA_ROW

Public Member Functions

« ABA_ SPARVEC(ABA_GLOBAL xglob, int size, double reallocFac=10.0)
« ABA_SPARVEC(ABA_GLOBAL xglob, int size, consABA_ARRAY < int > &s, constABA_ARRAY <
double> &c, double reallocFac=10.0)

A constructor with initialization of the support and coefficients of the spaeséor.

« ABA SPARVEC(ABA_GLOBAL xglob, int size, int«s, doublexc, double reallocFac=10.0)

This constructor is equivalent to the previous one except that it is usistyl€-arrays for the initialization of the
sparse vector.

« ABA_SPARVEC(cOnstABA SPARVECA&rhs)
« ~ABA_SPARVEC()

The destructor.

e constABA_ SPARVEC& operator5constABA_SPARVEC&rhs)

The assignment operator requires that the left hand and the right hdedave the same length (otherwise use the
functioncopy()).

* int support(int i) const
A range check is performed if the function is compiled wiDABACUSSAFE

« doublecoeff (int i) const
A range check is performed if the function is compiled wiDABACUSSAFE

 doubleorigCoeff(int i) const

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

420 Reference Manual

« void insert(int s, double c)
« void leftShift (ABA_BUFFER< int > &del)
* void copy (constABA_SPARVEC&vec)

Is very similar to the assignment operator, yet the size of the two veaersimot be equal and only the support, the
coefficients, and the number of nonzeros is copied. A reallocationfigrped if required.

« void clear()

« void renamgABA_ARRAY < int > &newName)
* int size() const

* intnnz() const

 doublenorm()

« void realloc()

« void realloc(int newSize)

This other version afealloc()reallocates the sparse vector to a given length.

Protected Member Functions

« void rangeChecKint i) const

Terminates the program with an error message i§ negative or greater or equal than the number of nonzero
elements.

Protected Attributes

« ABA GLOBAL xglob_
e intsize_
The maximal number of nonzero coefficients which can be stored witadlocation.

e intnnz_
 doublereallocFac_

If a new element is inserted but the sparse vector is full, then its size is ssttdgreallocFac_percent.
* int x support_
 doublex coeff_
Friends

» ostream &operatox < (ostream &out, consABA_SPARVEC&rhs)
The output operator writes the elements of the support and their coeffidiee by line on an output stream.

6.49.1 Detailed Description

Since other classes, e.g., the class ABA_ RO are derivedthianelass, all data members are protected in order to
provide efficient access also in these derived classes.

Definition at line 50 of file sparvec.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.49 ABA_ SPARVEC Class Reference 421

6.49.2 Constructor & Destructor Documentation

6.49.2.1 ABA_SPARVEC:ABA_SPARVEC ABA_GLOBAL = glob, int size doublereallocFac= 10. 0)

The constructor for an empty sparse vector.

Parameters:
glob A pointer to the corresponding global object.

size The maximal number of nonzeros of the sparse vector (witrealtocation).

reallocFac The reallocation factor (in percent of the original sizeieh is used in a default reallocation if a
variable is inserted when the sparse vector is alreadylfsltiefault value is 10.

If no memory forsupport_andcoeff_is allocated then an automatic allocation will be performesen the function
insert()is called the first time.

6.49.2.2 ABA_SPARVEC:ABA_SPARVEC ABA_GLOBAL x glob, int size constABA_ARRAY < int >
& s, constABA_ARRAY < double > & c, doublereallocFac=10. 0)

A constructor with initialization of the support and coeiffists of the sparse vector.

The minimum value o$izeands.sizes the number of nonzeros of the sparse vector.

Parameters:

glob A pointer to the corresponding global object.

size The maximal number of nonzeros (without reallocation).

s An array storing the support of the sparse vector, i.e., lgr@ents for which a (normally nonzero) coefficient
is given inc.

¢ An array storing the coefficients of the support elementsmins. This array must have at least the length
of the minimum ofsizeands.size()

reallocFac The reallocation factor (in percent of the original sizehjeh is used in a default reallocation if a
variable is inserted when the sparse vector is alreadylfsltiefault value is 10.

If sizeis 0, then also no elements are copied infirdoop sincennz_will be also 0.

6.49.2.3 ABA_SPARVEC:ABA SPARVEC ABA_ GLOBAL x glob, int size int x s, double x ¢, double
reallocFac=10. 0)

This constructor is equivalent to the previous one excegitiths using C-style arrays for the initialization of the
sparse vector.

6.49.2.4 ABA_SPARVEC:ABA_SPARVEC (consABA_SPARVEC & rhs)

The copy constructor.

Parameters:
rhs The sparse vector that is copied.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

422 Reference Manual

6.49.2.5 ABA_SPARVEC:~ABA_SPARVEC ()

The destructor.

6.49.3 Member Function Documentation

6.49.3.1 void ABA_SPARVEC::clear () [i nline]

Removes all nonzeros from the sparse vector.

Definition at line 327 of file sparvec.h.

6.49.3.2 double ABA_SPARVEC::coeff (int) const [i nline]

A range check is performed if the function is compiled wWilABACUSSAFE

Returns:
The coefficient of thé-th nonzero element.

Parameters:
i The number of the nonzero element.

Definition at line 308 of file sparvec.h.

6.49.3.3 void ABA_SPARVEC::copy (consABA_SPARVEC & veq

Is very similar to the assignment operator, yet the size @two vectors need not be equal and only the support,
the coefficients, and the number of nonzeros is copied. Aoesgion is performed if required.

Parameters:
vec The sparse vector that is copied.

6.49.3.4 void ABA_SPARVEC::insert (ints, doublec) [inline]

Adds a new support/coefficient pair to the vector.

If necessary a reallocation of the member data is perforratahaatically.

Parameters:
s The new support.

¢ The new coefficient.

Definition at line 316 of file sparvec.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.49 ABA_SPARVEC Class Reference 423

6.49.3.5 void ABA_SPARVEC::leftShift ABA_BUFFER< int > & del)

Deletes the elements listed in a buffer from the sparse kecto

The numbers of indices in this buffer must be upward sortdee dlements before the first element in the buffer
are unchanged. Then the elements which are not deleteditiesl déft in the arrays.

Parameters:
del The numbers of the elements removed from the sparse vector.

6.49.3.6 int ABA_SPARVEC::nnz () const [i nli ne]

Returns:
The number of nonzero elements. This is not necessarilydfrea number of nonzeros, yet the number of
coefficient/support pairs, which are stored. Some of thegs may have a zero coefficient.

Definition at line 337 of file sparvec.h.

6.49.3.7 double ABA_SPARVEC::norm ()

Returns:
The Euclidean norm of the sparse vector.

6.49.3.8 consABA_SPARVEC& ABA_SPARVEC::operator= (const ABA_SPARVEC & rhs)

The assignment operator requires that the left hand andigiighand side have the same length (otherwise use the
functioncopy().

Returns:
A reference to the left hand side.

Parameters:
rhs The right hand side of the assignment.

6.49.3.9 double ABA SPARVEC::origCoeff (inti) const

Returns:
The coefficient having suppait

Parameters:
i The number of the original coefficient.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

424 Reference Manual

6.49.3.10 void ABA_SPARVEC::rangeCheck (inf) const [pr ot ect ed]

Terminates the program with an error messagieisf negative or greater or equal than the number of nonzero
elements.

If the class ABA_SPARVEC is compiled with the flaDABACUSSAFEthen before each access operation on
element of the sparse vector the functioangeCheck()s called.

Parameters:
i An integer that should be checked if it is in the range of thersp vector.

6.49.3.11 void ABA_SPARVEC::realloc (inthewSizé

This other version ofealloc() reallocates the sparse vector to a given length.

It is an error to decrease size below the current number afgros.

Parameters:
newSize The new maximal number of nonzeroes that can be stored irptreevector.

6.49.3.12 void ABA_SPARVEC::realloc ()

Increases the size of the sparse vectordaylocFac_percent of the original size.

This function is called if an automatic reallocation takéscp.

6.49.3.13 void ABA_SPARVEC::rename ABA_ARRAY < int > & newNamé

Replaces the index of the support by new names.

Parameters:
newName The new names (support) of the elements of the sparse v8dierarraynewNamemust have at
least a length equal to the maximal element in the suppohteo$parse vector.

6.49.3.14 int ABA_SPARVEC::size () const[i nline]

Returns:
The maximal length of the sparse vector.

Definition at line 332 of file sparvec.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.49 ABA_SPARVEC Class Reference 425

6.49.3.15 int ABA_SPARVEC::support (inti) const [i nl i ne]

A range check is performed if the function is compiled WilABACUSSAFE

Returns:
The support of théth nonzero element.

Parameters:
i The number of the nonzero element.

Definition at line 300 of file sparvec.h.

6.49.4 Friends And Related Function Documentation

6.49.4.1 ostream& operatok < (ostream & out, constABA_SPARVEC & rhs) [fri end]

The output operator writes the elements of the support agid¢befficients line by line on an output stream.

Returns:
A reference to the output stream.

Parameters:
out The output stream.

rhs The sparse vector being output.

6.49.5 Member Data Documentation

6.49.5.1 double ABA_SPARVEC::coeff _ [prot ect ed]

The array storing the corresponding nonzero coefficients.
Definition at line 296 of file sparvec.h.

6.49.5.2 ABA_GLOBAL x ABA_SPARVEC::glob_ [prot ect ed]
A pointer to the corresponding global object.

Definition at line 273 of file sparvec.h.

6.49.5.3 IntABA_SPARVEC:nnz_ [prot ect ed]

The number of stored elements (“nonzeros”).

Definition at line 282 of file sparvec.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

426 Reference Manual

6.49.5.4 doubleABA_SPARVEC::reallocFac_ [pr ot ect ed]

If a new element is inserted but the sparse vector is fulh tteesize is increased hgallocFac_percent.
Definition at line 288 of file sparvec.h.

6.49.5.5 IntABA_SPARVEC::size_ [pr ot ect ed]

The maximal number of nonzero coefficients which can be dtaithout reallocation.

Definition at line 278 of file sparvec.h.

6.49.5.6 ink ABA_SPARVEC::support_ [protected]

The array storing the nonzero variables.
Definition at line 292 of file sparvec.h.

The documentation for this class was generated from theviollg file:

* Include/abacusparvec.h

6.50 ABA_SET Class Reference

class implements a data structure for collections of dyoatisjoint sets of integers
#i ncl ude <set.h>

Inheritance diagram for ABA_SET::

| ABA_ABACUSROOT|

T

| ABA_SET |

T

| ABA_FASTSET |

Public Member Functions

* ABA_SET (ABA_GLOBAL xglob, int size)
e virtual ~ABA_SET ()

The destructor.

* void makeSe(int x)
 boolunionSetgint x, int y)
int findSet(int x)

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.50 ABA_SET Class Reference 427

Protected Attributes

* ABA_GLOBAL = glob_
* ABA_ARRAY < int > parent_

The collection of sets is implemented by a collection of tneaen{i] is the parent of node in the tree representing
the set containing. If i is the root of a tree theparenti] is i itself.

6.50.1 Detailed Description

class implements a data structure for collections of dyoatisjoint sets of integers

Definition at line 41 of file set.h.

6.50.2 Constructor & Destructor Documentation

6.50.2.1 ABA SET::ABA_ SET ABA_GLOBAL x glob, int size
The constructor.

Parameters:
glob A pointer to the corresponding global object.

size Only integers between 0 aize-1can be inserted in the set.

6.50.2.2 virtual ABA_SET::~ABA SET () [virtual]

The destructor.

6.50.3 Member Function Documentation

6.50.3.1 int ABA_SET::findSet (intx)
Finds the representative of the set containing

This operation may be only performedihas been earlier added to the collection of sets by the famatakeSet()

A path compression is performed, i.e., all nodes of the trethe path fronx to the root are directly attached
to the root of the tree.

Returns:
The representative of the set containing

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

428 Reference Manual

Parameters:
X An element of the searched set.

6.50.3.2 void ABA_SET::makeSet (ini)

Creates a set storing only one element and adds it to thectiohieof sets.

Parameters:
X The single element of the new set.

6.50.3.3 bool ABA_SET::unionSets (ink, int y)

Unites the two sets which contaxrandy, respectively.

This operation may only be performed if battandy have earlier been added to the collection of sets by the
functionmakeSet()

We do not use the heuristic attaching the smaller subtrdestbigger one, since we want to guarantee that the
representative ofis always the representative of the two united sets.

Returns:
true If both sets have been disjoint before the function call
false otherwise.

Parameters:
x An element of the first set of the union operation.

y An element in the second set of the union operation.

Reimplemented idBA_FASTSET.

6.50.4 Member Data Documentation

6.50.4.1 ABA_ GLOBAL x ABA_SET:glob_ [protected]

A pointer to the corresponding global object.

Definition at line 101 of file set.h.

6.50.4.2 ABA_ARRAY <int> ABA_SET:parent_ [prot ect ed]

The collection of sets is implemented by a collection of srgwarent([i] is the parent of node in the tree repre-
senting the set containinglf i is the root of a tree theparent][i] is i itself.
Definition at line 108 of file set.h.

The documentation for this class was generated from thevigll file:

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.51 ABA FASTSET Class Reference 429

¢ Include/abacuskt.h

6.51 ABA FASTSET Class Reference

class is derived from the clageBA_SET and holds for each set a rank which approximates the logariththe
tree size representing the set and is also an upper bourfteftieight of this tree.

#i ncl ude <fastset.h>
Inheritance diagram for ABA_FASTSET::

| ABA_ABACUSROOT|

T

| ABA_SET |

T

| ABA_FASTSET |

Public Member Functions

« ABA_FASTSET(ABA_GLOBAL xglob, int size)
 boolunionSetgint x, int y)

Private Attributes

* ABA_ARRAY < int > rank_

6.51.1 Detailed Description

class is derived from the clageBA_SET and holds for each set a rank which approximates the logariththe
tree size representing the set and is also an upper bourfteftiefght of this tree.

Parameters:
rank_ The rank of each set.

Definition at line 42 of file fastset.h.

6.51.2 Constructor & Destructor Documentation

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

430 Reference Manual

6.51.2.1 ABA_FASTSET:ABA_FASTSET ABA_GLOBAL « glob, int size

The constructor.

At the beginning each possible set receives the rank 0.

Parameters:
glob A pointer to the corresponding global object.

size Only integers between 0 asize-1can be inserted in the set.

6.51.3 Member Function Documentation

6.51.3.1 bool ABA_FASTSET::unionSets (ink, int y)

Unites the setg andy.

It differs from the functiorunionSets(pf the base clasABA_SET such that the tree with smaller rank is attached
to the one with larger rank. Thereforeis no more guaranteed to be the representative of the jdint se

Returns:
true If both sets have been disjoint before the function call
false otherwise.

Parameters:
X An element of the first set of the union operation.

y An element in the second set of the union operation.

Reimplemented frorABA_SET.

6.51.4 Member Data Documentation

6.51.4.1 ABA_ ARRAY <int> ABA FASTSET:rank [pri vate]

Definition at line 71 of file fastset.h.

The documentation for this class was generated from thevigil file:

¢ Include/abacudstset.h

6.52 ABA _STRING Class Reference

class ABA_STRING implements are very simple class for tipeasentation of character strings.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.52 ABA_STRING Class Reference 431

#i ncl ude <string. h>
Inheritance diagram for ABA_STRING::

| ABA_ABACUSROOT|

T

| ABA_STRING |

Public Member Functions

 ABA_STRING (ABA_GLOBAL xglob, const chaxcString="")

* ABA_STRING (ABA_GLOBAL xglob, const chaxcString, int index)
o ABA_STRING (constABA_STRING &rhs)

* ~ABA_STRING ()

The destructor.

e constABA_STRING & operator5constABA_STRING &rhs)
The assignment operator makes a copy of the right hand side andaatdomemory if required.

» constABA_STRING & operator=const chakrhs)
The assignment operator is overloaded for character strings.

 char &operator[](int i)
With the subscript operator a single character of the string can be aedezsmodified.

« const char &perator[](int i) const
The subscript operator is overloaded for constant use.

* int size() const

* int ascii2int(int i=0) const

« unsigned inascii2unsignedinf) const
« doubleascii2doubld) const

Emulates the functioatof() of the standard C library and converts the string to a floating point number.

 boolascii2bool() const
 boolending(const chakend) const
 charx string() const

Private Member Functions

« void rangeChecKint i) const
Terminates the program with an error messageisfnot the position of a character of the string.

Private Attributes

* ABA_GLOBAL = glob_
e charx string_

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

432 Reference Manual

Friends

« int operator==constABA_STRING &lhs, constABA_STRING &rhs)
« int operator==constABA_STRING &lhs, const chaxrhs)

The comparison operator is overloaded for character strings on the highd side.

« int operator!=(constABA_STRING &lhs, constABA_STRING &rhs)
* int operator!=(constABA_STRING &lhs, const chakrhs)

The not-equal operator is overloaded for character strings on the hgimd side.

 ostream &operatox < (ostream &out, COnSABA_STRING &rhs)

6.52.1 Detailed Description

class ABA_STRING implements are very simple class for tipeasentation of character strings.

Definition at line 45 of file string.h.

6.52.2 Constructor & Destructor Documentation

6.52.2.1 ABA_STRING::ABA_STRING (ABA_GLOBAL « glob, const char cString="")

The constructor.

Parameters:
glob A pointer to the corresponding global object.

cString The initializing string, by default the empty string.

6.52.2.2 ABA_STRING:: ABA_STRING (ABA_GLOBAL x glob, const charx cString, int index)

A constructor building a string from a string and an integer.

This constructor is especially useful for building varbk constraint names like { con18}.

Parameters:
glob A pointer to the corresponding global object.

cString The initializing string.

index The integer value appending to tb8tring(must be less than { MAX}).

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.52 ABA_STRING Class Reference 433

6.52.2.3 ABA_STRING: ABA_STRING (constABA_STRING & rhs)

The copy constructor.

Parameters:
rhs The string that is copied.

6.52.2.4 ABA_STRING:~ABA_STRING ()

The destructor.

6.52.3 Member Function Documentation

6.52.3.1 bool ABA_STRING::ascii2bool () const

Converts the string to a boolean value.

This is only possible for the stringtrue™ and"false”.

Returns:
The string converted tyue or false

6.52.3.2 double ABA_STRING::ascii2double () const

Emulates the functioatof() of the standard C library and converts the string to a flogtimigt number.

Returns:
The string converted to a floating point number

6.52.3.3 int ABA_STRING::ascii2int (inti = 0) const

Is very similar to the functiomtoi() from <string.hr>.

It converts the substring starting at componieanhd ending in the first following component with { 0’} to an
integer.ascii2int(0)converts the complete string.

Returns:
The string converted to an integer value.

Parameters:
i The number of the character at which the conversion shoattl §the default value afis O.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

434 Reference Manual

6.52.3.4 unsigned int ABA_STRING::ascii2unsignedint () onst
The functionascii2unsignedint(¥onverts the string to amsignednt value.

Returns:
The string converted to an unsigned integer.

6.52.3.5 bool ABA_STRING::ending (const chak end) const
Returns:

true If the string ends with the strirend
false otherwise.

Parameters:
end The string with which the ending of the string is compared.

6.52.3.6 consABA_STRING & ABA_STRING::operator= (const char x rhs)

The assignment operator is overloaded for character string

6.52.3.7 consABA_STRING & ABA_STRING::operator= (const ABA_STRING & rhs)

The assignment operator makes a copy of the right hand saleealiocates memory if required.

Returns:
A reference to the object.

Parameters:
rhs The right hand side of the assignment.

6.52.3.8]

const char& ABA_STRING::operator[] (in) const

The subscript operator is overloaded for constant use.

6.52.3.9]

char& ABA_STRING::operator[] (int)
With the subscript operator a single character of the stamgbe accessed or modified.

If the class is compiled with the preprocessor HRABACUSSAFEthen a range check is performed.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.52 ABA_STRING Class Reference 435

Returns:
A reference to théth character of the string.

Parameters:
i The number of the character that should be accessed or nibdifie first character has number 0.

6.52.3.10 void ABA_STRING::rangeCheck (inti) const [pri vat e]

Terminates the program with an error messagésiinot the position of a character of the string.

The’ ’ at the end of the string is not a valid character in this sense

6.52.3.11 int ABA_STRING::size () const

Returns:
The length of the string, not including the Y 0} terminating the string.

6.52.3.12 chax ABA_STRING::string () const

Returns:
Thecharx representing the string to make it accessible for C-funstio

6.52.4 Friends And Related Function Documentation

6.52.4.1 intoperator!= (constABA_STRING & lhs, const charx rhs) [fri end]

The not-equal operator is overloaded for character stomge right hand side.

6.52.4.2 int operator!= (constABA_STRING & |hs, constABA_STRING & rhs) [friend]

The not-equal operator.

Note:
the C-library functiorstrcmp()returns 0 if both strings equal.

Returns:
0 If both strings are equal,
1 otherwise.

Parameters:
Ihs The left hand side of the comparison.

rhs The right hand side of the comparison.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

436 Reference Manual

6.52.4.3 ostream& operatok < (ostream & out, constABA_STRING & rhs) [fri end]

The output operator.

Returns:
A reference to the output stream.

Parameters:
out The output stream.

rhs The string being output.

6.52.4.4 int operator== (constABA_STRING & lhs, const charxrhs) [fri end]

The comparison operator is overloaded for character stianghe right hand side.

6.52.4.5 int operator== (constABA_STRING & lhs, constABA_STRING & rhs) [fri end]

The comparison operator.

Note:
the C-library functiorstrcmp()returns 0 if both strings equal.

Returns:
0 If both strings are not equal,
1 otherwise.

Parameters:
Ihs The left hand side of the comparison.

rhs The right hand side of the comparison.

6.52.5 Member Data Documentation

6.52.5.1 ABA_GLOBAL x ABA_STRING::glob_ [pri vate]
A pointer to the corresponding master of the optimization.
Definition at line 239 of file string.h.

6.52.5.2 chak ABA_STRING::string_ [pri vat e]

An array storing the character of the string. This array nbesierminated with &a’.
Definition at line 244 of file string.h.

The documentation for this class was generated from thevioll file:

¢ Include/abacustring.h

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.53 Templates 437

6.53 Templates

Various basic data structures are available as templategWwABACUS. For the instantiation of templates we
refer to Sectiorb.3.

6.54 ABA_ARRAY< Type > Class Template Reference

it is a template for arrays. It can be used like a “normal” @esarray
#incl ude <array. h>
Inheritance diagram for ABA_ARRAY Type >::

| ABA_ABACUSROOT |

T

| ABA_ARRAY< Type >|

Public Member Functions

* ABA_ARRAY (ABA_GLOBAL xglob, int size)

* ABA_ARRAY (ABA_GLOBAL xglob, int size, Type init)

* ABA_ARRAY (ABA_GLOBAL xglob, constABA_BUFFER< Type > &buf)
* ABA_ARRAY (constABA_ARRAY < Type > &rhs)

« ~ABA_ARRAY ()

The destructor.

e constABA_ARRAY < Type > & operator5(constABA_ARRAY < Type > &rhs)
e constABA ARRAY < Type > & operator5constABA BUFFER< Type > &rhs)

To assign an object of the clas8BA_BUFFER0 an object of the class ABA_ARRAY the size of the left hand side
must be at least the sizebfs. Then all buffered elements ifsare copied.

* Type & operator[](int i)

 const Type &operator[](int i) const

« void copy (constABA_ARRAY < Type > &rhs)

* void copy (constABA_ARRAY < Type > &rhs, int |, intr)

This version of the functionopy() copies the elementhdl], rhql+1], rhdr] into the component®,r-l of the
array.

« void leftShift (ABA_BUFFER< int > &ind)
Removes the components listedhid by shifting the remaining components to the left.

« void leftShift (ABA_ARRAY < bool > &remove)
This version of the functioleftShift() removes all componenisvith markedi]==true from the array by shifting

the other components to the left.

 void set(int I, int r, Type val)

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

438 Reference Manual

* void set(Type val)

This version of the functioset()initializes all components of the array with the same value.

* int size() const
« void realloc(int newSize)

The length of an array can be changed with the functiealloc() If the array is enlarged all elements of the old
array are copied and the values of the additional new elements are nedeff the array is shortened only the first
newSizeelements are copied.

« void realloc(int newSize, Type init)

Is overloaded such that also an initialization with a new value of the elemeriteeadrray after reallocation is
possible.

Private Member Functions

« void rangeChecKint i) const

Stops the program with an error message if the indexhot within the bounds of the array.

Private Attributes

* ABA GLOBAL = glob_
e intn_
e Typexa_

Friends

» ostream &operatox < (ostream &out, consABA_ARRAY < Type > &array)

The output operator writes first the number of the element andfallowed by the value of the element line by line
to the streanout

6.54.1 Detailed Description
template<class Type> class ABA_ARRAY< Type >

it is a template for arrays. It can be used like a “normal” @esarray

Definition at line 53 of file array.h.

6.54.2 Constructor & Destructor Documentation

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.54 ABA_ ARRAY < Type > Class Template Reference 439

6.54.2.1 templatecclass Type>- ABA_ARRAY < Type >::ABA_ARRAY (ABA_GLOBAL x glob, int sizg
A constructor without initialization.

Parameters:
glob A pointer to the corresponding global object.

size The length of the array.

6.54.2.2 templatecclass Type- ABA ARRAY < Type >::ABA_ARRAY (ABA_GLOBAL x glob, int size
Type init)

A constructor with initialization.

Parameters:
glob A pointer to the corresponding global object.

size The length of the array.
init The initial value of all elements of the array.

6.54.2.3 templatecclass Type> ABA_ARRAY < Type >::ABA_ARRAY (ABA_GLOBAL x glob, const
ABA_BUFFER< Type > & buf)

A constructor.

Parameters:
glob A pointer to the corresponding global object.

buf The array receives the length of this buffer and all buffexketinents are copied to the array.

6.54.2.4 templatecclass Type> ABA_ARRAY < Type >::ABA_ARRAY (constABA_ARRAY < Type > &
rhs)

The copy constructor.

Parameters:
rhs The array being copied.

6.54.2.5 templatecclass Type> ABA_ARRAY < Type >::~ABA_ARRAY ()
The destructor.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

440 Reference Manual

6.54.3 Member Function Documentation

6.54.3.1 templatecclass Type> void ABA_ARRAY < Type >::copy (constABA_ARRAY < Type > & rhs,
int I, intr)

This version of the functiowopy() copies the elementhdl], rhg[l+1], rhgr] into the component§,r-I of the
array.

If the size of the array is smaller that+1 storage is reallocated.

Parameters:
rhs The array that is partially copied.

| The first element being copied.
r the last element being copied.

6.54.3.2 templatecclass Type> void ABA_ARRAY < Type >::copy (constABA_ARRAY < Type > & rhs)

Copies all elements ahs.

The difference to the operateris that also copying between arrays of different size isnglb. If necessary the
array on the left hand side is reallocated.

Parameters:
rhs The array being copied.

6.54.3.3 templatecclass Type> void ABA_ARRAY < Type >::leftShift (ABA_ARRAY < bool > &
remove

This version of the functiofeftShift()removes all componentswith markedi]==true from the array by shifting
the other components to the left.

Parameters:
remove The marked components are removed from the array.

6.54.3.4 templatecclass Type> void ABA_ARRAY < Type >::leftShift (ABA_BUFFER < int > & ind)

Removes the components listedma by shifting the remaining components to the left.

Memory management of the removed components must be dgriefdlemented by the user of this function to
avoid memory leaks.

Parameters:
ind The compenents being removed from the array.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.54 ABA_ ARRAY < Type > Class Template Reference 441

6.54.3.5 templatecclass Type> constABA_ARRAY <Type>& ABA_ARRAY < Type >::operator= (const
ABA_BUFFER< Type > & rhs)

To assign an object of the cla88A BUFFERto an object of the class ABA_ARRAY the size of the left hand
side must be at least the sizerbé. Then all buffered elements dfis are copied.

Returns:
A reference to the array on the left hand side.

Parameters:
rhs The buffer being assigned.

6.54.3.6 templatecclass Type> constABA_ ARRAY <Type>& ABA_ARRAY < Type >::operator= (const
ABA_ARRAY < Type > & rhs)

The assignment operator can only be used for arrays with &ngth.

Returns:
A reference to the array on the left hand side.

Parameters:
rhs The array being assigned.

6.54.3.7]

template<class Type- const Type&ABA ARRAY < Type >::operator[] (inti) const
The operator [] is overloaded for constant use.

6.54.3.8]

templatecclass Type- Type& ABA_ARRAY < Type >::operator[] (inti)

The operator [].

Returns:
Thei-th element of the array.

Parameters:
i The element being accessed.

6.54.3.9 templatecclass Type> void ABA_ARRAY < Type >::rangeCheck (inti) const [pri vat e]

Stops the program with an error message if the iridexot within the bounds of the array.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

442 Reference Manual

6.54.3.10 templateclass Type> void ABA_ARRAY < Type >::realloc (int newSize Type init)

Is overloaded such that also an initialization with a newugabf the elements of the array after reallocation is
possible.

Parameters:
newSize The new length of the array.

init The new value of all components of the array.

6.54.3.11 templateclass Type> void ABA_ARRAY < Type >::realloc (int newSiz¢
The length of an array can be changed with the funatgatloc(). If the array is enlarged all elements of the old

array are copied and the values of the additional new elesraatundefined. If the array is shortened only the first
newSizeslements are copied.

Parameters:
newSizeThe new length of the array.

6.54.3.12 templateclass Type> void ABA_ARRAY < Type >::set (Type val)

This version of the functioset()initializes all components of the array with the same value.

Parameters:
val The new value of all components.

6.54.3.13 templateclass Type> void ABA_ARRAY < Type >::set (int |, int r, Type val)

Assigns the same value to a subset of the components of e arr

Parameters:
| The first component the value is assigned.

r The last component the value is assigned.

val The new value of these components.

6.54.3.14 templatecclass Type> int ABA_ARRAY < Type >::size () const

Returns:
The length of the array.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.55 ABA BUFFER< Type > Class Template Reference 443

6.54.4 Friends And Related Function Documentation

6.54.4.1 templatecclass Type> ostreamé& operator<< (ostream & out, constABA_ARRAY < Type > &
array) [friend]

The output operator writes first the number of the elementendfollowed by the value of the element line by
line to the streanout.

Returns:
A reference to the output stream.

Parameters:
out The output stream.

array The array being output.

6.54.5 Member Data Documentation

6.54.5.1 templatecclass Type> Typex ABA_ARRAY < Type >::a_ [private]

The /-style array storing the elements of hBA ARRAY

Definition at line 265 of file array.h.

6.54.5.2 template:class Type> ABA_GLOBAL x ABA_ARRAY < Type >::glob_ [private]
A pointer to the corresponding global object.

Definition at line 257 of file array.h.

6.54.5.3 templatecclass Type> int ABA_ARRAY < Type >::n_ [pri vate]

The length of the array.
Definition at line 261 of file array.h.

The documentation for this class was generated from theviollg file:

* Include/abacustray.h

6.55 ABA_ BUFFER< Type > Class Template Reference

class implements a buffer by an array and storing the nunfteready buffered elements.

#i ncl ude <buffer.h>

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

444 Reference Manual

Inheritance diagram for ABA_BUFFER Type >::

| ABA_ABACUSROOT |

T

| ABA_BUFFER< Type >|

Public Member Functions

« ABA_BUFFER(ABA_GLOBAL xglob, int size)
e ABA_BUFFER(constABA_BUFFER< Type > &rhs)
« ~ABA BUFFER()

The destructor.

* constABA_BUFFER< Type > & operator5constABA_BUFFER< Type > &rhs)
e Type & operator[](int i)

 const Type &operator[](int i) const

* int size() const

« int number() const

« boolfull () const

* boolempty() const

« void push(Type item)

* Typepop()

« void clear()

* void leftShift (ABA_BUFFER< int > &ind)

Removes the components listed in the bufféiby shifting the remaining components to the left.

« void realloc(int newSize)

The length of a buffer can be changed with the functeailoc() If the size of the buffer is increased all buffered
elements are copied. If the size is decreased the number of buffeneeintéeis updated if necessary.

Private Attributes

ABA GLOBAL = glob_
e intsize_

e intn_

e Typex* buf

Friends

 ostream &operatox < (ostream &out, consABA BUFFER< Type > &buffer)

The output operator writes all buffered elements line by line to an outpuaratia the format { numb&r}{ : X
value\/}.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.55 ABA BUFFER< Type > Class Template Reference 445

6.55.1 Detailed Description
template<class Type> class ABA_BUFFER< Type >

class implements a buffer by an array and storing the nunfteready buffered elements.
Definition at line 61 of file buffer.h.

6.55.2 Constructor & Destructor Documentation

6.55.2.1 templatecclass Type> ABA_ BUFFER< Type >:: ABA_BUFFER (ABA_GLOBAL = glob, int
siz

The constructor generates an empty buffer.

Parameters:
glob The corresponding global object.

size The size of the buffer.

6.55.2.2 templatecclass Type> ABA_ BUFFER < Type >::ABA_BUFFER (constABA_BUFFER< Type
> & rhs)

The copy constructor.

Parameters:
rhs The buffer being copied.

6.55.2.3 templatecclass Type>- ABA_BUFFER < Type >::~ABA_BUFFER ()

The destructor.

6.55.3 Member Function Documentation

6.55.3.1 templatecclass Type> void ABA_BUFFER < Type >::clear ()
Sets the number of buffered items to 0 such that the buffensye

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

446 Reference Manual

6.55.3.2 templatecclass Type> bool ABA_ BUFFER < Type >::empty () const

Returns:
true If no items are buffered,
false otherwise.

6.55.3.3 templatecclass Type> bool ABA_BUFFER < Type >::full () const
Returns:

true If no more elements can be inserted into the buffer,
false otherwise.

6.55.3.4 templatecclass Type> void ABA_BUFFER < Type >::leftShift (ABA_BUFFER< int > & ind)

Removes the components listed in the buiifer by shifting the remaining components to the left.

The values stored iind have to be upward sorted. Memory management of the removagarents must be
carefully implemented by the user of this function to avoiedmory leaks.

If this function is compiled withDABACUSSAFHhen itis checked if each valueiofd is in the range Opumber()
1

Parameters:
ind The numbers of the components being removed.

6.55.3.5 templatecclass Type> int ABA_BUFFER < Type >::number () const

Returns:
The number of buffered elements.

6.55.3.6 templatecclass Type> constABA BUFFER <Type>& ABA_BUFFER< Type >::operator=
(constABA BUFFER< Type > & rhs)

The assignment operator is only allowed between buffersgaqual size.

Returns:
A reference to the buffer on the left hand side of the assignimgerator.

Parameters:
rhs The buffer being assigned.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.55 ABA BUFFER< Type > Class Template Reference 447

6.55.3.7]

template<class Type- const Type&ABA_BUFFER< Type >::operator[] (inti) const

The operator [] is overloaded that it can be also used to a@lements of constant buffers.

6.55.3.8]

templatecclass Type- Type& ABA_BUFFER< Type >::operator[] (inti)
The operator [] can be used to access an element of the buffer.

It is only allowed to access buffered elements. Otherwisthei function is compiled withDABACUSSAFEhe
program stops with an error message.

Returns:
Thei-th element of the buffer.

Parameters:
i The number of the component which should be returned.

6.55.3.9 templatecclass Type> Type ABA_BUFFER < Type >::pop ()

Removes and returns the last inserted item from the buffer.
Itis a fatal error to perform this operation on an empty huffe

In this case the program stops with an error message if thigifun is compiled with DABACUSSAFE

Returns:
The last item that has been inserted into the buffer.

6.55.3.10 templateclass Type> void ABA_BUFFER < Type >::push (Type item)

Inserts an item into the buffer.
It is a fatal error to perform this operation if the buffer iglf

In this case the program stops with an error message if thigtifin is compiled with DABACUSSAFE

Parameters:
item The item that should be inserted into the buffer.

6.55.3.11 templateclass Type> void ABA_BUFFER < Type >::realloc (int newSiz¢

The length of a buffer can be changed with the functeadloc(). If the size of the buffer is increased all buffered
elements are copied. If the size is decreased the numbeffefdulielements is updated if necessary.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

448 Reference Manual

Parameters:
newSizeThe new length of the buffer.

6.55.3.12 templatecclass Type> int ABA_BUFFER< Type >::size () const

Returns:
The maximal number of elements which can be stored in thebuff

6.55.4 Friends And Related Function Documentation

6.55.4.1 templatecclass Type> ostreamé& operator<< (ostream & out, constABA_BUFFER< Type > &
buffer) [fri end]

The output operator writes all buffered elements line bg lim an output stream in the format { numkgf : ¥
value\/}.

Returns:
A reference to the stream the buffer is written to.

Parameters:
out The output stream.

buffer The buffer being output.

6.55.5 Member Data Documentation

6.55.5.1 templatecclass Type> Typex ABA_ BUFFER< Type >::buf [private]

The /-style array storing the buffered elements.

Definition at line 231 of file buffer.h.

6.55.5.2 templatecclass Type>- ABA_GLOBAL « ABA_BUFFER< Type >::glob_ [pri vat e]
A pointer to the corresponding global object.

Definition at line 219 of file buffer.h.

6.55.5.3 templatecclass Type> int ABA_BUFFER< Type >::n_ [private]

The number of buffered elements.
Definition at line 227 of file buffer.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.56 ABA_LISTITEM < Type > Class Template Reference 449

6.55.5.4 templatecclass Type> int ABA_BUFFER< Type >::size_ [private]

The maximal number of elements which can be stored in thebuff
Definition at line 223 of file buffer.h.

The documentation for this class was generated from thevioll file:

¢ Include/abacuslffer.h

6.56 ABA_LISTITEM < Type > Class Template Reference

We call the basic building block of a linked list an { itef that is implemented by the class ABA_LISTITEM.
#include <listitemh>
Inheritance diagram for ABA_LISTITEM Type>::

| ABA_ABACUSROOT |

T

| ABA_LISTITEM< Type >|

Public Member Functions

e ABA_LISTITEM (const Type &elemABA_LISTITEM < Type > xsucc)
» Typeelem() const
e ABA_LISTITEM < Type > x* succ() const

Private Attributes

e Typeelem_
e ABA_LISTITEM < Type > * succ_

Friends

* classABA_LIST< Type>
* ostream &operatok < (ostream &out, CONSABA_LISTITEM < Type > &item)

6.56.1 Detailed Description
template<class Type> class ABA_LISTITEM < Type >
We call the basic building block of a linked list an { itegf) that is implemented by the class ABA_LISTITEM.

Parameters:
Type elem_ The element of the item.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

450 Reference Manual

ABA_LISTITEM <Type> xsucc_ A pointer to the successor of the item in the list. Tloesssor of the last
item isO.

Definition at line 55 of file listitem.h.

6.56.2 Constructor & Destructor Documentation

6.56.2.1 templatecclass Type> ABA_LISTITEM < Type >::ABA_LISTITEM (const Type & elem
ABA_LISTITEM < Type > x sucQ

The constructor.

Parameters:
elem A copy of elembecomes the element of the list item.

succ A pointer to the successor of the item in the list.

6.56.3 Member Function Documentation

6.56.3.1 templatecclass Type> Type ABA LISTITEM < Type >::elem () const

Returns:
The element of the item.

6.56.3.2 templatecclass Type- ABA_LISTITEM <Type>x ABA_LISTITEM < Type >::succ () const

Returns:
The successor of the item in the list.

6.56.4 Friends And Related Function Documentation

6.56.4.1 templatecclass Type> friend classABA_LIST < Type > [friend]

Definition at line 56 of file listitem.h.

6.56.4.2 templatecclass Type> ostreamé& operator< < (ostream & out, constABA_LISTITEM < Type >
& item) [friend]

The output operator.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.57 ABA_LIST< Type > Class Template Reference 451

Returns:
A reference to the output stream.

Parameters:
out The output stream.

item The list item being output.

6.56.5 Member Data Documentation

6.56.5.1 templatecclass Type> Type ABA_LISTITEM < Type >::elem_ [pri vate]

Definition at line 95 of file listitem.h.

6.56.5.2 templatecclass Type> ABA_LISTITEM <Type>x ABA_LISTITEM < Type >::succ_
[private]

Definition at line 96 of file listitem.h.

The documentation for this class was generated from theviall file:

* Include/abacusstitem.h

6.57 ABA_LIST< Type > Class Template Reference

class ABA_LIST
#include <list.h>
Inheritance diagram for ABA_LISE Type >::

| ABA_ABACUSROOT|

T

| ABA_LIST<Type > |

Public Member Functions

e ABA_LIST (constABA_GLOBAL xglob)
e ~ABA LIST ()

« void appendHeadconst Type &elem)

« void appendTailconst Type &elem)

« int extractHeadType &elem)

« int firstElem(Type &elem) const

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

452 Reference Manual

Assignelemthe first element as the functiextractHead(put does not remove this element from the list.

 boolempty() const

Private Member Functions

e ABA_LISTITEM < Type > x first () const
* ABA_LISTITEM < Type > x last() const
 void appendHeadABA_LISTITEM < Type > xitem)

This version of the functioappendHead@ddsitem at the front of the list.

 void appendTailABA_LISTITEM < Type > xitem)
This version of the functioappendTail(pddsitem at the end of the list.

ABA_LIST (constABA_LIST &rhs)
e cOnstABA_LIST< Type> & operator=constABA_LIST < Type > &rhs)
Private Attributes

e constABA GLOBAL x glob_
e ABA_LISTITEM < Type > x first_
* ABA_LISTITEM< Type> x last_

Friends

* classABA_LISTITEM < Type >
* ostream &operatox < (ostream &, cOnsABA_LIST < Type > &list)

6.57.1 Detailed Description
template<class Type> class ABA_LIST< Type >

class ABA_LIST

Definition at line 56 of file list.h.

6.57.2 Constructor & Destructor Documentation

6.57.2.1 templatecclass Type- ABA_LIST < Type >::ABA_LIST (constABA_GLOBAL x gloh)

The constructor initializes the list with the empty list.

This is done by assigninfiyst_andlast_to theO-pointer.

Parameters:
glob A pointer to the corresponding global object.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.57 ABA_LIST< Type > Class Template Reference 453

6.57.2.2 templatecclass Type> ABA_LIST < Type >::~ABA_LIST ()

The destructor deallocates the memory of all items in the lis

6.57.2.3 templatecclass Type> ABA_LIST < Type >::ABA_LIST (constABA_LIST < Type > & rhs)
[private]

6.57.3 Member Function Documentation

6.57.3.1 templatecclass Type> void ABA_LIST < Type >::appendHead (ABA_LISTITEM < Type > x
item) [private]

This version of the functioappendHead(®ddsitemat the front of the list.

6.57.3.2 templatecclass Type> void ABA_LIST < Type >::appendHead (const Type &elem)

Adds an element at the front of the list.

Parameters:
elem The element being appended.

6.57.3.3 templatecclass Type> void ABA_LIST < Type >::appendTail (ABA_LISTITEM < Type >
item) [private]

This version of the functioappendTail(Jaddsitemat the end of the list.

6.57.3.4 templatecclass Type> void ABA_LIST < Type >::appendTail (const Type & elem)

Adds an element at the end of the list.

Parameters:
elem The element being appended.

6.57.3.5 templatecclass Type> bool ABA_LIST < Type >::empty () const
Returns:

true If no element is contained in the list,
false otherwise.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

454 Reference Manual

6.57.3.6 templatecclass Type> int ABA_LIST < Type >::extractHead (Type & elem)

Assigns toelemthe first element in the list and removes it from the list.

Returns:
0 If the operation can be be executed successfully.
1 If the list is empty.

Parameters:
elem If the list is nonemty, the first element is assigneeem

6.57.3.7 templatecclass Type> ABA_LISTITEM <Type>x ABA_LIST < Type >:first () const
[private]

Returns a pointer to the first item in the list.

6.57.3.8 templatecclass Type> int ABA_LIST < Type >::firstElem (Type & elem) const

Assignelemthe first element as the functi@xtractHead(but does not remove this element from the list.

Returns:
0 If the operation can be be executed successfully.
1 If the list is empty.

Parameters:
elem If the list is nonemty, the first element is assigneelem

6.57.3.9 templatecclass Type> ABA_LISTITEM <Type>x ABA_LIST < Type >::last () const
[private]

Returns a pointer to the last item in the list.

6.57.3.10 template:class Type> constABA LIST <Type>& ABA_LIST < Type >::operator= (const
ABA_LIST < Type > & rhs) [private]

6.57.4 Friends And Related Function Documentation

6.57.4.1 templateclass Type> friend classABA_LISTITEM < Type > [fri end]
Definition at line 57 of file list.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.58 ABA DLISTITEM < Type > Class Template Reference 455

6.57.4.2 templatecclass Type> ostream& operator<< (ostream &, constABA_LIST < Type > & list)
[friend]

The output operator writes all items of the list on an outpreeam.

Returns:
A reference to the output stream.

Parameters:
out The output stream.

list The list being output.

6.57.5 Member Data Documentation

6.57.5.1 templatecclass Type> ABA_LISTITEM <Type>x ABA_LIST < Type >::first_ [private]
A pointer to the first item of the list.

Definition at line 158 of file list.h.

6.57.5.2 templatecclass Type> constABA_GLOBAL x ABA_LIST < Type >::glob_ [pri vat €]

A pointer to the corresponding global object.

Definition at line 154 of file list.h.

6.57.5.3 templatecclass Type> ABA_LISTITEM <Type>x ABA_LIST < Type >::last_ [pri vat e]

Definition at line 162 of file list.h.

The documentation for this class was generated from theviolg file:

¢ Include/abacusst.h

6.58 ABA _DLISTITEM < Type > Class Template Reference

A ABA_DLISTITEM stores a copy of the inserted element and paisiters to its predecessor and its successor.
#include <dlistitemh>
Inheritance diagram for ABA_DLISTITEM Type >::

| ABA_ABACUSROOT |

T

| ABA_DLISTITEM< Type >|

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

456 Reference Manual

Public Member Functions

ABA_DLISTITEM (const Type &elemABA_DLISTITEM < Type > «pred,ABA_DLISTITEM < Type >
*SUCC)

* Typeelem() const
e ABA DLISTITEM < Type > * succ() const
ABA_DLISTITEM < Type > « pred() const

Private Attributes

e Typeelem_

e ABA DLISTITEM< Type> * pred_

* ABA_DLISTITEM < Type > * succ_
Friends

* classABA DLIST< Type>

 ostream &operatox < (ostream &out, consABA DLISTITEM < Type > &item)
6.58.1 Detailed Description

template<class Type> class ABA_DLISTITEM < Type >

A ABA_DLISTITEM stores a copy of the inserted element and paisiters to its predecessor and its successor.

Parameters:
Type elem_ The element stored in the item.

ABA DLISTITEM <Type> xpred_ A pointer to predecessor of the item in the list.
ABA_DLISTITEM <Type> sxsucc_ A pointer to the successor of the item in the list.

Definition at line 54 of file dlistitem.h.

6.58.2 Constructor & Destructor Documentation

6.58.2.1 templatecclass Type> ABA_DLISTITEM < Type >::ABA_DLISTITEM (const Type & elem
ABA_DLISTITEM < Type > * pred ABA_DLISTITEM < Type > % sucq

The constructor.

Parameters:
elem The element of the item.

pred A pointer to the previous item in the list.

succ A pointer to the next item in the list.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.58 ABA DLISTITEM < Type > Class Template Reference 457

6.58.3 Member Function Documentation

6.58.3.1 templatecclass Type> Type ABA_DLISTITEM < Type >::elem () const

Returns:
The element stored in the item.

6.58.3.2 templatecclass Type> ABA_DLISTITEM <Type>x ABA_DLISTITEM < Type >::pred () const

Returns:
A pointer to the predecessor of the item in the list.

6.58.3.3 templatecclass Type> ABA_DLISTITEM <Type>x ABA_DLISTITEM < Type >::succ () const

Returns:
A pointer to the successor of the item in the list.

6.58.4 Friends And Related Function Documentation

6.58.4.1 templatecclass Type> friend classABA_DLIST < Type > [fri end]

Definition at line 55 of file dlistitem.h.

6.58.4.2 templatecclass Type> ostreamé& operator<< (ostream & out, constABA_DLISTITEM < Type
> & item) [friend]

The output operator.

Returns:
A reference to the output stream.

Parameters:
out The output stream.

item The list item being output.

6.58.5 Member Data Documentation

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

458 Reference Manual

6.58.5.1 templatecclass Type> Type ABA_DLISTITEM < Type >::elem_ [pri vat e]

Definition at line 102 of file dlistitem.h.

6.58.5.2 templatecclass Type> ABA_DLISTITEM <Type>x ABA_DLISTITEM < Type >::pred_
[private]

Definition at line 103 of file dlistitem.h.

6.58.5.3 templatecclass Type> ABA_DLISTITEM <Type>x ABA_DLISTITEM < Type >::succ_
[private]

Definition at line 104 of file dlistitem.h.

The documentation for this class was generated from theviail file:

¢ Include/abacuglistitem.h

6.59 ABA _DLIST< Type > Class Template Reference

class ABA_DLIST implements a doubly linked linear list. Thst is implemented by a doubly linked list of
ABA_DLISTITEMSs.

#include <dlist.h>
Inheritance diagram for ABA_DLISX Type>::

| ABA_ABACUSROOT|

T

| ABA_DLIST< Type >|

Public Member Functions

« ABA_DLIST (ABA_GLOBAL xglob)
e ~ABA _DLIST ()

 void appendconst Type &elem)

« int extractHeadType &elem)

* int removeHead)

If the list is non-empty, the functioemoveHead(Jemoves the head of the list.

« void remove(const Type &elem)
« void remove(ABA DLISTITEM < Type > xitem)

This version of the functioremove()scans the list for an item with elemeglembeginning at the first element of
the list.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.59 ABA DLIST< Type > Class Template Reference 459

ABA_DLISTITEM < Type > x first () const
ABA_DLISTITEM < Type> x last() const
¢ boolempty() const

« int firstElem(Type &elem) const

Private Member Functions

e ABA DLIST (constABA_DLIST &rhs)

e constABA DLIST< Type> & operator5constABA DLIST < Type > &rhs)
Private Attributes

« ABA_GLOBAL = glob_
« ABA DLISTITEM < Type > « first_
« ABA DLISTITEM < Type > « last_

Friends

* ostream &operatok < (ostream &, consfABA_DLIST < Type > &list)

6.59.1 Detailed Description
template<class Type> class ABA_DLIST< Type >

class ABA_DLIST implements a doubly linked linear list. Thst is implemented by a doubly linked list of
ABA_DLISTITEMSs.

Definition at line 62 of file dlist.h.

6.59.2 Constructor & Destructor Documentation

6.59.2.1 templatecclass Type> ABA_DLIST < Type >::ABA_DLIST (ABA_GLOBAL = glob)

The constructor for an empty list.

Parameters:
glob A pointer to the corresponding global object.

6.59.2.2 templatecclass Type> ABA_DLIST < Type >::~ABA_DLIST ()
The destructor deallocates the memory of all items in the lis

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

460 Reference Manual

6.59.2.3 templatecclass Type> ABA_DLIST < Type >::ABA_DLIST (constABA_DLIST < Type > &
rhs) [private]

6.59.3 Member Function Documentation

6.59.3.1 templatecclass Type> void ABA_DLIST < Type >::append (const Type &elem)
Adds an element at the end of the list.

Parameters:
elem The element being appended.

6.59.3.2 templatecclass Type> bool ABA_DLIST < Type >::empty () const

Returns:
true If no element is contained in the list,
false otherwise.

6.59.3.3 templatecclass Type- int ABA_DLIST < Type >::extractHead (Type & elem)

Assigns toelemthe first element in the list and removes it from the list.

Returns:
0 If the operation can be executed successfully.
1 If the list is empty.

Parameters:
elem If the list is nonemty, the first element is assigneelem

6.59.3.4 templatecclass Type> ABA_DLISTITEM <Type>x ABA_DLIST < Type >:first () const

Returns a pointer to the first item of the list.

6.59.3.5 templatecclass Type> int ABA_DLIST < Type >::firstElem (Type & elem) const
Retrieves the first element of the list.
Returns:

0 If the list is not empty,

1 otherwise.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.59 ABA DLIST< Type > Class Template Reference 461

Parameters:
elem Stores the first element of the list after the function cathé list is not empty.

6.59.3.6 templatecclass Type- ABA DLISTITEM <Type>x ABA DLIST < Type >::last () const

Returns a pointer to the last item of the list.

6.59.3.7 templatecclass Type> constABA_DLIST <Type>& ABA_DLIST < Type >::operator= (const
ABA_DLIST < Type > & rhs) [private]

6.59.3.8 templatecclass Type> void ABA_DLIST < Type >::remove (ABA_DLISTITEM < Type > x
item)

This version of the functioremove()scans the list for an item with elemegiembeginning at the first element of
the list.

The first matching item is removed from the list.

Parameters:
elem The element which should be removed.

6.59.3.9 templatecclass Type> void ABA_DLIST < Type >::remove (const Type &elem)

The functionremove(yemovestemfrom the list.

6.59.3.10 templateclass Type> int ABA_DLIST < Type >::removeHead ()

If the list is non-empty, the functioremoveHead(Jemoves the head of the list.

Returns:
0 If the list is non-empty before the function is called,
1 otherwise.

6.59.4 Friends And Related Function Documentation

6.59.4.1 templatecclass Type> ostreamé& operator<< (ostream &, constABA DLIST < Type > & list)
[friend]

The output operator writes all elements of tis¢ on an output stream.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

462 Reference Manual

Returns:
A reference to the output stream.

Parameters:
out The output stream.

list The list being output.

6.59.5 Member Data Documentation

6.59.5.1 templatecclass Type- ABA_DLISTITEM <Type>x ABA_DLIST < Type >::first_ [pri vat e]

A pointer to the first item of the list.
Definition at line 166 of file dlist.h.

6.59.5.2 templatecclass Type> ABA_GLOBAL x« ABA_DLIST < Type >::glob_ [pri vat e]

A pointer to corresponding global object.
Definition at line 162 of file dlist.h.

6.59.5.3 templatecclass Type> ABA_DLISTITEM <Type>x ABA_DLIST < Type >::last_ [pri vate]

A pointer to the last item in the list.
Definition at line 170 of file dlist.h.

The documentation for this class was generated from theviall file:

* Include/abacuslist.h

6.60 ABA_RING< Type > Class Template Reference

template ABA_RING implements a bounded circular list witle property that if the list is full and an element is
inserted the oldest element of the ring is removed

#i ncl ude <ring. h>

Inheritance diagram for ABA_RING Type >::

| ABA_ABACUSROOT|

T

| ABA_RING< Type > |

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.60 ABA_ RING< Type > Class Template Reference 463

Public Member Functions

ABA_RING (ABA_GLOBAL xglob, int size)
« virtual ~ABA_RING ()

The destructor.

* Type & operator[](int i)
 const Type &operator[](int i) const

The operator [] is overloaded for constant use.

« void insert(Type elem)

« void clear()

« int size() const

« int number() const

» Typeoldest() const

« int oldestindex) const

* Typenewest() const

« int newestindex) const
* int previous(int i, Type &p) const
* boolempty() const

* boolfilled () const

« void realloc(int newSize)

Private Attributes

« ABA_GLOBAL x glob_
* ABA_ARRAY < Type> ring_
 inthead
« boolfilled_
Friends

 ostream &operatox < (ostream &out, consABA_RING< Type > &ring)

The output operator writes the elements of the ring to an output stream staviih the oldest element in the ring.

6.60.1 Detailed Description
template<class Type> class ABA_RING< Type >

template ABA_RING implements a bounded circular list wihie property that if the list is full and an element is
inserted the oldest element of the ring is removed

Definition at line 49 of file ring.h.

6.60.2 Constructor & Destructor Documentation

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

464 Reference Manual

6.60.2.1 templatecclass Type> ABA_RING < Type >::ABA_RING (ABA_GLOBAL x glob, int sizg
The constructor.

Parameters:
glob A pointer to the corresponding global object.

size The length of the ring.

6.60.2.2 templatecclass Type> virtual ABA_RING < Type >::~ABA_RING () [virtual]

The destructor.

6.60.3 Member Function Documentation

6.60.3.1 templatecclass Type> void ABA_RING < Type >::clear ()

Empties the ring.

6.60.3.2 templatecclass Type> bool ABA_RING < Type >::empty () const

Returns:
true If no element is contained in the ring,
false otherwise.

6.60.3.3 templatecclass Type> bool ABA_RING < Type >:filled () const

Returns:
true If the ABA_RING is completely filled up,
false otherwise.

6.60.3.4 templatecclass Type> void ABA_RING < Type >::insert (Type elem)

Inserts a new element into the ring.

If the ring is already full, this operation overwrites thelest element in the ring.

Parameters:
elem The element being inserted.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.60 ABA_ RING< Type > Class Template Reference 465

6.60.3.5 templatecclass Type> Type ABA_RING < Type >::newest () const
Returns:

The newest element in the ring.
The result is undefined if the ring is empty.

6.60.3.6 templatecclass Type> int ABA_RING < Type >::newestindex () const
Returns:

The index of the newest element in the ring.
The result is undefined if the ring is empty.

6.60.3.7 templatecclass Type> int ABA_RING < Type >::number () const

Returns:
The current number of elements in the ring.

6.60.3.8 templatecclass Type> Type ABA_RING < Type >::oldest () const
Returns:

The oldest element in the ring.
The result is undefined, if the ring is empty.

6.60.3.9 templatecclass Type> int ABA_RING < Type >::oldestindex () const
Returns:

The index of the oldest element in the ring.
The result is undefined, if the ring is empty.

6.60.3.10]

template<class Type- const Type&ABA_RING< Type >::operator[] (inti) const

The operator [] is overloaded for constant use.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

466 Reference Manual

6.60.3.11]

templatecclass Type- Type& ABA_RING< Type >::operator[] (inti)

Returns:
Thei-th element of the ring. The operation is undefined if no elemastheen inserted in theh position so
far.

Parameters:
i The element being accessed.

6.60.3.12 template:class Type> int ABA_RING < Type >::previous (int i, Type & p) const

Can be used to access any element between the oldest and mssesd element.

Returns:
0 If there are enough elements in the ring such that the elememtries before the newest one could be
accessed,
1 otherwise.

Parameters:

i The element elements before the newest element is retrieveds|®, then the function retrieves the newest
element.

p Contains the-th element before the newest one in a successful call.

6.60.3.13 templateclass Type> void ABA_RING < Type >:realloc (int newSizé

Changes the length of the ring.

Parameters:
newSizeThe new length of the ring. If the ring decreases below theecimumber of elements in the ring,
then thenewSizanewest elements stay in the ring.

6.60.3.14 templatecclass Type> int ABA_RING < Type >::size () const
Returns:

The size of the ring.

6.60.4 Friends And Related Function Documentation

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.61 ABA BSTACK< Type > Class Template Reference 467

6.60.4.1 templatecclass Type> ostream& operator<< (ostream & out, constABA_RING < Type > &
ring) [friend]

The output operator writes the elements of the ring to anudwipeam starting with the oldest element in the ring.

Returns:
A reference to the output stream.

Parameters:
out The output stream.

rhs The ring being output.

6.60.5 Member Data Documentation

6.60.5.1 templatecclass Type> bool ABA RING < Type >::filled_ [pri vat e]

This member becomegueif ring is completely filled up.

Definition at line 189 of file ring.h.

6.60.5.2 templatecclass Type> ABA_GLOBAL x ABA_RING < Type >::glob_ [pri vat e]

A pointer to the corresponding global object.

Definition at line 177 of file ring.h.

6.60.5.3 templatecclass Type> int ABA_RING < Type >::head_ [pri vat e]

The position in the arraging_ where the next element will be inserted.

Definition at line 185 of file ring.h.

6.60.5.4 templatecclass Type>- ABA_ARRAY <Type> ABA_RING < Type >::ring_ [pri vat €]

{An array storing the elements of the ring.
Definition at line 181 of file ring.h.

The documentation for this class was generated from thevioll file:

* Include/abacusihg.h

6.61 ABA BSTACK< Type > Class Template Reference

a set of elements, following the last-in first-out (LIFO)mriple the access to or the deletion of an element is
restricted to the most recently inserted element.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

468 Reference Manual

#i ncl ude <bstack. h>
Inheritance diagram for ABA_BSTACK Type >::

| ABA_ABACUSROOT |

T

| ABA_BSTACK< Type >|

Public Member Functions

« ABA BSTACK (ABA_GLOBAL xglob, int size)
* int size() const
* inttos() const
 boolempty() const
« boolfull () const
* void push(Type item)
* Typetop () const
* Typepop()
Accesses likiop() the last element pushed on the stack and removes in addition this item frotadke s

« void realloc(int newSize)

Private Attributes

* ABA_GLOBAL = glob_
* ABA_ARRAY < Type > stack_
e inttos_

Friends

» ostream &operatox < (ostream &out, consABA_BSTACK< Type > &rhs)

The output operator writes the numbers of all stacked elements and thergkeline by line on an output stream.

6.61.1 Detailed Description
template<class Type> class ABA_BSTACK< Type >

a set of elements, following the last-in first-out (LIFO)maiple the access to or the deletion of an element is
restricted to the most recently inserted element.

Definition at line 56 of file bstack.h.

6.61.2 Constructor & Destructor Documentation

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.61 ABA BSTACK< Type > Class Template Reference 469

6.61.2.1 templatecclass Type> ABA_BSTACK < Type >::ABA_BSTACK (ABA_GLOBAL x glob, int
siz

The constructor initializes an empty stack.

Parameters:
glob A pointer to the corresponding global object.

size The maximal number of elements the stack can store.

6.61.3 Member Function Documentation

6.61.3.1 templatecclass Type- bool ABA_BSTACK < Type >::empty () const

Returns:
true If there is no element in the stack,
false otherwise.

6.61.3.2 templatecclass Type> bool ABA_BSTACK < Type >::full () const

Returns:
true If the maximal number of elements has been inserteceistdrk,
false otherwise.

6.61.3.3 templatecclass Type> Type ABA_BSTACK < Type >::pop ()

Accesses likeop() the last element pushed on the stack and removes in addii®iteém from the stack.

Itis an error to perform this operation on an empty stackhiff function is compiled withkDABACUSSAFEthen
the program terminates if this error occurs.

Returns:
The last element pushed on the stack.

6.61.3.4 templatecclass Type> void ABA_BSTACK < Type >::push (Type item)

Adds an element to the stack.

It is a fatal error to insert an element if the stack is fulltHfs function is compiled withDABACUSSAFEthen
the program terminates if this error occurs.

Parameters:
item The element added to the stack.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

470 Reference Manual

6.61.3.5 templatecclass Type> void ABA_BSTACK < Type >:realloc (int newSizé
Changes the maximal number of elements of the stack.
Parameters:

newSizeThe new maximal number of elements on the stackielivSizeas less than the current number of
elements in the stack, then thewSizeldest element are contained in the stack after the rediboca

6.61.3.6 templatecclass Type> int ABA_BSTACK < Type >::size () const

Returns:
The maximal number of elements which can be inserted intstdek.

6.61.3.7 templatecclass Type> Type ABA_BSTACK < Type >::top () const

Accesses the last element pushed on the stack without ragivi

Itis an error to perform this operation on an empty stackhiff function is compiled withDABACUSSAFEthen
the program terminates if this error occurs.

Returns:
The last element pushed on the stack.

6.61.3.8 templatecclass Type> int ABA_BSTACK < Type >::tos () const
Returns:

The top of the stack, i.e., the number of the next free compiookthe stack. This is also the number of
elements currently contained in the stack since the firstefe is inserted in position 0.

6.61.4 Friends And Related Function Documentation

6.61.4.1 templateclass Type> ostreamé& operator< < (ostream & out, constABA_BSTACK < Type > &
rhs) [friend]

The output operator writes the numbers of all stacked elésraand the elements line by line on an output stream.

Returns:
A reference to the output stream.

Parameters:
out The output stream.

rhs The stack being output.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.62 ABA_BHEAP< Type, Key > Class Template Reference 471

6.61.5 Member Data Documentation

6.61.5.1 templatecclass Type>- ABA_GLOBAL x ABA_BSTACK < Type >::glob_ [pri vat e]

A pointer to the corresponding global object.
Definition at line 157 of file bstack.h.

6.61.5.2 templatecclass Type>- ABA_ARRAY <Type> ABA_BSTACK < Type >::stack_ [pri vate]

The array storing the elements of the stack.

Definition at line 161 of file bstack.h.

6.61.5.3 templatecclass Type> int ABA_BSTACK < Type >::tos_ [pri vat e]

The top of stack (next free component).
Definition at line 165 of file bstack.h.

The documentation for this class was generated from thevioll file:

 Include/abacubktack.h

6.62 ABA_BHEAP< Type, Key > Class Template Reference

This template class implements a heap with a fixed maximal, $iawever a reallocation can be performed if
required.

#i ncl ude <bheap. h>

Inheritance diagram for ABA_BHEAP Type, Key>::

| ABA_ABACUSROOT |

T

| ABA_BHEAP< Type, Key

Public Member Functions

 ABA BHEAP (ABA_GLOBAL xglob, int size)

 ABA_BHEAP (ABA_GLOBAL xglob, constABA_BUFFER< Type > &elems, constABA_BUFFER<
Key > &keys)

« void insert(Type elem, Key key)

e TypegetMin () const

« Key getMinKey() const

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

472 Reference Manual

e TypeextractMin()

« void clear()

* int size() const

* int number() const

* boolempty() const

* void realloc(int newSize)
« void check() const

Private Member Functions

« int leftSon(int i) const
« int rightSon(int i) const
« int father(int i) const

« void heapify(int i)

Private Attributes

ABA_GLOBAL x glob_
ABA_ARRAY < Type > heap_
ABA_ARRAY < Key > keys_
e intn_

Friends

 ostream &operatox < (ostream &out, consABA_BHEAP< Type, Key> &rhs)
The output operator writes the elements of the heap together with their keys @utput stream.

6.62.1 Detailed Description
template<class Type, class Key class ABA_ BHEAP< Type, Key >

This template class implements a heap with a fixed maximal $iawever a reallocation can be performed if
required.

Definition at line 74 of file bheap.h.

6.62.2 Constructor & Destructor Documentation

6.62.2.1 templatecclass Type, class Key ABA_BHEAP < Type, Key >:: ABA_BHEAP (ABA_GLOBAL
x glob, int sizg

A constructor.

Parameters:
glob A pointer to the corresponding global object.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.62 ABA_BHEAP< Type, Key > Class Template Reference 473

size The maximal number of elements which can be stored.

6.62.2.2 templatecclass Type, class Key ABA_BHEAP < Type, Key >:: ABA_BHEAP (ABA_GLOBAL
x glob, constABA_BUFFER < Type > & elems constABA_BUFFER < Key > & keyg

A constructor with initialization.

The heap is initialized from aABA_ BUFFER of elements and a correspondiA@A_BUFFER of keys. The
running time is Qn) for n elements.

Parameters:
glob A pointer to the corresponding global object.

elem A ABA_BUFFERwich contains the elements.
elem A ABA_BUFFERwich contains the keys.

6.62.3 Member Function Documentation

6.62.3.1 templatecclass Type, class Key void ABA_ BHEAP < Type, Key >::check () const

Stops with an error message if the heap properties are @@blat

This function is used for debugging this class.

6.62.3.2 templatecclass Type, class Key void ABA_BHEAP < Type, Key >::clear ()

Empties the heap.

6.62.3.3 templatecclass Type, class Key bool ABA_ BHEAP < Type, Key >::empty () const

Returns:
true If there are no elements in the heap,
false otherwise.

6.62.3.4 templatecclass Type, class Key Type ABA_BHEAP < Type, Key >::extractMin ()

Accesses and removes the minimum element from the heap.

The minimum element is stored in the root of the tree, i.ehdap [0]. If the heap does not become empty by
removing the minimal element, we move the last element dtordeap_to the root bieap [0]). Whereas this
operation can destroy the heap property, the two subtreded@t nodes 1 and 2 still satisfy the heap property.
Hence callincheapify(O)will restore the overall heap property.

Returns:
The minimum element of the heap.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

474 Reference Manual

6.62.3.5 templatecclass Type, class Key int ABA BHEAP < Type, Key >::father (int i) const
[private]

Returns the index of the father of elemént

6.62.3.6 templatecclass Type, class Key Type ABA BHEAP < Type, Key >::getMin () const

Returns:
The minimum element of the heap. This operation must not Hermeed if the heap is empty. Since the heap
property holds the element having minimal key is alwaysestanheap [0].

6.62.3.7 templatecclass Type, class Key Key ABA BHEAP < Type, Key >::getMinKey () const

Returns:
The key of the minimum element of the heap. This operationtmasbe performed if the heap is empty.
Since the heap property holds the element having minimalikeyways stored ifeap [0] and its key in

key [0].

6.62.3.8 templatecclass Type, class Key void ABA_BHEAP < Type, Key >::heapify (int i) [pri vat e]

Is the central function to maintain the heap property.

The function assumes that the two trees rootel@fi(i) andright(i) fulfil already the heap property and restores
the heap property of the (sub-) tree rooted at

6.62.3.9 templatecclass Type, class Key void ABA_BHEAP < Type, Key >::insert (Type elem Key key)

Inserts an item with a key into the heap.

It is a fatal error to perform this operation if the heap id.ful the precompiler flagDABACUSSAFEHES set, we
check if the heap is not already full.

Parameters:
elem The element being inserted into the heap.

key The key of this element.

6.62.3.10 templatecclass Type, class Key int ABA BHEAP < Type, Key >::leftSon (int i) const
[private]

Returns the index of the left son of node

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.62 ABA_BHEAP< Type, Key > Class Template Reference 475

6.62.3.11 templateclass Type, class Key int ABA_BHEAP < Type, Key >::number () const

Returns:
The number of elements in the heap.

6.62.3.12 templateclass Type, class Key void ABA_BHEAP < Type, Key >::realloc (int newSizg

Changes the size of the heap.

Parameters:
newSize The new maximal number of elements in the heap.

6.62.3.13 templatecclass Type, class Key int ABA_BHEAP < Type, Key >::rightSon (int i) const
[private]

Returns the index of the right son of node

6.62.3.14 templatecclass Type, class Key int ABA_BHEAP < Type, Key >::size () const

Returns:
The maximal number of elements which can be stored in the.heap

6.62.4 Friends And Related Function Documentation

6.62.4.1 templatecclass Type, class Key ostreamé& operator< < (ostream & out, constABA_BHEAP <
Type, Key > & rhs) [friend]

The output operator writes the elements of the heap togetittetheir keys on an output stream.

Returns:
A reference to the output stream.

Parameters:
out The output stream.

rhs The heap being output.

6.62.5 Member Data Documentation

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

476 Reference Manual

6.62.5.1 templatecclass Type, class Key ABA_GLOBAL « ABA_BHEAP < Type, Key >::glob_
[private]

Definition at line 216 of file bheap.h.

6.62.5.2 templatecclass Type, class Key ABA_ARRAY <Type> ABA_BHEAP < Type, Key >::heap_
[private]

Definition at line 217 of file bheap.h.

6.62.5.3 templatecclass Type, class Key ABA_ARRAY <Key> ABA_BHEAP < Type, Key >::keys_
[private]

Definition at line 218 of file bheap.h.

6.62.5.4 templatecclass Type, class Key int ABA_ BHEAP < Type, Key >::n_ [pri vat e]

Definition at line 219 of file bheap.h.

The documentation for this class was generated from theviollg file:

* Include/abacubheap.h

6.63 ABA_ BPRIOQUEUE< Type, Key > Class Template Reference

Since the priority queue is implemented by a heap (ck3& BHEAP) the insertion of a new element and the
deletion of the minimal element requir€10g n) time if n elements are stored in the priority queue.

#i ncl ude <bprioqueue. h>
Inheritance diagram for ABA_BPRIOQUEUEType, Key>::

| ABA_ABACUSROOT |

| ABA_BPRIOQUEUE< Type, Key :|»

Public Member Functions

* ABA_BPRIOQUEUE(ABA_GLOBAL xglob, int size)
* void insert(Type elem, Key key)

* int getMin (Type &min) const

* int getMinKey (Key &minKey) const

* int extractMin(Type &min)

Extends the functiogetMin(min)in the way that the minimal element is also removed from the priority queue.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.63 ABA BPRIOQUEUE< Type, Key > Class Template Reference 477

« void clear()

« int size() const

* int number() const

« void realloc(int newSize)

Private Attributes

* ABA_GLOBAL = glob_
* ABA_BHEAP< Type, Key> heap_

6.63.1 Detailed Description
template<class Type, class Key class ABA_BPRIOQUEUE< Type, Key >

Since the priority queue is implemented by a heap (cfe88_BHEAP) the insertion of a new element and the
deletion of the minimal element requirglog n) time if n elements are stored in the priority queue.

Definition at line 57 of file bprioqueue.h.

6.63.2 Constructor & Destructor Documentation

6.63.2.1 templatecclass Type, class Key ABA_BPRIOQUEUE < Type, Key >:: ABA_BPRIOQUEUE
(ABA_GLOBAL = glob, int siz@

The constructor of an empty priority queue.

Parameters:
glob A pointer to the corresponding object.

size The maximal number of elements the priority queue can hotdawit reallocation.

6.63.3 Member Function Documentation

6.63.3.1 templatecclass Type, class Key void ABA_BPRIOQUEUE < Type, Key >::clear ()

Makes the priority queue empty.

6.63.3.2 templatecclass Type, class Key int ABA_BPRIOQUEUE < Type, Key >::extractMin (Type &
min)

Extends the functiogetMin(min)in the way that the minimal element is also removed from therity queue.
Returns:
0 If the priority queue is non-empty,

1 otherwise.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

478 Reference Manual

Parameters:
min If the priority queue is non-empty the minimal element is@ssd tomin.

6.63.3.3 templatecclass Type, class Key int ABA_BPRIOQUEUE < Type, Key >::getMin (Type & min)
const

Retrieves the element with minimal key from the priority gae

Returns:
0 If the priority queue is non-empty,
1 otherwise.

Parameters:
min If the priority queue is non-empty the minimal element isgssd tomin.

6.63.3.4 templatecclass Type, class Key int ABA_BPRIOQUEUE < Type, Key >::getMinKey (Key &
minKey) const

Retrieves the key of the minimal element in the priority celeu

Returns:
0 If the priority queue is non-empty,
1 otherwise.

Parameters:
minKey Holds after the call the key of the minimal element in the ptyogqueue, if the queue is non-emtpy.

6.63.3.5 templatecclass Type, class Key void ABA BPRIOQUEUE < Type, Key >::insert (Type elem
Key key)

Inserts an element in the priority queue.

Parameters:
elem The element being inserted.

key The key of the element.

6.63.3.6 templatecclass Type, class Key int ABA_BPRIOQUEUE < Type, Key >::number () const

Returns:
The number of elements stored in the priority queue.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.64 ABA_HASH< KeyType, ItemType > Class Template Reference 479

6.63.3.7 templatecclass Type, class Key void ABA_BPRIOQUEUE < Type, Key >::realloc (int newSiz¢

Increases the size of the priority queue.

It is not allowed to decrease the size of the priority quenehis case an error message is output and the program
stops.

Parameters:
newSize The new size of the priority queue.

6.63.3.8 templatecclass Type, class Key int ABA_BPRIOQUEUE < Type, Key >::size () const
Returns:

The maximal number of elements which can be stored in theifyrigueue.

6.63.4 Member Data Documentation

6.63.4.1 templatecclass Type, class Key ABA_GLOBAL x ABA_ BPRIOQUEUE < Type, Key >::glob_
[private]

A pointer to the corresponding global object.

Definition at line 131 of file bprioqueue.h.

6.63.4.2 templatecclass Type, class Key ABA_BHEAP <Type, Key> ABA_BPRIOQUEUE < Type, Key
>:heap_ [private]

The heap implementing the priority queue.
Definition at line 135 of file bprioqueue.h.

The documentation for this class was generated from theviolg file:

* Include/abacubprioqueue.h

6.64 ABA_ HASH< KeyType, ItemType > Class Template Reference

data structure stores a set of items and provides as cemtiiidns the insertion of a new item, the search for an
item, and the deletion of an item.

#i ncl ude <hash. h>
Inheritance diagram for ABA_HASH KeyType, ItemType>::

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

480 Reference Manual

| ABA_ABACUSROOT |

T

| ABA_HASH< KeyType, ltemType :|~

Public Member Functions

ABA_HASH (ABA_GLOBAL xglob, int size)
Initializes each slot with a O-pointer to indicate that the linked list of hash itertlsi®flot is empty.

~ABA HASH ()
The destructor deletes for each hash item by going through all non-emistpfisash items.

void insert(const KeyType &newKey, const ltemType &newltem)
void overWrite(const KeyType &newKey, const ItemType &newltem)

Performs a regulainsert()if there is no item with the same key in the hash table, otherwise the item is repiaced
the new item.

IltemTypex find (const KeyType &key)
boolfind (const KeyType &key, const IltemType &item)

This version of the functiofind() checks if a prespecified item with a prespecified key is contained in thedidsh

int remove(const KeyType &key)
int remove(const KeyType &key, const ltemType &item)

This version of the functioremove()removes the first item with a given key and a prespecified element from the
hash table.

int size() const
int nCollisions() const
void resize(int newSize)

The functionsnitializelteration()and next() can be used to iterate through all items stored in the hasketab
having the same key.

* ItemTypex initializelteration(const KeyType &key)
* ItemTypex next(const KeyType &key)

The functiomext() can be used to go to the next item in the hash table withké&gy

Private Member Functions

int hf (int key)
int hf (unsigned key)
This version ohf() implements a Fibonacci hash function for keys of typsigned

int hf (constABA_STRING &string)
ABA_HASH (constABA_HASH &rhs)
ABA_HASH & operator5constABA_HASH &rhs)

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.64 ABA_HASH< KeyType, ItemType > Class Template Reference 481

Private Attributes

ABA_GLOBAL = glob_
ABA_HASHITEM< KeyType, ItemType> «x table
e intsize_

« int nCollisions_
ABA_HASHITEM < KeyType, ltemType> « iter_

Friends

» ostream &operatox < (ostream &out, consABA_HASH< KeyType, IltemType> &hash)

The output operator writes row by row all elements stored in the list asttiaith a slot on an output stream.

6.64.1 Detailed Description
template<class KeyType, class ltemType class ABA_HASH< KeyType, ltemType >

data structure stores a set of items and provides as cemti@idns the insertion of a new item, the search for an
item, and the deletion of an item.

Definition at line 137 of file hash.h.

6.64.2 Constructor & Destructor Documentation

6.64.2.1 templatecclass KeyType, class ltemType ABA_HASH < KeyType, ItemType >:: ABA_HASH
(ABA_GLOBAL x glob, int size

Initializes each slot with a 0-pointer to indicate that timkéd list of hash items of this slot is empty.

Parameters:
glob A pointer to the corresponding global object.

size The size of the hash table.

6.64.2.2 templatecclass KeyType, class ltemType ABA HASH < KeyType, ItemType >:: ~ABA_HASH
0

The destructor deletes for each hash item by going throdgtoatempty lists of hash items.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

482 Reference Manual

6.64.2.3 templatecclass KeyType, class ItemType ABA_HASH < KeyType, ItemType >:: ABA_HASH
(constABA_HASH < KeyType, ItemType > & rhs) [pri vat e]

6.64.3 Member Function Documentation

6.64.3.1 templatecclass KeyType, class ItemType bool ABA_HASH < KeyType, IltemType >::find
(const KeyType & key, const ltemType & item)

This version of the functiofind() checks if a prespecified item with a prespecified key is caethin the hash
table.

Returns:
true If there is an element (key, item) in the hash table,
false otherwise.

Parameters:
key The key of the item.

item The searched item.

6.64.3.2 templatecclass KeyType, class ltemType ItemTypex ABA HASH < KeyType, ItemType
>::find (const KeyType & key)

Looks for an item in the hash table with a given key.

Returns:
A pointer to an item with the given key, or a O-pointer if théseno item with this key in the hash table. If
there is more than one item in the hash table with this keyjrgoto the first item found is returned.

Parameters:
key The key of the searched item.

6.64.3.3 templatecclass KeyType, class ItemType int ABA_HASH < KeyType, ItemType >::hf (const
ABA_STRING & string) [private]

This is a hash function for character strings.

It is taken from Knu93a}, page 300.

6.64.3.4 templatecclass KeyType, class ItemType int ABA_HASH < KeyType, ItemType >::hf
(unsignedkey) [private]

This version othf() implements a Fibonacci hash function for keys of typsigned

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.64 ABA_HASH< KeyType, ItemType > Class Template Reference 483

6.64.3.5 templatecclass KeyType, class ltemType int ABA_HASH < KeyType, ItemType >::hf (int key)
[private]

Computes the hash value ky,

It must be overloaded for all key types, which are used tagetlith this template.

This following version ohf() implements a Fibonacci hash function for keys of tyqe

6.64.3.6 templatecclass KeyType, class ltemType ItemTypex ABA_HASH < KeyType, ItemType
>initializelteration (const KeyType & key)

The functioninitializelteration() retrieves the first item.

Returns:
A pointer to the first item found in the hash table having key, or 0 if there is no such item.

Parameters:
key The key of the items through which we want to iterate.

6.64.3.7 templatecclass KeyType, class ItemType void ABA_HASH < KeyType, ItemType >::insert
(const KeyType & newKey const IltemType & newltem)
Adds an item to the hash table.

The new item is inserted at the head of the list in the corneding slot. It is possible to insert several items with
the same key into the hash table.

Parameters:
key The key of the new item.

item The item being inserted.

6.64.3.8 templatecclass KeyType, class ltemType int ABA_HASH < KeyType, ItemType >::nCollisions
() const

Returns:
The number of collisions which occurred during all previeasis of the functionsnsert()andoverWrite()

6.64.3.9 templatecclass KeyType, class ltemType ItemTypex ABA_HASH < KeyType, ItemType
>::next (const KeyType & key)

The functionnext()can be used to go to the next item in the hash table withkkgy

Before the first call ohext()for a certain can the iteration has to be initialized by ogllhitializeltaration().

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

484 Reference Manual

Note:
The functionnext()gives you the next item haviriggykey but not the next item in the linked list starting in a
slot of the hash table.

Returns:
A pointer to the next item having keégey, or O if there is no more item with this key in the hash table.

Parameters:
key The key of the items through which we want to iterate.

6.64.3.10 templateclass KeyType, class ItemType ABA_HASH& ABA_HASH < KeyType, ltemType
>::operator= (const ABA_HASH < KeyType, ltemType > & rhs) [pri vate]

6.64.3.11 templatecclass KeyType, class ltemType void ABA_HASH < KeyType, ItemType
>::overWrite (const KeyType & newKey const ltemType & newlten)

Performs a regulansert()if there is no item with the same key in the hash table, otrexthe item is replaced by
the new item.

Parameters:
key The key of the new item.

item The item being inserted.

6.64.3.12 template:class KeyType, class ItemType int ABA_HASH < KeyType, ItemType >::remove
(const KeyType & key, const ltemType & item)

This version of the functioremove()emoves the first item with a given key and a prespecified elefnem the
hash table.

Returns:

0 If an item with the key is found.
1 If there is no item with this key.

Parameters:
key The key of the item that should be removed.

item The item which is searched.

6.64.3.13 template:class KeyType, class ItemType int ABA HASH < KeyType, ItemType >::remove
(const KeyType & key)

Removes the first item with a given key from the hash table.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.64 ABA_HASH< KeyType, ItemType > Class Template Reference 485

Returns:
0 If an item with the key is found.
1 If there is no item with this key.

Parameters:
key The key of the item that should be removed.

6.64.3.14 templateclass KeyType, class ltemType void ABA_HASH < KeyType, ItemType >::resize
(int newSize

Can be used to change the size of the hash table.

Parameters:
newSize The new size of the hash table (must be positive).

6.64.3.15 templateclass KeyType, class IltemType int ABA_HASH < KeyType, ItemType >::size ()
const

Returns:
The length of the hash table.

6.64.4 Friends And Related Function Documentation

6.64.4.1 templateclass KeyType, class ltemType ostreamé& operator<< (ostream & out, const
ABA_HASH < KeyType, ItemType > & hash) [fri end]

The output operator writes row by row all elements storedh@list associated with a slot on an output stream.

The output of an empty slot is suppressed.

Returns:
A reference to the output stream.

Parameters:
out The output stream.

rhs The hash table being output.

6.64.5 Member Data Documentation

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

486 Reference Manual

6.64.5.1 templatecclass KeyType, class ltemType ABA_GLOBAL x ABA_HASH < KeyType, ItemType
>:glob_ [private]
A pointer to the corresponding global object.

Definition at line 331 of file hash.h.

6.64.5.2 templateclass KeyType, class ItemType ABA_HASHITEM <KeyType, ltemType>x
ABA_HASH < KeyType, ItemType >::iter_ [pri vat e]

An iterator for all items stored in a slot.

This variable is initialized by callingnitializelteration() and incremented by the functioext()

Definition at line 355 of file hash.h.

6.64.5.3 templatecclass KeyType, class ltemType int ABA_HASH < KeyType, IltemType
>::nCollisions_ [pri vat e]

The number of collisions on calls ofsert()andoverWrite()

Definition at line 347 of file hash.h.

6.64.5.4 templatecclass KeyType, class ItemType int ABA_HASH < KeyType, ItemType >::size_
[private]

The length of the hash table.

Definition at line 343 of file hash.h.

6.64.5.5 templateclass KeyType, class ltemType ABA_HASHITEM <KeyType, ltemType> s
ABA_HASH < KeyType, ItemType >::table_ [pri vat e]
The hash table storing a linked list of hash items in each slot

table [i] is initialized with a O-pointer in order to indicate thitis empty. The linked lists of each slot are
terminated with a O-pointer, too.

Definition at line 339 of file hash.h.

The documentation for this class was generated from theviolg file:

¢ Include/abacusash.h

6.65 ABA_DICTIONARY < KeyType, ItemType > Class Template Ref-
erence

data structure dictionary is a collection of items with keltsprovides the operations to insert pairs of keys and
items and to look up an item given some key.

#i ncl ude <dictionary. h>

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.65 ABA_ DICTIONARY < KeyType, IltemType > Class Template Reference 487

Inheritance diagram for ABA_DICTIONARY KeyType, ItemType>::

| ABA_ABACUSROOT |

T

| ABA_DICTIONARY< KeyType, ltemType >|

Public Member Functions
« void insert(const KeyType &key, const ltemType &item)
* ltemTypex lookUp (const KeyType &key)
Public Attributes
¢ ABA_ DICTIONARYABA_GLOBAL x* glob
* ABA_DICTIONARYABA GLOBAL int size
Private Member Functions
« ABA_DICTIONARY (constABA_DICTIONARY < KeyType, ltemType> &rhs)
» constABA_DICTIONARY & operator=constABA_DICTIONARY < KeyType, ltemType> &rhs)
Private Attributes
« ABA_GLOBAL =« glob_
« ABA HASH< KeyType, ItemType> hash_
Friends

» ostream &operatok < (ostream &out, consABA_DICTIONARY < KeyType, ItemType> &rhs)

The output operator writes the hash table implementing the dictionary on tpuitostream.

6.65.1 Detailed Description
template<class KeyType, class ItemType class ABA_ DICTIONARY < KeyType, ltemType >

data structure dictionary is a collection of items with keltsprovides the operations to insert pairs of keys and
items and to look up an item given some key.

Definition at line 47 of file dictionary.h.

6.65.2 Constructor & Destructor Documentation

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

488 Reference Manual

6.65.2.1 templatecclass KeyType, class ltemType ABA_DICTIONARY < KeyType, ltemType
>::ABA_DICTIONARY (constABA_DICTIONARY < KeyType, ItemType > & rhs)
[private]

6.65.3 Member Function Documentation

6.65.3.1 templatecclass KeyType, class ItemType void ABA_DICTIONARY < KeyType, ItemType
>::insert (const KeyType & key, const ltemType & item)

Adds the item together with a key to the dictionary.

Parameters:
key The key of the new item.

item The new item.

6.65.3.2 templatecclass KeyType, class ltemType ltemTypex ABA_DICTIONARY < KeyType,
ltemType >::lookUp (const KeyType & key)

Returns:
A pointer to the item associated wikieyin the ABA_DICTIONARY, or 0 if there is no such item.

Parameters:
key The key of the searched item.

6.65.3.3 templatecclass KeyType, class ltemType constABA_DICTIONARY & ABA_DICTIONARY <
KeyType, ItemType >::operator= (const ABA_DICTIONARY < KeyType, ItemType > & rhs)
[private]

6.65.4 Friends And Related Function Documentation

6.65.4.1 templateclass KeyType, class ltemType ostreamé& operator<< (ostream & out, const
ABA_DICTIONARY < KeyType, ItemType > & rhs) [friend]

The output operator writes the hash table implementing ittedary on an output stream.

Returns:
A reference to the output stream.

Parameters:
out The output stream.

rhs The hash table being output.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.66 Tools 489

6.65.5 Member Data Documentation

6.65.5.1 templateclass KeyType, class ltemType ABA_DICTIONARYABA_GLOBAL
ABA_DICTIONARY < KeyType, ltemType >::glob

The constructor.

Parameters:
glob A pointer to the corresponding global object.

size The size of the hash table implementing the dictionary.

Definition at line 55 of file dictionary.h.

6.65.5.2 templatecclass KeyType, class ltemType ABA_GLOBAL « ABA_DICTIONARY < KeyType,
ltemType >::glob_ [private]

A pointer to the corresponding global object.

Definition at line 86 of file dictionary.h.

6.65.5.3 templatecclass KeyType, class ltemType ABA_HASH <KeyType, IltemType>
ABA_DICTIONARY < KeyType, ItemType >::hash_ [pri vat €]

The hash table implementing the dictionary.

Definition at line 90 of file dictionary.h.

6.65.5.4 templatecclass KeyType, class ItemType ABA_DICTIONARYABA_GLOBAL int
ABA DICTIONARY < KeyType, ltemType >::size

The constructor.

Parameters:
glob A pointer to the corresponding global object.
size The size of the hash table implementing the dictionary.

Definition at line 55 of file dictionary.h.

The documentation for this class was generated from theviolg file:

* Include/abacuslictionary.h

6.66 Tools

This section documents some tools for sorting objects, orgggstime, and generating output.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

490 Reference Manual

6.67 ABA_SORTER< ItemType, KeyType > Class Template Reference

This class implements several functions for sorting areey®rding to increasing keys.
#i ncl ude <sorter.h>
Inheritance diagram for ABA_SORTERItemType, KeyType>::

| ABA_ABACUSROOT |

T

| ABA_SORTER ltemType, KeyType p

Public Member Functions

ABA SORTER(ABA_GLOBAL xglob)
« void quickSort(int n, ABA_ARRAY < ItemType> &items, ABA_ARRAY < KeyType > &keys)

Sorts the elements of an arraymitems according to their keys.

* void quickSort((ABA_ARRAY < ItemType> &items,ABA_ARRAY < KeyType> &keys, int left, int right)
« void heapSortint n, ABA_ARRAY < ItemType> &items, ABA_ARRAY < KeyType> &keys)

Private Member Functions

int partition(ABA_ARRAY < ItemType> &items, ABA_ARRAY < KeyType> &keys, int left, int right)

Returns a numbey ({{left <= g <= right)} and guarantees that all elemenitsvith {key[i] <= key[q]}} are stored
in the left part of the array, i.e., iitemdleft], , itemqq], and all elementg with key{j] > key[q] are stored in the
right part of the array, i.e., intemdq+1], ..., itemdright].

void buildHeap(int n, ABA_ARRAY < ltemType> &items, ABA_ARRAY < KeyType> &keys)
Resorts the elementsiiémsandkeyssuch that the heap property holds, ikeydi] >= keys[2«i+1] and keydi]
>= keys[2i+2].

« void heapify(int n, ABA_ARRAY < IltemType> &items, ABA_ARRAY < KeyType> &keys, int root)

Assumes that the heap property holds for the subtrees rooted at thefsmus and restores the heap property for
the subtree rooted abot

* void check(int n, ABA_ARRAY < ItemType> &items, ABA_ARRAY < KeyType> &keys)

Is a debugging function and terminates the program with an error mesgtgeelements dfemsare not sorted by
increasing keys.

Private Attributes

* ABA_GLOBAL = glob_
* ltemTypeitemSwap_
* KeyTypekeySwap__

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.67 ABA_SORTER< ItemType, KeyType > Class Template Reference 491

6.67.1 Detailed Description
template<class IltemType, class KeyType class ABA SORTER ItemType, KeyType >

This class implements several functions for sorting aresg®rding to increasing keys.

Definition at line 46 of file sorter.h.

6.67.2 Constructor & Destructor Documentation

6.67.2.1 templatecclass IltemType, class KeyType ABA_SORTER< ItemType, KeyType
>::ABA_SORTER (ABA_GLOBAL x glob)

The constructor.

Parameters:
glob A pointer to the corresponding global object.

6.67.3 Member Function Documentation

6.67.3.1 templatecclass ItemType, class KeyType void ABA_SORTER< ltemType, KeyType
>::buildHeap (int n, ABA_ARRAY < ItemType > & items ABA_ARRAY < KeyType > & keyg
[private]

Resorts the elementsittmsandkeyssuch that the heap property holds, ikeys$i] >= keys[2Z:i+1] and keyi]
>= keys[Zi+2].

Parameters:
n The number of elements of the following arrays.

items The items being sorted.
keys The keys for sorting the items.

The functionheapify()is called for each node of the tree which is not necessariyah First nodes on higher
level in the tree processed.

6.67.3.2 templatecclass ItemType, class KeyType void ABA_SORTER< ItemType, KeyType >::check
(int n, ABA_ARRAY < ItemType > & items ABA_ARRAY < KeyType > & keyg [pri vate]

Is a debugging function and terminates the program with eor enessage if the elementsitdmsare not sorted
by increasing keys.

Parameters:
n The number of elements of the following arrays.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

492 Reference Manual

items The items being sorted.

keys The keys for sorting the items.

6.67.3.3 templatecclass ItemType, class KeyType void ABA SORTER< ItemType, KeyType >::heapify
(int n, ABA_ARRAY < ltemType > & items ABA_ARRAY < KeyType > & keys int root)
[private]

Assumes that the heap property holds for the subtrees rabted sons ofoot and restores the heap property for
the subtree rooted abot.

Parameters:
n The number of elements of the following arrays.

items The items being sorted.
keys The keys for sorting the items.

root The index where the heaps property has to be restored.

The functionheapify()checks if the heap property holds foot. This is not the case if thargestelement of
I, r, androot is notroot. In this case the elements ot andlargestare swapped and we iterate. Otherwise,
the heap property is restored.

6.67.3.4 templatecclass ItemType, class KeyType void ABA_SORTER< ltemType, KeyType
>::heapSort (int n, ABA_ARRAY < ltemType > & items ABA_ARRAY < KeyType > & key39

Sorts an array ofi items according to their keys.

In many practical applications this function is inferiorgoickSort() although it has the optimal worst case running
time of O(nlogn) .

The functionheapSort(generates a heap. This guarantees that the largest elenstoitad intemg0]. So it
is obvious that if we want to sort the items by increasing k#yis element will finally be stored itemgn-1].
Hence we swap thitemsandkeysof O andn-1 and restore the heap property for the elementa-Q, This
can be done byeapify()since the subtree rooted at 1 and 2 are still heaps (the &seeal is not considered
anymore). This process is iterated until the elements atedo

Parameters:
n The number of items being sorted.

items The items being sorted.

keys The keys of the items.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.67 ABA_SORTER< ItemType, KeyType > Class Template Reference 493

6.67.3.5 templatecclass ItemType, class KeyType int ABA_SORTER< ltemType, KeyType >::partition
(ABA_ARRAY < ItemType > & items ABA_ARRAY < KeyType > & keys int left, int right)
[private]

Returns a numbeg ({{left <= q <=right)} and guarantees that all elementgith {key[i] <= key[q]}} are stored
in the left part of the array, i.e., itemgleft], , itemgq], and all elementg with keyjj] > key[q] are stored in the
right part of the array, i.e., itemgq+1], . .. , itemgright].

Parameters:
items The items being sorted.

keys The keys for sorting the items.
left The left border of the partial array being considered.
right The right border ot the partial array being considered.

First, we determine a pivot elemekt The while loop stops by returning as soon as the elements are
partitioned in two subsets such all elemeintsleft <= i <=r have a smaller key than the elements i witth
<=right.

Thedo-loopsstop as soon as a pair of elements is found violating thetjparfiroperty. This pair of elements
is the swapped together with their keys.

6.67.3.6 templatecclass ItemType, class KeyType void ABA_SORTER< ItemType, KeyType
>::quickSort (ABA_ARRAY < ItemType > & items ABA_ARRAY < KeyType > & keys int left,
int right)

Sorts an partial array.

The functionquickSort()uses the divide-and-conquer technique. First the fungiatition() puts the small ele-
ments to the left part and all big elements to the right pathefarray being sorted. More precisely, it holds then,
keysi] <= keys[q] for alli in left, g andkey$q] < keysJi] for alli in gq+1, right. Hence, it is sufficient to sort these
two subarrays recursively.

Parameters:
items The items being sorted.

keys The keys of the items.
left The first item in the partial array being sorted.
right The last item in the partial array being sorted.

6.67.3.7 templatecclass ItemType, class KeyType void ABA_SORTER< ItemType, KeyType
>::quickSort (int n, ABA_ARRAY < ItemType > & items ABA_ARRAY < KeyType > & keyg

Sorts the elements of an arrayroitems according to their keys.

This function is very efficient for many practical applicats. Yet, has a worst case running time ¢h.©) .

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

494 Reference Manual

Parameters:
n The number of elements being sorted.

items The items being sorted.
keys The keys of the sorted items.

6.67.4 Member Data Documentation

6.67.4.1 templatecclass ltemType, class KeyType ABA_GLOBAL x ABA_SORTER< ItemType,
KeyType >::glob_ [privat €]

A pointer to the corresponding global object.

Definition at line 183 of file sorter.h.

6.67.4.2 templatecclass ItemType, class KeyType ItemType ABA_SORTER< ItemType, KeyType
>:itemSwap_ [privat e]

An auxiliary variable for swapping items.

Definition at line 187 of file sorter.h.

6.67.4.3 templatecclass ltemType, class KeyType KeyType ABA_SORTER< ItemType, KeyType
> keySwap_ [privat e]

An auxiliary variable for swapping keys.
Definition at line 191 of file sorter.h.

The documentation for this class was generated from theviiolg file:

¢ Include/abacusbrter.h

6.68 ABA _TIMER Class Reference

class implements a base class for timers measuring the @iLatid the wall-clock time
#i nclude <tinmer.h>
Inheritance diagram for ABA_TIMER::

| ABA_ABACUSROOT|

|

| ABA_TIMER |

t
[|

ABA_COWTIMER || ABA_CPUTIMER

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.68 ABA_TIMER Class Reference 495

Public Member Functions

* ABA TIMER (ABA_GLOBAL xglob)
The constructor for a timer with a pointer to the global objglb.

« ABA TIMER (ABA_GLOBAL xglob, long centiSeconds)

This constructor initializes the total time of the timer witbntiSecondand the pointer to the corresponding global

objectglob. The timer is not running, too.

* virtual ~ABA_TIMER ()
The destructor.

« void start(bool reset=false)
The timer is started with the functiatart() For safety starting a running timer is an error.

* void stop()
Stops the timer and adds the difference between the current time and ttiegstiane to the total time.

* void reset()

 boolrunning() const

* long centiSecond§) const

* long secondg) const

 long minutes() const

* long hours() const

* bool exceedgconstABA_STRING &maxTime) const
« void addCentiSecond$ong centiSeconds)

Protected Member Functions

* virtual longtheTime() const =0

Is required for measuring the time difference between the time of the cab@mé base point (e.g., the program

start).

Protected Attributes

« ABA_GLOBAL x glob_

Private Attributes

* longstartTime_
* longtotalTime_
* boolrunning_

Friends

» ostream &operatox < (ostream &out, consABA_TIMER &rhs)
The output operator writes the time in the format { hours:minutes:secsacsnds/100} on an output stream.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

496 Reference Manual

6.68.1 Detailed Description

class implements a base class for timers measuring the @iLatid the wall-clock time

Definition at line 47 of file timer.h.

6.68.2 Constructor & Destructor Documentation

6.68.2.1 ABA_TIMER:ABA_TIMER (ABA_GLOBAL = gloh)

The constructor for a timer with a pointer to the global obglob.

After the application of the constructor the timer is notning, i.e., to measure time it has to be started explicitly.

6.68.2.2 ABA_TIMER::ABA_TIMER (ABA_GLOBAL x glob, long centiSeconds

This constructor initializes the total time of the timermitentiSecondand the pointer to the corresponding global
objectglob. The timer is not running, too.

6.68.2.3 virtual ABA_TIMER:: ~ABA_TIMER () [virtual]

The destructor.

6.68.3 Member Function Documentation

6.68.3.1 void ABA_TIMER::addCentiSeconds (longcentiSeconds

Parameters:
centiSecondsThe number of centiseconds to be added.

6.68.3.2 long ABA_TIMER::centiSeconds () const

Returns:
The currently spent time i@é—o -seconds. It is not necessary to stop the timer to get theciime.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.68 ABA_TIMER Class Reference 497

6.68.3.3 bool ABA_TIMER::exceeds (consABA_STRING & maxTime const

Returns:
true If the currently spent time exceeaigxTime
false otherwise.

Parameters:
maxTime A string of the form [[h:]m:]s, wherda are the houranthe minutes, and the seconds. Hours and
minutes are optionah can be an arbitrary nonnegative integandmhave to be integers if0, . . . , 59}

. If mor sare less than 10, then a leading 0 is allowed (e.g. 3:05:09).

6.68.3.4 long ABA_TIMER::hours () const
Returns:

The currently spent time in hours. It is not necessary to gteggimer to get the correct time. The result is
rounded down to the next integer value.

6.68.3.5 long ABA_TIMER::minutes () const
Returns:

The currently spent time in minutes. It is not necessarydp #te timer to get the correct time. The result is
rounded down to the next integer value.

6.68.3.6 void ABA_TIMER::reset ()

Stops the timer and sets tt@alTimeto O.

6.68.3.7 bool ABA_TIMER::running () const
Returns:

true If the timer is running,
false otherwise.

6.68.3.8 long ABA_TIMER::seconds () const
Returns:

The currently spent time in seconds. It is not necessanotsie timer to get the correct time. The result is
rounded down to the next integer value.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

498 Reference Manual

6.68.3.9 void ABA_TIMER::start (bool reset=f al se)

The timer is started with the functiastart(). For safety starting a running timer is an error.

Parameters:
reset If this flag is set to true, the timer is reset before it is stdifdefault=false)}

6.68.3.10 void ABA_TIMER::stop ()

Stops the timer and adds the difference between the cumes@ind the starting time to the total time.

Stopping a non-running timer is an error.

6.68.3.11 virtual long ABA_TIMER::theTime () const [protected, pure virtual]

Is required for measuring the time difference between the of the call and some base point (e.g., the program
start).

We measure time according to the following principle.

The pure virtual functionheTime()returns the CPU time since the start of the program for thescdGPUABA_-
TIMER or the elapsed time since some point in the past for lgmesABA COWTIMER. When the timer is started
startTime_is initialized with the a value returned kliieTime()and when it is stopped the difference between
theTime()andstartTime_is added to the total time.

Implemented ilMBA_COWTIMER, andABA_CPUTIMER.

6.68.4 Friends And Related Function Documentation

6.68.4.1 ostream& operatok < (ostream & out, constABA_TIMER & rhs) [fri end]

The output operator writes the time in the format { hoursubés:seconds.seconds/100} on an output stream.

After the time has been divided in hours, minutes and secaedsave to take care that an additional leading zero
is output if minutes or seconds have a value less than ten.

Returns:
A reference to the output stream.

Parameters:
out The output stream.

rhs The timer being output.

6.68.5 Member Data Documentation

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.69 ABA_CPUTIMER Class Reference 499

6.68.5.1 ABA_GLOBAL x ABA_TIMER:glob_ [protect ed]
A pointer to the corresponding global object.

Definition at line 176 of file timer.h.

6.68.5.2 boolABA TIMER:running_ [private]

true, if the timer is running.

Definition at line 190 of file timer.h.

6.68.5.3 IongABA TIMER::startTime_ [pri vat e]

The start time of the timer i% -seconds.

Definition at line 182 of file timer.h.

6.68.5.4 longABA TIMER::totalTime_ [private]

The total time ing}; -seconds.
Definition at line 186 of file timer.h.

The documentation for this class was generated from thevioll file:

¢ Include/abacusimer.h

6.69 ABA CPUTIMER Class Reference

This class derived fromMMBA_TIMER implements a timer measuring the cpu time of parts of a progra
#i ncl ude <cputiner. h>
Inheritance diagram for ABA_CPUTIMER::

| ABA_ABACUSROOT|

T

| ABA_TIMER |

T

| ABA_CPUTIMER |

Public Member Functions

* ABA_CPUTIMER (ABA_GLOBAL xglob)
After the application of the constructor the timer is not running, i.e., to nreasme it has to be started explicitly.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

500 Reference Manual

« ABA_CPUTIMER (ABA_GLOBAL xglob, long centiSeconds)
* virtual ~ABA_CPUTIMER ()

The destructor.

Private Member Functions

« virtual longtheTime() const

Static Private Attributes

« static longclk_tck

6.69.1 Detailed Description

This class derived frolABA_TIMER implements a timer measuring the cpu time of parts of a progra

Definition at line 38 of file cputimer.h.

6.69.2 Constructor & Destructor Documentation

6.69.2.1 ABA_CPUTIMER:ABA_CPUTIMER (ABA_GLOBAL = glob)

After the application of the constructor the timer is notning, i.e., to measure time it has to be started explicitly.

Parameters:
glob A pointer to a global object.

6.69.2.2 ABA_CPUTIMER:ABA_CPUTIMER (ABA_GLOBAL = glob, long centiSeconds

This constructor initializes the total time of the timer.

The timer is not running, too.

Parameters:
glob A pointer to a global object.

centiSecondsThe intial value of the total time i% seconds.

6.69.2.3 virtual ABA_CPUTIMER:: ~ABA_CPUTIMER () [virtual]
The destructor.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.70 ABA_COWTIMER Class Reference 501

6.69.3 Member Function Documentation

6.69.3.1 virtual long ABA_CPUTIMER::theTime () const [private, virtual]

Returns the used cpu time if}; seconds since the start of the program.

This function redefines the pure virtual function of the belsssABA_TIMER.

SinceCLOCKS_PER_SEE€an be 1000000 the standard library functaock() returns negative values after
about than 35 minutes. Hence we measure the cpu time withitlotidntimeswhich is common on / systems,
although not defined in the /-ANSI-standard.

ImplementsABA_TIMER.

6.69.4 Member Data Documentation

6.69.4.1 IlongABA CPUTIMER::clk tck_ [static, private]

Definition at line 62 of file cputimer.h.

The documentation for this class was generated from thevioll file:

« Include/abacusputimer.h

6.70 ABA_COWTIMER Class Reference

class derived frorABA_TIMER implements a timer measuring the elpased time (clock-efwhll time) of parts
of the program.

#i ncl ude <cowti ner. h>
Inheritance diagram for ABA_ COWTIMER::

| ABA_ABACUSROOT|

T

| ABA_TIMER |

T

| ABA_COWTIMER |

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

502 Reference Manual

Public Member Functions

« ABA COWTIMER (ABA_GLOBAL xglob)
After the application of the constructor the timer is not running, i.e., to nreasue it has to be started explicitly.

 ABA_COWTIMER (ABA_GLOBAL xglob, long secs)
« virtual ~ABA_COWTIMER ()
Private Member Functions

« virtual longtheTime() const

Returns the wall clock time since the initialization of the timeﬁ}g@ seconds.

Private Attributes

* longbaseTime_

Stores the result of a call to the functiime(NULL) at construction time.

6.70.1 Detailed Description

class derived frodABA_TIMER implements a timer measuring the elpased time (clock-efwhll time) of parts
of the program.

Definition at line 37 of file cowtimer.h.

6.70.2 Constructor & Destructor Documentation

6.70.2.1 ABA_COWTIMER::ABA_COWTIMER (ABA_GLOBAL x glob)

After the application of the constructor the timer is notning, i.e., to measure time it has to be started explicitly.

We initialize base time with the current time, such thatrate can convert the time t% seconds without
arithmetic overflow. The functiotime()is defined in the standard /-library.

Parameters:
glob A pointer to a global object.

6.70.2.2 ABA_COWTIMER::ABA_COWTIMER (ABA_GLOBAL x glob, long sec$

This constructor initializes the total time of the timer.

The timer is not running, too.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.71 ABA_OSTREAM Class Reference 503

Parameters:
glob A pointer to a global object.

centiSecondsThe initial value of the timer i% seconds.

6.70.2.3 virtual ABA_COWTIMER:: ~ABA_COWTIMER () [virtual]

The destructor.

6.70.3 Member Function Documentation

6.70.3.1 virtual long ABA_COWTIMER::theTime () const [private, virtual]

Returns the wall clock time since the initialization of timér in ﬁ seconds.

This function redefines the pure virtual function of the belsssABA_TIMER.

The functiontheTime(uses the functiotimes() which returns the elapsed real time in clock ticks.

ImplementsABA_TIMER.

6.70.4 Member Data Documentation

6.70.4.1 longABA COWTIMER::baseTime_ [private]

Stores the result of a call to the functibme(NULL)at construction time.

We require this member such that we can return the time inissmdnds correctly in the functioeTime()
Otherwise, an arithmetic overflow can occur.

Definition at line 85 of file cowtimer.h.

The documentation for this class was generated from theviolg file:

¢ Include/abacusbwtimer.h

6.71 ABA_OSTREAM Class Reference

Class implements an output stream which can be turned onfaatran time, i.e., if the output stream is turned
off, then no messages written by the operater reach the associated “real” output stream.

#i ncl ude <ostream h>

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

504 Reference Manual

Inheritance diagram for ABA_OSTREAM::

| ABA_ABACUSROOT|

T

| ABA_OSTREAM |

Public Member Functions

« ABA_OSTREAM (ostream &out, const chatogStreamName=0)
 ~ABA_OSTREAM(|)

The destructor.

« ABA OSTREAM & operatox < (char o)
Reimplementation for all fundamental types, donstchar x, and for some other classes listed below.

* ABA_OSTREAM & operatok < (unsigned char o)

* ABA_OSTREAM & operatox < (signed char o)

* ABA_OSTREAM & operatox < (short 0)

* ABA_OSTREAM & operatox < (unsigned short 0)

* ABA_OSTREAM & operatox < (int 0)

« ABA OSTREAM & operatox < (unsigned int 0)

« ABA OSTREAM & operatox < (long 0)

* ABA_OSTREAM & operatox < (unsigned long 0)
 ABA_OSTREAM & operatok < (float 0)

* ABA_OSTREAM & operatox < (double 0)

* ABA_OSTREAM & operatok < (const chako)

* ABA_OSTREAM & operatox < (ABA_OSTREAM &(pf)(ABA_OSTREAM &))
* ABA_OSTREAM & operatox < (constABA_STRING &0)

A manipulator is a function having as argument a reference to an ABA_B8WRand returning an ABA_-
OSTREAM.

* ABA_OSTREAM & operatox < (constABA_TIMER &o0)
* ABA_OSTREAM & operatox < (constABA_HISTORY &0)
* ABA_OSTREAM & operatox < (constABA_LPVARSTAT &0)
« ABA OSTREAM & operatox < (constABA CSENSE&0)
« ABA OSTREAM & operatox < (constABA_LP &0)
* void off ()
 voidon()
« void logOn()
« void logOn(const charxlogStreamName)
This version ofogOn()turns the output to the logfile on and sets the log-fillogstreamName

* void logOff ()

* boolisOn() const

* boolisLogOn() const
 ofstreamx log () const

« void setFormatFlagfmtflags flag)

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.71 ABA_OSTREAM Class Reference 505

Can be used to set the format flags of the output stream and the log file stmilae functionios::set()of the
iostream library.

Private Attributes

e ostream &out_
The “real” stream associated with our output stream (usualbutor cerr).

e boolon_
If true, then output is written to the streaowit_, otherwise it is suppressed.

e boollogOn_
If true_, then output is also written to the log streatog.

« ofstreamx log_

Friends

ABA_OSTREAM& flush(ABA_OSTREAM &0)

Flushes the output and the log stream buffers of the streafis function can be called via the manipulatog <
flush;.

ABA_OSTREAM & endl(ABA_OSTREAM &0)
ABA_OSTREAM & _setWidth(ABA_OSTREAM &0, int w)
ABA _OSTREAM& _setPrecisiofABA_OSTREAM &o, int p)

6.71.1 Detailed Description

Class implements an output stream which can be turned onfaatran time, i.e., if the output stream is turned
off, then no messages written by the operater reach the associated “real” output stream.

Definition at line 64 of file ostream.h.

6.71.2 Constructor & Destructor Documentation

6.71.2.1 ABA_OSTREAM:ABA_OSTREAM (ostream & out, const charx logStreamName= 0)

The constructor turns the output on and associates it witea™ stream.

Parameters:
out The “real” stream (usuallgoutor cerr.)}

logStreamNamelf logStreamNamés not O, then the output also directed to a log-file with trasne. The
default value ofogStreamNames 0.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

506

Reference Manual

6.71.2.2 ABA_OSTREAM:~ABA_OSTREAM ()

The destructor.

6.71.3 Member Function Documentation

6.71.3.1 bool ABA_OSTREAM::isLogOn () const

Returns:
true If the output to the lodfile is turned on,
false otherwise.

6.71.3.2 bool ABA_OSTREAM::isOn () const
Returns:

true If the output is turned on,
false otherwise.

6.71.3.3 ofstream ABA_OSTREAM::log () const

Returns:

A pointer to the stream associated with the log-file.

6.71.3.4 void ABA_OSTREAM::logOff ()

Turns the output to the logfile off.

6.71.3.5 void ABA_OSTREAM::logOn (const charx logStreamNamg

This version ofogOn()turns the output to the logfile on and sets the log-fillogStreamName

Parameters:
logStreamNameThe name of the log-file.

6.71.3.6 void ABA_OSTREAM::logOn ()

Turns the output to the logfile on.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.71 ABA_OSTREAM Class Reference 507

6.71.3.7 void ABA_OSTREAM::off ()

Turns the output off.

6.71.3.8 void ABA_OSTREAM::on ()

Turns the output on.

6.71.3.9 ABA_OSTREAM & ABA_OSTREAM::operator << (constABA_LP & o)

6.71.3.10 ABA_OSTREAM & ABA_OSTREAM::operator << (constABA_CSENSE& 0)

6.71.3.11 ABA_OSTREAM & ABA_OSTREAM::operator << (constABA_LPVARSTAT & 0)

6.71.3.12 ABA_OSTREAM & ABA_OSTREAM::operator << (constABA_HISTORY & 0)

6.71.3.13 ABA_OSTREAM & ABA_OSTREAM::operator << (constABA_TIMER & 0)

6.71.3.14 ABA_OSTREAM & ABA_OSTREAM::operator << (constABA_STRING & 0)

A manipulator is a function having as argument a referencantéA\BA_OSTREAM and returning an ABA_-
OSTREAM.

Manipulators are used that we can call, e.g., the funaiwdi(o)by just writing its name omitting brackets and the
function argument.

Returns:
A reference to the output stream.

Parameters:
m An output stream manipulator.

6.71.3.15 ABA_OSTREAM & ABA_OSTREAM::operator << (ABA_OSTREAM &(*)(ABA_OSTREAM
&) pf) [inline]

Definition at line 105 of file ostream.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.71.3.16

6.71.3.17

6.71.3.18

6.71.3.19

6.71.3.20

6.71.3.21

6.71.3.22

6.71.3.23

6.71.3.24

6.71.3.25

6.71.3.26

508

Reference Manual

ABA_OSTREAM & ABA_OSTREAM:

ABA_OSTREAM & ABA_OSTREAM:

ABA_OSTREAM & ABA_OSTREAM:

ABA_OSTREAM & ABA_OSTREAM:

ABA_OSTREAM & ABA_OSTREAM:

ABA_OSTREAM & ABA_OSTREAM:

ABA_OSTREAM & ABA_OSTREAM:

ABA_OSTREAM & ABA_OSTREAM:

ABA_OSTREAM & ABA_OSTREAM:

ABA_OSTREAM & ABA_OSTREAM:

ABA_OSTREAM & ABA_OSTREAM:

:operator

:operator

:operator

:operator

:operator

:operator

:operator

:operator

:operator

:operator

:operator

<< (const charx 0)

<< (double o)

<< (float 0)

<< (unsigned longo)

<< (long 0)

<< (unsigned into)

<< (int 0)

<< (unsigned shorto)

<< (short 0)

<< (signed charo)

<< (unsigned charo)

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.71 ABA_OSTREAM Class Reference 509

6.71.3.27 ABA_OSTREAM & ABA_OSTREAM::operator << (char o)

Reimplementation for all fundamental types, émnstcharx, and for some other classes listed below.

output operatok < If the output is turned on the operator of the base otseamis called. If also the output to
the logfile is turned on, we write the same message also tothélé.

return A reference to the output stream.

Parameters:
0 The item being output.

6.71.3.28 void ABA_OSTREAM::setFormatFlag (fmtflagsflag)

Can be used to set the format flags of the output stream anddhidd similar to the functionos::set() of the
iostream library.

For a documentation of all possible flags we refer to the desuation of the GNU / iostream Library.

Parameters:
flag The flag being set.

6.71.4 Friends And Related Function Documentation

6.71.4.1 ABA OSTREAM& _setPrecision ABA_OSTREAM & o,intp) [fri end]

Sets the precision for the output stream.

In most cases the manipulategtPrecisioris more convenient to use.

Returns:
A reference to the output stream.

Parameters:
0 An output stream.

p The precision.

6.71.4.2 ABA_OSTREAM& _setWidth (ABA_OSTREAM & o,intw) [fri end]

Sets the width of the field for the next output operation onldigeand the output stream.

In most cases the manipulatetWithis more convenient to use.

Returns:
A reference to the output stream.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

510 Reference Manual

Parameters:
0 An output stream.

w The width of the field.

6.71.4.3 ABA_OSTREAM& endl (ABA_OSTREAM & 0) [fri end]

Writes an end of line to the output and log-file of the stremamd flushes both stream buffers.

This function can be called via the manipulatot < endl;.

Returns:
A reference to the output stream.

Parameters:
0 An output stream.

6.71.4.4 ABA_OSTREAM& flush (ABA_OSTREAM & 0) [fri end]

Flushes the output and the log stream buffers of the sti@aithis function can be called via the manipulator
<< flush;.

Returns:
A reference to the output stream.

Parameters:
0 An output stream.

6.71.5 Member Data Documentation

6.71.5.1 ofstreams ABA_OSTREAM:log_ [private]

A pointer to a stream associated with the log file.

Definition at line 262 of file ostream.h.

6.71.5.2 boolABA OSTREAM:logOn_ [private]

If true_, then output is also written to the log streatag.

Definition at line 258 of file ostream.h.

6.71.5.3 boolABA OSTREAM:on_ [private]

If true, then output is written to the streamot_, otherwise it is suppressed.

Definition at line 253 of file ostream.h.

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

6.72 Preprocessor Flags

511

6.71.5.4 ostream&\BA_OSTREAM:.out_ [private]

The “real” stream associated with our output stream (ugwallitor cerr).

Definition at line 248 of file ostream.h.

The documentation for this class was generated from thevioll file:

* Include/abacusktream.h

6.72 Preprocessor Flags

Table6.1summarizes all preprocessors flags that are relevalt BACUS-users.

Flag Description See Section
ABACUS_COWPI LER_GCC41 | GNU C++ compiler 4.1.x| 2.4
ABACUS_COMPI LER_GCC34 | GNU C++ compiler 3.4.x| 2.4
ABACUS_COWPI LER_GCC33 | GNU C++ compiler 3.3.x| 2.4
ABACUS_COWPI LER_SUN SUN C++ compiler 24

Table 6.1:

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

Preprocessor Flags.

512 Reference Manual

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

Chapter 7

Warranty and Copyright

7.1 Warranty

All parts of ABACUS, including the software, the example, and the user’s guitk reference manual, are
distributed without any warranty. The entire risk ®BACUS is with its user.

7.2 Copyright

This library is free software; you can redistribute it andfoodify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundagitiver version 2.1 of the License, or (at your option)
any later version.

This library is distributed in the hope that it will be usefout WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTIOLAR PURPOSE. See the GNU Lesser
General Public License for more details.

You should have received a copy of the GNU Lesser Generaldioense along with this library; if not, write
to the Free Software Foundation, Inc., 59 Temple Placee 330, Boston, MA 02111-1307 USA

seehtp://www.gnu.org/copyleft/gpl.html

514 Warranty and Copyright

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

Bibliography

[ASCO5]

[Bay72]

INFORMATION PROCESSING SYSTEM Accredited StardCommittee, X3The ISO/ANSI &+
Draft, 1995. http://www.cygnus.com/misc/wpB

R. Bayer. Symmetric binagtrees: Data structure and maintenance algorithfsta Informatica
1:290-306, 1972.38

[BCC93a] Egon Balas, Sebastian Ceria, and Gerard Corrsuépllift-and-project cutting plane algorithm for

mixed 0-1 programsMathematical Programmind8:295-324, 199336

[BCC93b] Egon Balas, Sebastian Ceria, and Gerard Corrauéolving mixed 0-1 programs by a lift-and-project

[BIN*+97]

[Bo094]

[CLR0]

[ES92]

[GS78]

[HP93]

[JRT94]

[JRTO5]

[KM9O]

[Knuo3]

method. InProceedings of the Fourth Annual ACM-SIAM Symposium onr&tis@lgorithms pages
232-242,1993.36

Cynthia Barnhart, Ellis L. Johnson, George L. Nemhaudgartin W. P. Savelsbergh, and Pamela H.
Vance. Branch-and-price: Column generation for huge antegogramsOperations Researgii997.
to appear.3

G. BoochObject-oriented analysis and design with applicatiofise Benjamin Cummings Publishing
Company, Redwood City, California, 19948

T.H. Cormen, C.E. Leiserson, and R.L. Rivesttroduction to algorithms MIT Press, Cambridge,
1990. 40

M.A. Ellis and B. Stroustrup.The annotated €+ reference manual Addison Wesley, Reading,
Massachusetts, 19923

L.J. Guibas and R. Sedgewick. A diochromatic frantévior balanced trees. IRroceedings of the
19th annual symposium on foundations of computer scjgpages 8-21. IEEE Computer Society,
1978. 38

Karla Hoffman and Manfred W. Padberg. Solving aglerew scheduling problems by branch-and-cut.
Management Scienc89:657—682, 199336

Michael Junger, Gerhard Reinelt, and Stefan ThigPrvably good solutions for the traveling sales-
man problemZeitschrift fir Operations Researct0:183—-217, 199432

Michael Jinger, Gerhard Reinelt, and Stefan ThieReactical problem solving with cutting plane
algorithms in combinatorial optimization. In Willian Copkazlé Lovasz, and Paul Seymour, edi-
tors,Combinatorial OptimizationDIMACS Series in Discrete Mathematics and Theoretical Goter
Science, pages 111-152. American Mathematical Socie®p.19

T. Korson and J.D. McGregor. Understanding objedented: A unifying paradigmCommunications
of the ACM 33(9):40-60, 19903

Donald E. KnuthThe Stanford GraphBase: a platform for combinatorial cotimm Addison-Wesley,
Reading, Massachusetts, 19982

[Leigs]

[PRO1]

[RF81]

[Sav94]

[Stro3]

[Thigs]

[VBJINO4]

[Wun97]

516 BIBLIOGRAPHY

Sebastian Leipert. Vbctool—a graphical interface ¥isualization of branch-and-cut algorithms.
Technical report, Institut fir Informatik, Universitat Zioln, 1995. http://www.informatik.uni-
koeln.de/ls_juenger/projects/vbctool.htn83

Manfred W. Padberg and Giovanni Rinaldi. A branch-ant algorithm for the resolution of large-scale
symmetric traveling salesman problen®AM Review33:60-100, 199131

David M. Ryan and B.A. Foster. An integer programmapgroach to scheduling. In A. Wren, editor,
Computer scheduling of public transport urban passengkicke and crew schedulingages 269-280.
North Holland, Amsterdam, 198139

Martin W.P. Savelsbergh. Preprocessing and pgdbinmixed integer programming problen@RSA
Journal on Computing6:445—454, 1994 .36

B. Stroustrup. The C++ programming language—2nd editionAddison-Wesley, Reading, Mas-
sachusetts, 19933

Stefan Thienel ABACUS—A Branch-And-CUt SysteRhD thesis, Universitat zu Kéln, 1995, 27,
59

Pamela H. Vance, Cynthia Barnhart, Ellis J. Joimsand George L. Nemhauser. Solving binary
cutting stock problems by column generation and branchbemohd. Computational Optimization and
Applications 3:111-130, 199467

Roland Wunderling. SoPlex, The Sequential object-oriented simplex classarlbr 1997.
http://www.zib.de/Optimization/Software/Soplex1.6

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

Index

All names set in typewriter style refer to4Gr ABA_GLOBAL, 95
names, file names, or names in the configuration file. ~ ~ABA_HASH
In particular, all names of the reference manual are ABA_HASH, 481

written in typewriter style. Members of classes are ~ABA_HISTORY

sub entries of their classes.

>-inequalities 31
<-inequalities 31
-fno-inplicit-tenpl ates, 87
. abacus, 74,84
~ABA_ABACUSROQOT

ABA_ABACUSROOT,91
~ABA_ACTIVE

ABA_ACTIVE, 393
~ABA_ARRAY

ABA_ARRAY, 439
~ABA BOUNDBRANCHRULE

ABA_BOUNDBRANCHRULE, 335

~ABA_BRANCHRULE
ABA_BRANCHRULE, 328
~ABA_BUFFER
ABA_BUFFER, 445
~ABA_COLUMN
ABA_COLUMN, 374
~ABA_COLVAR
ABA_COLVAR, 389
~ABA_CONBRANCHRULE
ABA_CONBRANCHRULE, 342
~ABA_CONSTRAINT
ABA_CONSTRAINT, 223
~ABA_CONVAR
ABA_CONVAR, 213
~ABA_COWTIMER
ABA_COWTIMER, 503
~ABA_CPUTIMER
ABA_CPUTIMER, 500
~ABA_CUTBUFFER
ABA_CUTBUFFER,398
~ABA_DLIST
ABA_DLIST, 459
~ABA_FIXCAND
ABA_FIXCAND, 410
~ABA_GLOBAL

ABA_HISTORY, 417
~ABA_LIST

ABA_LIST, 452
~ABA_LP

ABA_LP, 277
~ABA_LPMASTER

ABA_LPMASTER, 324
~ABA_LPMASTEROSI

ABA_LPMASTEROSI,326
~ABA_LPSOLUTION

ABA_LPSOLUTION, 237
~ABA_LPSUB

ABA_LPSUB,314
~ABA_LPSUBOSI

ABA_LPSUBOSI,323
~ABA_MASTER

ABA_MASTER, 120
~ABA_NONDUPLPOOL

ABA_NONDUPLPOOL,355
~ABA_NUMCON

ABA_NUMCON, 378
~ABA_NUMVAR

ABA_NUMVAR, 384
~ABA_OSIIF

ABA_OSIIF, 299
~ABA_OSTREAM

ABA_OSTREAM, 505
~ABA_POOL

ABA_POOL, 346
~ABA_POOLSLOT

ABA_POOLSLOT,359
~ABA_POOLSLOTREF

ABA_POOLSLOTREF 365
~ABA_RING

ABA_RING, 464
~ABA_ROW

ABA_ROW, 370
~ABA_ROWCON

ABA_ROWCON, 381
~ABA_SEPARATOR

518

INDEX

ABA_SEPARATOR,241
~ABA SET

ABA_SET,427
~ABA_SETBRANCHRULE

ABA_SETBRANCHRULE,332
~ABA_SPARVEC

ABA_SPARVEC,421
~ABA_SROWCON

ABA_SROWCON,386
~ABA_STANDARDPOOL

ABA_STANDARDPOOL,350
~ABA_STRING

ABA_STRING, 433
~ABA_SUB

ABA_SUB, 169
~ABA_TAILOFF

ABA_TAILOFF, 414
~ABA_TIMER

ABA_TIMER, 496
~ABA_VALBRANCHRULE

ABA_VALBRANCHRULE, 339
~ABA_ VARIABLE

ABA_VARIABLE, 230
_activate

ABA_SUB, 169
_addCols

ABA_LP, 277

ABA_OSIIF, 299
_addRows

ABA_LP, 277

ABA_OSIIF, 300
_approx

ABA_LP, 278

ABA_OSIIF, 300
__barXVal

ABA_LP, 278

ABA_OSIIF, 300
_barrier

ABA LP, 278

ABA_OSIIF, 300
_changelLBound

ABA LP, 278

ABA_OSIIF, 300
_changeRhs

ABA LP, 278

ABA_OSIIF, 300
_changeUBound

ABA LP, 278

ABA_OSIIF, 301
_colRealloc

ABA _LP, 278

ABA_OSIIF, 301
_compress

ABA_CONVAR, 214
_conEliminate

ABA SUB, 170
_createLpMasters

ABA_MASTER, 120
_deactivate

ABA_SUB, 170
_deleteLpMasters

ABA MASTER, 120

_dualSimplex
ABA_LP, 279
ABA_OSIIF, 301
_expand
ABA_CONVAR, 214
_fixByLoglmp
ABA_SUB, 170
_getinfeas
ABA_LP, 279

ABA_OSIIF, 301
_getSimplexlterationLimit

ABA_LP, 279

ABA_OSIIF, 301
_improve

ABA_SUB, 171
_initMakeFeas

ABA_SUB, 171
_initialize

ABA_LP, 279

ABA_OSIIF, 302
_initializeLpParameters

ABA_MASTER, 120
_initializeParameters

ABA_MASTER, 120
_IBound

ABA_LP, 280

ABA_OSIIF, 302
_loadBasis

ABA_LP, 280

ABA_OSIIF, 302
_IpVarStat

ABA_LP, 280

ABA_OSIIF, 302
_makeFeasible

ABA_SUB, 171
_maxCol

ABA_LP, 280

ABA_OSIIF, 303
_maxRow

ABA_LP, 280

ABA_OSIIF, 303
_nCol

ABA LP, 281

ABA_OSIIF, 303

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

INDEX 519
_nRow ABA_SUB, 172
ABA LP, 281 _setDefaultLpParameters
ABA_OSIIF, 303 ABA_MASTER, 121
_nnz _setPrecision
ABA_LP, 281 ABA_OSTREAM, 509
ABA_OSIIF, 303 _setSimplexlIterationLimit
_obj ABA_LP, 283
ABA_LP, 281 ABA_OSIIF, 305
ABA_OSIIF, 303 _setWidth
_outputLpStatistics ABA OSTREAM, 509

ABA_MASTER, 121
_pivotSlackVariableln
ABA LP, 281
ABA_OSIIF, 303
_pricing
ABA_SUB, 171
_primalSimplex
ABA_LP, 281
ABA_OSIIF,304
_printLpParameters
ABA_MASTER, 121
_reco
ABA_LP, 282
ABA_OSIIF, 304
_remCols
ABA_LP, 282
ABA_OSIIF, 304
_remRows
ABA_LP, 282
ABA_OSIIF, 304
_removeCons
ABA_SUB, 172
_removeVvars
ABA_SUB, 172
_rhs
ABA_LP, 282
ABA_OSIIF, 304
_row
ABA LP, 282
ABA_OSIIF, 304
_rowRealloc
ABA_LP, 282
ABA_OSIIF, 305
_selectCons
ABA_SUB, 172
_selectVars
ABA_SUB, 172
_sense
ABA_LP, 282
ABA_OSIIF, 305
_sSeparate
ABA_SUB, 172
_setByLoglmp

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

_slack

ABA LP, 283

ABA_OSIIF, 305
_slackStat

ABA_LP, 283

ABA_OSIIF, 306
_uBound

ABA_LP, 283

ABA_OSIIF, 306
_value

ABA_LP, 283

ABA_OSIIF, 306
_varEliminate

ABA_SUB, 173
_XxVal

ABA_LP, 283

ABA_OSIIF, 306
_yVval

ABA_LP, 284

ABA_OSIIF, 306

a
ABA ARRAY, 443
ABA_ABACUSROOT, 22, 24
ABA_ACTI VE, 28
ABA ARRAY, 40
ABA_BHEAP, 41
ABA BOUNDBRANCHRULE, 40, 61
ABA BPRI OQUEUE, 41
ABA_BRANCHRULE, 40, 61, 63
extract, 66
ABA BUFFER, 41
ABA_CCLUWN, 30
ABA_COLVAR, 32,47
ABA CONBRANCHRULE, 40, 61
ABA CONSTRAI NT, 22, 30, 46
genRow, 58
sl ack, 58
vi ol at ed, 59
ABA_CONVAR
conpr ess, 57
expand, 57
ABA_COM MER, 44

520

INDEX

ABA _CPUTI MER, 44

ABA CUTBUFFER, 39

ABA DI CTI ONARY, 42

ABA DLI ST, 41

ABA FASTSET, 42

ABA_FI XCAND, 25, 40

ABA_FSVARSTAT, 68

ABA GLOBAL, 24
assi gnPar anet er, 85
err,67
fi ndPar anet er, 85
get Par anet er, 85
out, 67

ABA_HASH, 42

ABA HI STCRY, 40

ABA LI ST, 41

ABA LP, 36

ABA LPSUB, 36

ABA LPSUBCSI , 37

ABA_NMASTER, 22, 24, 25, 47
betterPrimal ,54
constrai nt Pool Separ ati on, 56
Constructor, 47
enuner ati onStr at egy, 60
equal SubConpar e, 60
initializeOptim zation,56
initializeOptimnm zation,48 72
initializeParaneters,85
initializePool s, 49 56
obj I nt eger, 72
optim ze,55
out put, 73
pri mal Bound, 54
separateepar at e, 56
term nateQOptim zation, 72

ABA_NONDUPLPOCOL, 17, 57

ABA _NUMCON, 47

ABA NUWAR, 47

ABA OPENSUB, 25, 38

ABA _OSI | F, 36
osiLPosi LP, 73

ABA OSTREAM 43

ABA _POOLSLOT, 33

ABA POOLSLOTREF, 34

ABA RI NG 41

ABA_ROW 30

ABA ROWCON, 31, 47

ABA SET, 42

ABA_SETBRANCHRULE, 40, 61

ABA SORTER, 44

ABA SPARVEC, 42

ABA_SRONCCN, 31

ABA_STANDARDPQOQOL, 34

ABA _STRI NG 42
ABA SUB, 22, 25, 26, 49
activate, 66,70
addConBuf f er Space, 52
addCons, 52, 68, 70
addVar s, 68, 70
chooselLpMet hod, 67
conpar eBr anchi ngSanpl eRanks, 65
conEl i m nat e, 68
constrai nt Pool Separ ati on, 52
Constructor, 50
deactivat e, 66
deactive, 70
exceptionBranch, 17,73
exceptionFat hom 17,73
f easi bl e, 51, 53
firstSub,49
fi xByLogl np, 71
gener at eBr anchRul es, 61, 66
gener at eSon, 51
i gnorelnTailingOfif, 17,74
i nprove, 54
i ni t MakeFeas, 59
makeFeasi bl e, 59
obj Al'l I nteger, 72
pricing, 53
rankBranchingRuleankBr anchi ngRul e,
65
r enoveCon, 69
renoveCons, 69
renoveVar , 69
renoveVars, 69
sel ect Best Br anchi ngSanpl e, 66
sel ect Branchi ngVvari abl e, 60, 61
sel ect Branchi ngVar i abl eCandi dat es,
65
separat e, 52
set ByLogl np, 71
var El i m nat e, 69
vari abl ePool Separ ati on, 53
ABA TAI LOFF, 40
ABA TI MER, 44
ABA VALBRANCHRULE, 40, 61
ABA VARI ABLE, 22, 30, 46
genCol unm, 58
r edCost , 58
vi ol at ed, 59
ABA_ABACUSROOT
Fatal,91
Ok, 91
ABA_ABACUSROOT,90
~ABA_ABACUSROOT,91
exit, 91

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

INDEX 521
EXITCODES,91 number474
fracPart92 operatok <, 475
onOff, 92 realloc,475

ABA_ACTIVE, 391 rightSon,475
~ABA_ACTIVE, 393 size,475

ABA_ACTIVE, 392 393
active_,396
incrementRedundantAg893
insert,393

master_396

max, 394

n_,396

number,394
operatok <, 395
operator=394
operator[],394
poolSlotRef,394
realloc,395
redundantAge395
redundantAge 396
remove,395
resetRedundantAg895

ABA_ARRAY, 437

~ABA_ARRAY, 439
a ,443
ABA_ARRAY, 438 439
copy,440

glob_,443

leftShift, 440

n_,443

operatok <, 443
operator=440, 441
operator[],441
rangeCheck441
realloc,441, 442
set,442

size,442

ABA_BHEAP, 471

ABA_BHEAP,472 473
check,473
clear,473
empty,473
extractMin,473
father,474
getMin, 474
getMinKey,474
glob_,475
heap_A476
heapify,474
insert,474
keys_,476
leftSon,474
n_,476

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

ABA_BOUNDBRANCHRULE, 334
~ABA BOUNDBRANCHRULE, 335
ABA BOUNDBRANCHRULE, 335
ABA LPSUB,321
ABA_ SUB, 204
extract,335
IBound,336
IBound_,337
oldLpLBound_,337
oldLpUBound_ 337
operatok <, 336
uBound,336
uBound_ 337
unExtract,336
variable,336
variable 337

ABA BPRIOQUEUE 476
ABA BPRIOQUEUE 477
clear,477
extractMin,477
getMin, 478
getMinKey,478
glob_,479
heap_479
insert, 478
number478
realloc,478
size,479

ABA BRANCHRULE, 327
~ABA_BRANCHRULE, 328
ABA BRANCHRULE, 328
branchOnSetVai328
extract,329
initialize, 329
master_330
unExtract,329

ABA_BSTACK, 467
ABA BSTACK, 468
empty,469
full, 469
glob_,471
operatok <, 470
pop,469
push,469
realloc,469
size, 470
stack_471
top,470

522

INDEX

t0s,470
tos ,471

ABA_BUFFER,443

~ABA_BUFFER, 445
ABA BUFFER,445
buf ,448

clear,445
empty,445

full, 446

glob_,448

leftShift, 446
n_,448
number446
operatok <, 448
operator=446
operator[],446, 447
pop,447

push,447
realloc,447
size,448

size_,448

ABA_COLUMN, 372

~ABA_COLUMN, 374
ABA_COLUMN, 373 374
copy,374

IBound,375

IBound_,376

obj, 375

obj_,376

operatok <, 376
uBound,375
uBound_,376

ABA_COLVAR, 387

~ABA_COLVAR, 389
ABA COLVAR, 388 389
coeff, 389 390
column,390
column_,391
operatok <, 390

print, 390

ABA_CONBRANCHRULE, 341

~ABA CONBRANCHRULE,342
ABA_CONBRANCHRULE,342
ABA _LPSUB, 321

constraint342

extract,342 343

initialize, 343

operatok <, 343

operator=343

poolSlotRef 344

unExtract,343

ABA_CONSTRAINT, 221

~ABA_CONSTRAINT, 223

ABA CONSTRAINT, 222 223
ABA LPSUB, 227
classification223
classify,223

coeff, 224
conClass_227
distance224
duplicate 224
genRow,224
liftable, 225
liftable_,227
operator=225
printRow, 225
rhs,225

rhs_,227
sense225
sense_227
slack,225

valid, 226
violated,226
voidLhsViolated 227

ABA_CONVAR, 210

~ABA CONVAR, 213

_compress214

_expand214

ABA_CONVAR, 213

ABA CUTBUFFER< ABA CONSTRAINT,
ABA_VARIABLE >, 218

ABA CUTBUFFER< ABA VARIABLE,
ABA CONSTRAINT >, 218

ABA_POOLSLOT< ABA_CONSTRAINT,
ABA VARIABLE >, 219

ABA_POOLSLOT< ABA_VARIABLE,
ABA_CONSTRAINT >, 219

ABA POOLSLOTREK ABA -
CONSTRAINT, ABA_ VARIABLE
>, 219

ABA POOLSLOTRER: ABA_VARIABLE,
ABA_CONSTRAINT >, 219

ABA_STANDARDPOOL< ABA -
CONSTRAINT, ABA VARIABLE
>, 219

ABA_STANDARDPOOL< ABA -
VARIABLE, ABA CONSTRAINT
>, 219

ABA_SUB, 219

activate 214

active,214

addReference14

compress214

deactivate214

deletable215

dynamic,215

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

INDEX

523

dynamic_,219

equal,215

expand215

expanded215

expanded 219

global,216

hashKey216

local, 216

local_,220

lock, 216

locked,216

master_220

nActive ,220

name,217

nLocks ,220

nReference17

nReferences 220

print, 217

rank,218

removeReferenc@18

sub,218

sub_,220

unlock,218
ABA_COWTIMER, 501

~ABA_COWTIMER, 503

ABA_COWTIMER, 502

baseTime_503

theTime,503
ABA_CPUTIMER, 499

~ABA_CPUTIMER, 500

ABA_CPUTIMER, 500

clk_tck ,501

theTime,501
ABA_CSENSE

Equal,250

Greater250

Less,250
ABA_CSENSE 249

ABA_CSENSE 250 251

glob_,252

operatok <, 252

operator=251

SENSE 250

sense251, 252

sense 252
ABA_CUTBUFFER,397

~ABA_CUTBUFFER,398

ABA CUTBUFFER,398

ABA_SUB, 401

extract,398

insert,399

keepinPool_401

master_401

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

n_,401
number,399
operator=400
psRef_ 401
rank _,401
ranking_,402
remove 400
size,400
slot, 400
sort,400
space400
ABA CUTBUFFER< ABA_ CONSTRAINT,
ABA VARIABLE >
ABA CONVAR, 218
ABA_POOLSLOT,361
ABA CUTBUFFER< ABA _ VARIABLE, ABA -
CONSTRAINT >
ABA CONVAR, 218
ABA_POOLSLOT,361
ABA_CUTBUFFER< BaseType, CoType
ABA POOLSLOT,361
ABA_DICTIONARY, 486
ABA_DICTIONARY, 487
glob, 489
glob_,489
hash_489
insert,488
lookUp, 488
operatok <, 488
operator=488
size,489
ABA_DLIST, 458
~ABA_DLIST, 459
ABA_DLIST, 459
append460
empty,460
extractHead460
first, 460
first_,462
firstElem,460
glob_,462
last,461
last ,462
operatok <, 461
operator=461
remove 461
removeHead461
ABA _DLIST< Type>
ABA DLISTITEM, 457
ABA_DLISTITEM, 455
ABA_DLIST< Type>, 457
ABA DLISTITEM, 456
elem,457

524

INDEX

elem_,457
operatok <, 457
pred,457
pred_,458
succ, 457
succ_458
ABA_FASTSET,429
ABA_FASTSET,429
rank_,430
unionSets430
ABA_FIXCAND, 409
~ABA_FIXCAND, 410
ABA_FIXCAND, 410
ABA_MASTER, 148 411
ABA_SUB, 411
allocate 410
candidates 411
deleteAll,410
fixByRedCost410
fsVarStat_411
lhs_,412
master_412
operator=411
saveCandidated11
ABA_FSVARSTAT
Fixed,258
FixedToLowerBound258
FixedToUpperBound258
Free,258
Set,258
SetToLowerBound?258
SetToUpperBound}58
ABA_FSVARSTAT, 256
ABA_FSVARSTAT, 258 259
contradiction259
fixed, 259
fixedOrSet260
glob_,261
operatok <, 261
set,260
STATUS, 257
status 260, 261
status_262
value,261
value_,262
ABA_GLOBAL, 92
~ABA_GLOBAL, 95
ABA_GLOBAL, 95
assignParamete®6-98
enter,98
eps,98, 99
eps_,103
equal,99

err,99
err_,103
findParameter99
getParameted,00
infinity, 101
infinity_, 104
insertParametef,01
isInfinity, 101
isInteger,101, 102
isMinusInfinity, 102
machineEps102
machineEps_104
operatok <, 103
operator=,102
out, 102
out ,104
paramTable_104
readParameterd03
tab_,104
ABA_HASH, 479
~ABA_HASH, 481
ABA HASH, 481
find, 482
glob_,485
hf, 482
initializelteration,483
insert, 483
iter_,486
nCollisions,483
nCollisions_ 486
next,483
operatok <, 485
operator=484
overWrite,484
remove 484
resize 485
size,485
size ,486
table ,486
ABA_HISTORY, 416
~ABA_ HISTORY, 417
ABA_HISTORY, 417
dualBound_418
master_418
n_,418
operatok <, 417
primalBound_418
realloc,417
size,417
time_,418
update417
ABA_INFEASCON
Feasible403

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

INDEX 525
TooLarge 403 ABA_LP, 270
TooSmall,403 ~ABA _LP, 277

ABA_INFEASCON,402 _addCols277
ABA_INFEASCON,403 _addRows277
constraint404 _approx,278
constraint_404 _barXVal,278
goodVar,404 _barrier,278
INFEAS, 403 _changelLBound?278
infeas,404 _changeRh78
infeas_ 404 _changeUBound278
master_404 _colRealloc278

ABA_LIST, 451 _dualSimplex279

~ABA_LIST, 452
ABA _LIST, 452 453
ABA_LISTITEM< Type >, 454
appendHead453
appendTail453
empty,453
extractHead453
first, 454
first_,455
firstElem,454
glob_,455
last,454
last_,455
operatok <, 454
operator=454
ABA_LIST< Type >
ABA_LISTITEM, 450
ABA_LISTITEM, 449
ABA_LIST < Type >, 450
ABA_LISTITEM, 450
elem,450
elem_/451
operatok <, 450
succ,450
succ_451
ABA_LISTITEM< Type>
ABA_LIST, 454
ABA LP
Approximate, 276
Available,277
BarrierAndCrossove76
BarrierNoCrossove76
Dual, 276
Error,276
Feasible276
Infeasible 276
Missing,277
Optimal,276
Primal,276
Unbounded276
Unoptimized,276

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

_getinfeas279
_getSimplexlIterationLimit279
_initialize, 279
_IBound,280
_loadBasis280
_lpVarStat,280
_maxCol,280
_maxRow,280
_nCol,281
_nRow,281
_nnz,281

_0bj,281
_pivotSlackVariableln281
_primalSimplex281
_reco,282
_remCols282
_remRows282
_rhs,282

_row, 282
_rowRealloc282
_sense282
_setSimplexIterationLimi283
_slack,283
_slackStat283
_uBound,283
_value,283

_XxVal, 283

_yVal, 284
ABA_LP, 277
addCols284
addRows284
barXVal,284
barXValStatus284
barXValStatus 293
basisStatu284
basisStatus 293
changelLBound284
changeRh285
changeUBound?285
colRangeCheckg85
colRealloc,285

526

INDEX

colsNnz,285
getinfeas?286
getSimplexiterationLimit286
infeasible 286
initialize, 286, 287
initPostOpt,287
IBound, 287
loadBasis288
IpSolverTime 288
IpSolverTime 293
IpVarStat,288
master_293
maxCol,288
maxRow,288
METHOD, 276
nCol, 288

nnz,288

nOpt,288
nOpt_,293
nRow,289

obj, 289
operatok <, 292
operator=289
optimize,289
OPTSTAT,276
optStat_293
pivotSlackVariableln289
reco,289
recoStatus289
recoStatus_294
remCols,290
remRows 290
rhs,290

row, 290
rowRangeCheclkg90
rowRealloc,290
rows2cols290
sense291
setSimplexIterationLimit291
slack,291
slackStat291
slackStatus291
slackStatus 294
SOLSTAT,276
uBound,291
value,292
writeBasisMatrix,292
xVal, 292
xValStatus292
xValStatus_294
yVal, 292
yValStatus292
yValStatus_294

ABA_LPSOLUTION<

ABA_LPMASTER, 324

~ABA_ LPMASTER, 324
ABA LPMASTER, 324
initializeLpParameters325
master_325
outputLpStatistics325
printLpParameters325
setDefaultLpParameter325

ABA_LPMASTEROSI,325

~ABA_LPMASTEROSI,326
ABA L PMASTEROSI,326
ABA _OSIIF, 327
initializeLpParameters326
outputLpStatistics326
printLpParameter326
setDefaultLpParameterd327

ABA_LPSOLUTION, 235

~ABA LPSOLUTION, 237

ABA_LPSOLUTION, 236, 237

ABA_SEPARATOR< CoType, BaseType>,
238

active,237

active_,239

idLp, 237

idLp_, 239

idSub,237

idSub_,239

master_239

nVarCon,238

nVarCon_,239

operatok <, 238

operator=238

zVal, 238

zVal_,239

ABA_CONSTRAINT,
ABA_VARIABLE >

ABA_SUB, 204

ABA_LPSOLUTION< ABA_VARIABLE, ABA_-

CONSTRAINT >
ABA_SUB, 205

ABA_LPSUB,311

~ABA LPSUB,314
ABA_BOUNDBRANCHRULE, 321
ABA CONBRANCHRULE,321
ABA CONSTRAINT, 227
ABA_LPSUB, 313 314

ABA SETBRANCHRULE,321
ABA SUB, 321
ABA_VALBRANCHRULE, 321
addCons314

addVars 314

barXVal,314
changelLBound314

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

INDEX 527
changeUBound315 glob_,266
colRealloc,315 operatok <, 265
conRealloc315 STATUS, 263
constraint2row315 status265
COPBRANCHRULE 321 status_266
eliminable, 315 ABA_MASTER
eliminated 315 Basic,116
elimVal, 315 316 BestFirst, 116
getinfeas316 BreadthFirst116
infeasCon316 Cbc,116
infeasCons_321 CloseHalf,115
infeasible 316 CloseHalfExpensivel 15
initialize, 316, 317 Clp, 116
IBound,317 CPLEX, 116
loadBasis318 DepthFirst, 116
Ip2orig_,321 DiveAndBest,116
IpVarStat,318 DyLP, 116
maxCol,318 Error,118
nCol,318 ExceptionFathom118
nnz,318 File, 119
nOrigVar_,321 FortMP,116
obj, 318 Full, 117
operator=318 GLPK, 116
optimize,319 Guaranteed] 18
orig2lp_,322 LinearProgram117
reco,319 MaxCowTime,118
removeCons319 MaxCpuTime,118
removeVars319 MaxLevel,118
rowRealloc,319 MOSEK, 116
sub,319 NoConElim,116
sub_,322 NonBinding,116
trueNCol,319 NoPrimalBound 117
trueNnz,320 NoVarElim,119
uBound,320 NoVbc, 119
value,320 Optimal, 118
valueAdd 322 Optimum,117
varRealloc 320 OptimumOne117
xVal, 320 OSL, 116

ABA_LPSUBOSI,322 OutOfMemory,118
~ABA_LPSUBOSI,323 Pipe,119
ABA_LPSUBOSI,323 Processingl18
operator=323 ReducedCost,19

ABA_LPVARSTAT Silent,117
AtLowerBound,264 SkipByLevel,118
AtUpperBound 264 SkipByNode,118
Basic,264 SoPlex,116
Eliminated,264 Statistics 117
NonBasicFree264 Subproblem117
Unknown,264 SYMPHONY, 116

ABA_LPVARSTAT, 262 Unprocessed, 18
ABA_LPVARSTAT, 264 \ol, 116

atBound,265
basic,265

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

XPRESS_MP116
ABA_MASTER, 104

528

INDEX

~ABA_MASTER, 120
_createLpMasterd4,20
_deleteLpMasters,20
_initializeLpParameter4,20
_initializeParameterd,20
_outputLpStatistics] 21
_printLpParameterg,21
_setDefaultLpParameters21
ABA_FIXCAND, 148 411
ABA_MASTER, 119 120
ABA_OPENSUB,408
ABA_SUB, 148 205
addCons]21
addVars]121
bestFirstSearct,21
betterDual 121
betterPrimal 122
BRANCHINGSTRAT,115
BRANCHINGSTRAT _,148
branchingStrategy,22
branchingStrategy 148
branchingTime122
branchingTime_149
breadthFirstSearcii22
check,123
conElimAge,123
conElimAge_,149
conElimEps123 124
conElimEps_149
CONELIMMODE, 115
conElimMode,124
CONELIMMODE_, 149
conElimMode_ 149
conPool 124
conPool_149
countLp,124

cutPool,124
cutPool_,149

cutting,125

cutting_,149
dbThreshold125
dbThreshold_150
defaultLpSolver125
defaultLpSolver_150
delayedBranchingl26
depthFirstSearci,26
diveAndBestFirstSearci26
dualBound 126, 127
dualBound_150
eliminateFixedSet] 27
eliminateFixedSet 150
enumerationStrategyt27, 128
enumerationStrategy 150

ENUMSTRAT, 116
ENUMSTRAT _,150
equalSubComparé28
feasibleFound128
firstSub,128
fixCand,129
fixCand_,150
fixSetByRedCost]129
fixSetByRedCost 150
guaranteel29
guaranteed] 29
highestLevel130
highestLevel_151
history, 130

history ,151
improveTime, 130
improveTime_151
initializeOptimization,130
initializeOptSensel 30
initializeParameters,30
initializePools,131
initLP, 131
knownOptimum 132
logLevel,132
logLevel_,151
lowerBound,132
IpMasterOsi132
IpMasterOsi_151
IpSolverTime, 132
IpSolverTime_151
IpTime, 133
IpTime_,151
maxConAdd133
maxConAdd_151
maxConBuffered133
maxConBuffered_151
maxCowTime133 134
maxCowTime_]152
maxCpuTime 134
maxCpuTime_152
maxlterations134
maxlterations_152
maxLevel,135
maxLevel ,152
maxVarAdd,135
maxVarAdd_,152
maxVarBuffered,135
maxVarBuffered 152
minDormantRounds].36
minDormantRounds 152
nAddCons_]152
nAddVars 153

nBranchingVariableCandidatek36

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

INDEX

529

nBranchingVariableCandidatesl53

newFixed,136
newRootReOptimizel 36, 137
newRootReOptimize 153
newSub137
nFixed_,153

nLp, 137

nLp_,153
nNewRoot,137
nNewRoot_153
nRemCons_153
nRemVars_153
nSub,137

nSub_,154
nSubSelected,37
nSubSelected 154
objinteger,137, 138
objinteger_]154
openSub138
openSub_154
operator=138
optimize,138
optimumFileName138
optimumFileName_154
optSensel 38
optSense_154
OSISOLVER,116
OSISOLVER_,154
OUTLEVEL, 116
outLevel,139
OUTLEVEL_, 154
outLevel ,154
output,139
pbMode,139
pbMode_,155

pricing, 139
pricing_,155
pricingFreq,139, 140
pricingFreq_J155
pricingTime,140
pricingTime_,155
primalBound,140
primalBound_155
PRIMALBOUNDMODE, 117
PRIMALBOUNDMODE _, 155
primalViolated,140
printGuaranteel41
printLP,141
printLP_,155
printParameters,41
problemNamel41
problemName_155
readParamFromFile 156

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

removeConsl41
removeVarsl41l
requiredGuaranted4?2
requiredGuarantee 156
root, 142

root_,156
rootDualBound 142
rootDualBound_156
rRoot, 142

rRoot_,156

select, 143
separationTimel43
separationTime_156
setSolverParameters43
showAverageCutDistanc&43
showAverageCutDistancel56
skipFactor143 144
skipFactor_]156
SKIPPINGMODE,117
skippingMode 144
SKIPPINGMODE _,157
skippingMode_ 157
solveApprox,144
solveApprox_,157
STATUS,118

status,144

STATUS_,157

status_ 157

tailOffNLp, 144, 145
tailOffNLp_, 157
tailOffPercent 145
tailOffPercent_157
terminateOptimization145
theFuture145
totalCowTime, 145
totalCowTime_ 157
totalTime, 145
totalTime_,157
treelnterfaceLowerBound 46
treelnterfaceNewNodd 46
treelnterfaceNodeBound$46
treelnterfacePaintNod&46
treelnterfaceUpperBound46
treeStream_158
upperBound146
varElimAge,146
varElimAge _,158
varElimEps,147
varElimEps_,158
VARELIMMODE, 118
varElimMode,147
VARELIMMODE_, 158
varElimMode_,158

530

INDEX

varPool,147
varPool_,158
vbclLog,147, 148
VbcLog_,158
VBCMODE, 119
VBCMODE_, 158
writeTreelnterfacel48
ABA_NONDUPLPOOL,354
~ABA_NONDUPLPOOL,355
ABA_NONDUPLPOOL,355
hardDeleteConVaB55
hash_357
increase356
insert,356
nDuplications_357
operator=356
present356
softDeleteConVar3d57
statistics 357
ABA_NONDUPLPOOL< ABA_CONSTRAINT,
ABA_VARIABLE >
ABA_POOLSLOT,361
ABA_NONDUPLPOOL< ABA_VARIABLE,
ABA CONSTRAINT >
ABA_POOLSLOT,362
ABA_NUMCON, 377
~ABA_NUMCON, 378
ABA_NUMCON, 378
coeff, 378
number378
number_379
operatox <, 379
print, 378
ABA_NUMVAR, 382
~ABA_NUMVAR, 384
ABA NUMVAR, 383
number,384
number_384
operatok <, 384
ABA OPENSUB,405
ABA_MASTER, 408
ABA_OPENSUB,406
ABA_SUB, 205, 408
dualBound 406
dualBound_408
empty,406
insert,407
list_, 408
master_408
n_,408
number 407
operator=407
prune,407

remove 407
select407
updateDualBound408
ABA_OPTSENSE
Max, 247
Min, 247
Unknown,247
ABA_OPTSENSE245
ABA OPTSENSE247
max,247
min, 247
operatok <, 248
SENSE 246
sense247, 248
sense_248
unknown,248
ABA_OSIIF
Approx, 298
Exact,298
ABA_OSIIF, 294
~ABA_OSIIF, 299
_addCols299
_addRows300
_approx,300
_barXVal,300
_barrier,300
_changelLBound300
_changeRhs300
_changeUBound301
_colRealloc 301
_dualSimplex301
_getinfeas301
_getSimplexlterationLimit301
_initialize, 302
_IBound,302
_loadBasis302
_IpVarStat,302
_maxCol,303
_maxRow,303
_nCol,303
_nRow,303
_hnz,303
_0bj,303
_pivotSlackVariableIn303
_primalSimplex304
_reco,304
_remCols304
_remRows304
_rhs,304
_row, 304
_rowRealloc 305
_sense305
_setSimplexIterationLimit305

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

INDEX

531

_slack,305
_slackStat306
_uBound,306
_value,306
_xVal, 306
_yVal, 306
ABA_LPMASTEROSI,327
ABA_OSIIF, 299
barXVal _,308
collower_,309
colupper_309
convertSenseToBound06
csense20sB06
cStat_,309
currentSolverType306
currentSolverType 309
freeChar307
freeDouble 307
freelnt, 307
freeStatus307
getDefaultinterface307
getSol,307
loadDummyRow307
IpMasterOsi_309
IpVarStat20si307
numcCols_309
numRows_ 309
objcoeff ,309
operator=308
0si2csense308
osi2lpVarStat308
osi2slackStat308
osiLP,308
osiLP_,309
reco ,310
rhs_,310
rowactivity ,310
rowsense_310
rStat_,310
slackStat20si308
SOLVERTYPE,298
switchinterfaces308
value_,310
ws_,310
xVal_, 310
yVal_, 310
ABA_OSTREAM, 503
~ABA_OSTREAM, 505
_setPrecisior09
_setWidth,509
ABA_OSTREAM, 505
endl,510
flush,510

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

isLogOn,506
isOn,506
log, 506
log_,510
logOff, 506
logOn,506
logOn_,510
off, 506
on, 507
on_,510
operatok <, 507, 508
out_,510
setFormatFlaghb09
ABA POOL
ABS_RANK, 345
NO_RANK, 345
RANK, 345
ABA_POOL, 344
~ABA _POOL, 346
ABA_POOL, 346
getSlot,346
hardDeleteConVai346
insert,346
master_347
number,346
number_348
putSlot,347
RANKING, 345
removeConVar347
separate347
softDeleteConVar347
ABA_POOL< ABA_CONSTRAINT, ABA -
VARIABLE >
ABA_POOLSLOT,362
ABA POOL< ABA_VARIABLE, ABA -
CONSTRAINT >
ABA_POOLSLOT,362
ABA_POOL< BaseType, CoType
ABA_POOLSLOT,362
ABA POOLSLOT,358
~ABA_POOLSLOT,359
ABA_CUTBUFFER< ABA_CONSTRAINT,
ABA_VARIABLE >, 361
ABA_CUTBUFFER< ABA_VARIABLE,
ABA_CONSTRAINT >, 361
ABA_CUTBUFFER< BaseType, CoType>,

361

ABA_NONDUPLPOOL< ABA_-
CONSTRAINT, ABA_VARIABLE
>, 361

ABA_NONDUPLPOOL< ABA_VARIABLE,
ABA_CONSTRAINT >, 362

532

INDEX

ABA_POOL< ABA_CONSTRAINT, ABA_-
VARIABLE >, 362

ABA POOL< ABA VARIABLE, ABA -
CONSTRAINT >, 362

ABA_POOL< BaseType, CoType-, 362

ABA_POOLSLOT,359, 360

ABA POOLSLOTREK ABA -
CONSTRAINT, ABA VARIABLE
>, 362

ABA_POOLSLOTRER ABA_VARIABLE,
ABA CONSTRAINT >, 362

ABA_POOLSLOTREK BaseType, CoType
>, 362

ABA_STANDARDPOOL< ABA -
CONSTRAINT, ABA_VARIABLE
>, 362

ABA_STANDARDPOOL< ABA -
VARIABLE, ABA_CONSTRAINT
>, 362

ABA_STANDARDPOOL< BaseType, CoType
>, 363

ABA SUB, 363

conVar,360

conVar_,363

hardDelete360

insert,360

master 360

master_363

operator=360

pool_,363

removeConVarFromPoadB61

softDelete 361

version,361

version_,363

ABA_POOLSLOT< ABA_CONSTRAINT, ABA_-

VARIABLE >
ABA_CONVAR, 219

ABA_POOLSLOT< ABA_VARIABLE, ABA -

CONSTRAINT >
ABA_CONVAR, 219

ABA_POOLSLOTREF364

~ABA_POOLSLOTREF365
ABA_POOLSLOTREF365
conVar,366

master_367

operatok <, 367
operator=366
printDifferentVersionError366
slot, 366

slot_,367

version,367

version_,367

ABA_POOLSLOTREK ~ ABA_CONSTRAINT,

ABA_POOLSLOTREK

ABA_VARIABLE >
ABA_CONVAR, 219
ABA_POOLSLOT,362
ABA_VARIABLE,
ABA_CONSTRAINT >
ABA_CONVAR, 219
ABA_POOLSLOT,362

ABA_POOLSLOTREK BaseType, CoType

ABA_POOLSLOT,362

ABA_RING, 462

~ABA_RING, 464
ABA RING, 463
clear,464
empty,464
filled, 464
filled_, 467
glob_,467

head 467
insert,464
newest464
newestindex465
number 465
oldest,465
oldestindex465
operatok <, 466
operator[],465
previous,466
realloc,466
ring_,467
size,466

ABA_ROW, 368

~ABA_ROW, 370
ABA_ROW, 369 370
copy,370
delind,370
operatok <, 371
rhs,371

rhs_,372

sense371
sense_372

ABA_ROWCON,379

~ABA_ROWCON,381
ABA_ ROWCON,380 381
coeff, 381

print, 382

row, 382

row_,382

ABA_SEPARATOR,239

~ABA_ SEPARATOR,241
ABA_SEPARATOR,241, 242
cutBuffer,242

cutFound242

find, 242

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

INDEX 533
hash_244 ABA_SORTER,490
IpSol_,244 ABA_SORTER,491
IpSolution,242 buildHeap,491
master_244 check,491
maxGen243 glob_,494
minAbsViolation,243 heapify,492
minAbsViolation_,245 heapSort492

nCollisions,243
nDuplications243
nDuplications_245
newCons_245
nGen,243
operator=244
pool_,245
sendConstraints 245
separate244
terminateSeparatio244
watchNonDuplPool244

ABA_SEPARATOR< CoType, BaseType

ABA_LPSOLUTION, 238

ABA_SET,426

~ABA SET,427
ABA_ SET,427
findSet,427
glob_,428
makeSet428
parent_428
unionSets428

ABA_SETBRANCHRULE,330

~ABA_SETBRANCHRULE,332
ABA_LPSUB, 321
ABA_SETBRANCHRULE,331
branchOnSetVai332
extract,332

oldLpBound_,333

operatok <, 333
setToUpperBound332
status_333

unExtract,333

variable,333

variable 333

ABA_SLACKSTAT

Basic,268
NonBasicNonZero268
NonBasicZero268
Unknown,268

ABA_SLACKSTAT, 266

ABA_SLACKSTAT, 268
glob_,269

operatok <, 269
STATUS, 267

status 268 269
status_269

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

itemSwap_494

keySwap_494

partition, 492

quickSort,493
ABA_SPARVEC,419

~ABA SPARVEC,421

ABA_SPARVEC,421

clear,422

coeff,422

coeff_,425

copy,422

glob_,425

insert,422

leftShift, 422

nnz,423

nnz_,425

norm,423

operatox <, 425

operator=423

origCoeff,423

rangeCheck423

realloc,424

reallocFac_425

renamed24

size,424

size 426

support424

support_426
ABA_SROWCON,385

~ABA_SROWCON,386

ABA_SROWCON,386

genRow,386

slack,387
ABA_STANDARDPOOL, 348

~ABA_STANDARDPOOL,350

ABA_STANDARDPOOL, 349, 350

autoRealloc_353
cleanup 350
freeSlots_ 353
getSlot,350
increase350
insert,351
operatok <, 353
operator=351
pool ,353
putSlot,351

534

INDEX

removeNonActive351
separate351
size,352
slot, 352
ABA_STANDARDPOOL< ABA_CONSTRAINT,
ABA_VARIABLE >
ABA CONVAR, 219
ABA_POOLSLOT,362
ABA_STANDARDPOOL< ABA_VARIABLE,
ABA_CONSTRAINT >
ABA_CONVAR, 219
ABA POOLSLOT,362
ABA_STANDARDPOOL< BaseType, CoType
ABA_POOLSLOT,363
ABA_STRING, 430
~ABA_STRING, 433
ABA_STRING, 432
ascii2bool 433
asciizdouble433
ascii2int,433
ascii2unsignedin433
ending,434
glob_,436
operator!=435
operatok <, 435
operator=434
operator==436
operator[],434
rangeCheck435
size,435
string, 435
string_,436
ABA_SUB
Active, 168
Branching,168
Cutting,168
Done,168
Dormant,168
Fathomed168
Fathoming,168
Processedl68
Unprocessed] 68
ABA SUB, 159
~ABA_SUB, 169
_activate 169
_conEliminate170
_deactivatel70
_fixByLoglmp, 170
_improve, 171
_initMakeFeas171
_makeFeasible, 71
_pricing,171
_removeConsl72

_removeVvarsl72
_selectConsl72
_selectVars172
_Separatel 72
_setByLoglmp172
_varEliminate 173
ABA_BOUNDBRANCHRULE, 204
ABA_CONVAR, 219
ABA_CUTBUFFER,401
ABA_FIXCAND, 411
ABA_LPSOLUTION< ABA_CONSTRAINT,
ABA_VARIABLE >, 204
ABA_LPSOLUTION< ABA_VARIABLE,
ABA_CONSTRAINT >, 205
ABA_LPSUB, 321
ABA_MASTER, 148 205
ABA_OPENSUB,205, 408
ABA POOLSLOT,363
ABA_SUB, 168 169
ABA_TAILOFF, 415
actCon173
actCon_205
activate, 173
activated_ 205
activateVars173
actVar,173
actVar_,205
addBranchingConstraint,73
addConBuffer_205
addConBufferSpacd,74
addCons174
addVarBuffer_205
addVarBufferSpacel 74
addVars,175
addVarsToLpl75
allBranchOnSetVars 206
ancestor176
basicConEliminatel 76
betterDual 176
binvRow_,206
boundCrashl76
branching176
branchingOnVariablel 77
branchRulel77
branchRule_ 206
chooselLpMethodl 77
closeHalf,178
closeHalfExpensivel 78 179
compareBranchingSampleRank39
conEliminate 179
conRealloc,180
conReserve 206
constraint, 180

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

INDEX

535

constraintPoolSeparatioh80
cutting, 180
deactivate181
dualBound 181
dualBound_206
dualRound 181
exceptionBranchl81
exceptionFathom 82
father,182
father_,206
fathom,182
fathoming,182
fathomTheSubTred,83
feasible, 183
findNonFixedSet183, 184
fix, 184
fixAndSet,184
fixAndSetTime,185
fixByLoglmp, 185
fixByRedCost,185
fixing, 185
fixSetNewBound186
forceExactSolverl 86
forceExactSolver 206
fsVarStat,186
fsVarStat 206
generateBranchRule$86
generatelLpl87
generateSori,87
genNonLiftCons_207
getBasel87
goodCol,187
guarantee]l 88
guaranteedl 88

id, 188

id_, 207
ignorelnTailingOff,188
ignorelnTailingOff_,207
improve, 188
infeasCon_207
infeasible, 189
infeasibleSub189
infeasVar_207
initializeCons,189
initializeLp, 189
initializeVars,189
initMakeFeas189
integerFeasiblel 90
lastlterConAdd_207
lastlterVarAdd_207
lastLP_,207
IBound,190
IBound_,208

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

level, 191

level ,208
localTimer_,208
lowerBound,191

Ip, 191

Ip_, 208

IpMethod_,208
IpRankBranchingRulel91
IpVarStat,191
IpVarStat_,208
makeFeasiblel 92
master,]192

master_208

maxCon,192
maxIterations192
maxlterations_208
maxVar,192

nCon,193
nDormantRounds] 93
nDormantRounds 208
newDormantRound 93
niter_,209
nnzReservel93
nnzReserve 209
nonBindingConEliminatel 93
nOpt_,209

nVar, 193
objAllinteger,193
operator=,194
optimize,194
pausing194

PHASE,167
prepareBranchind,94
pricing, 195
primalSeparation] 95
rankBranchingRule]95
rankBranchingSampléd,95
redCostVarEliminatel 96
relativeReservel 96
relativeReserve 209
removeConl196
removeConBuffer_209
removeConsl96
removeNonLiftableCongl,96
removeVar197
removeVarBuffer_209
removeVars197
reoptimize 197
selectBestBranchingSample97
selectBranchingVariabld,98
selectBranchingVariableCandidaté88
selectCons]199
selectVars199

536

INDEX

separate]199
set,199 200
setByLogimp,200
setByRedCos200
setting,201
slackStat201
slackStat_209
solveApproxNow 201
solvelp,201
sons_209
STATUS, 168
status 202
status_210
tailingOff, 202
tailoff_, 210
uBound,202
uBound_,210
updateBoundInLp203
upperBound203
varEliminate 203
variable,203

variablePoolSeparatio203

varRealloc204
varReserve 210
xVal, 204
xVal_, 210
yVal, 204
yVal_,210
ABA_TAILOFF, 412
~ABA_TAILOFF, 414
ABA_SUB, 415
ABA_TAILOFF, 413
diff, 414
I[pHistory ,415
master_415
operatok <, 415
reset4l14
tailOff, 414
update414
ABA_TIMER, 494
~ABA_TIMER, 496
ABA_TIMER, 496
addCentiSecond496
centiSeconds}96
exceeds496
glob_,498
hours,497
minutes 497
operatok <, 498
reset497
running,497
running_,499
seconds497

start,497
startTime_499
stop,498
theTime, 498
totalTime_,499

ABA_VALBRANCHRULE, 337

~ABA_VALBRANCHRULE, 339
ABA_LPSUB, 321

ABA VALBRANCHRULE, 339
extract,339
oldLpLBound_,340
oldLpUBound_,340
operatok <, 340

unExtract,339

value,339

value_,340

variable,340

variable 340

ABA_VARIABLE, 228

~ABA_VARIABLE, 230
ABA_VARIABLE, 229
binary,230
coeff, 230
discrete 230
fsVarStat,231
fsVarStat 234
genColumn231
integer,231
IBound,231
IBound_,234
obj, 232
obj_,234
printCol, 232
redCost232
type_,234
uBound,232
uBound_,234
useful,233
valid, 233
varType,233
violated,233, 234

ABA_VARTYPE

Binary, 254
Continuous254
Integer,254

ABA_VARTYPE, 253

ABA_VARTYPE, 254
binary,254

discrete 254
integer,255
operatok <, 255
TYPE, 254

type, 255

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

INDEX 537
type_,256 addVarBuffer_
ABACUS_COWPI LER_GCC, 6 ABA_SUB, 205
ABACUS_COWPI LER_GCC33, 511 addVarBufferSpace
ABACUS_COWPI LER_GCC34, 511 ABA_SUB, 174
ABACUS_COWPI LER _GCC41, 511 addVars

ABACUS_COMVPI LER_SUN, 511
ABACUS COWPI LER SUN, 6
ABACUS DIR, 6
ABACUS OLD | NCLUDE, 16
ABACUS OLD NAMES, 16
ABS_RANK

ABA POOL, 345
actCon

ABA SUB, 173
actCon_

ABA_SUB, 205
activate

ABA CONVAR, 214

ABA_SUB, 173
activated_

ABA_SUB, 205
activateVars

ABA SUB, 173
Active

ABA SUB, 168
active

ABA CONVAR, 214

ABA LPSOLUTION, 237
active_

ABA_ACTIVE, 396

ABA LPSOLUTION, 239
actVar

ABA SUB, 173
actVar_

ABA_ SUB, 205
addBranchingConstraint

ABA SUB, 173
addCentiSeconds

ABA_TIMER, 496
addCols

ABA LP, 284
addConBuffer_

ABA_SUB, 205
addConBufferSpace

ABA_SUB, 174
addCons

ABA LPSUB,314

ABA MASTER, 121

ABA SUB, 174
addReference

ABA CONVAR, 214
addRows

ABA LP, 284

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

ABA_LPSUB,314

ABA_MASTER, 121

ABA_SUB, 175
addVarsTolLp

ABA_SUB, 175
allBranchOnSetVars_

ABA_SUB, 206
allocate

ABA_FIXCAND, 410
ancestor

ABA_SUB, 176
append

ABA_DLIST, 460
appendHead

ABA_LIST, 453
appendTail

ABA_LIST, 453
application base clasg], 22
Approx

ABA_OSIIF, 298
Approximate

ABA_LP, 276
approximate solved 0, 67
array,40
ascii2bool

ABA_STRING, 433
ascii2double

ABA_STRING, 433
ascii2int

ABA_STRING, 433
ascii2unsignedint

ABA_STRING, 433
assignParameter

ABA_GLOBAL, 96-98
atBound

ABA_LPVARSTAT, 265
AtLowerBound

ABA_LPVARSTAT, 264
AtUpperBound

ABA_LPVARSTAT, 264
autoRealloc

ABA_STANDARDPOOL,353

auxiliaries,21
Available

ABA _LP, 277
average cut distanc8l

barrier method28

538

INDEX

BarrierAndCrossover

ABA LP, 276
BarrierNoCrossover

ABA LP, 276
barXVal

ABA LP, 284

ABA LPSUB,314
barXVal_

ABA _OSIIF, 308
barXValStatus

ABA LP, 284
barXValStatus_

ABA LP, 293
baseTime_

ABA COWTIMER, 503
Basic

ABA_LPVARSTAT, 264

ABA MASTER, 116

ABA_SLACKSTAT, 268
basic

ABA LPVARSTAT, 265
basicConEliminate

ABA SUB, 176
basis

loading initial, 71
basisStatus

ABA LP, 284
basisStatus_

ABA LP, 293
BestFirst

ABA MASTER, 116
bestFirstSearch

ABA MASTER, 121
betterDual

ABA MASTER, 121

ABA SUB, 176
betterPrimal

ABA MASTER, 122
Binary

ABA VARTYPE, 254
binary

ABA_VARIABLE, 230

ABA VARTYPE, 254
binvRow _

ABA_SUB, 206
boundCrash

ABA SUB, 176
Branching

ABA_ SUB, 168
branching29, 39

delayed?29

enforcing,73

on a constraintgl

on a variableg1
problem specificl7
problem specific rule$3
problem specific strategie8l
branching
ABA_SUB, 176
branching rules
sample 64
branching rules39
branching variable60
branchingOnVariable
ABA_SUB, 177
BRANCHINGSTRAT
ABA_MASTER, 115
BRANCHINGSTRAT _
ABA_MASTER, 148
Br anchi ngSt r at egy, 65
branchingStrategy
ABA_MASTER, 122
branchingStrategy_
ABA_MASTER, 148
branchingTime
ABA_MASTER, 122
branchingTime_
ABA_MASTER, 149
branchOnSetVar
ABA_BRANCHRULE, 328
ABA_SETBRANCHRULE,332
branchRule
ABA_SUB, 177
branchRule
ABA_SUB, 206
BreadthFirst
ABA_MASTER, 116
breadthFirstSearch
ABA_MASTER, 122
buf
ABA_BUFFER,448
buffer,41
buffering constraints and variable3g
bugs,6
build, 5
buildHeap
ABA_SORTER,491

candidates_
ABA_FIXCAND, 411
Cbc
ABA_MASTER, 116
centiSeconds
ABA_TIMER, 496
changelLBound
ABA_LP, 284

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

INDEX

539

ABA_LPSUB, 314
changeRhs

ABA_LP, 285
changeUBound

ABA_LP, 285

ABA LPSUB, 315
check

ABA_BHEAP, 473

ABA MASTER, 123

ABA_SORTER,491
chooselLpMethod

ABA_SUB, 177
classification

ABA_CONSTRAINT, 223
classify

ABA_CONSTRAINT, 223
cleanup

ABA_STANDARDPOOL,350
clear

ABA_BHEAP, 473

ABA_BPRIOQUEUE 477

ABA_ BUFFER,445

ABA_RING, 464

ABA_SPARVEC,422
clk_tck

ABA_CPUTIMER, 501
CloseHalf

ABA_MASTER, 115
closeHalf

ABA_SUB, 178
CloseHalfExpensive

ABA_MASTER, 115
closeHalfExpensive

ABA_SUB, 178 179
Clp

ABA_MASTER, 116
coeff

ABA_COLVAR, 389 390

ABA_CONSTRAINT, 224

ABA_NUMCON, 378

ABA_ROWCON, 381

ABA_SPARVEC,422

ABA_VARIABLE, 230
coeff

ABA_SPARVEC,425
collower_

ABA_OSIIF, 309
colRangeCheck

ABA_LP, 285
colRealloc

ABA_LP, 285

ABA LPSUB, 315
colsNnz

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

ABA_LP, 285
column,30
column
ABA_COLVAR, 390
column format32
column_
ABA_COLVAR, 391
colupper_
ABA_OSIIF, 309
compareBranchingSampleRanks
ABA_SUB, 179
Compiler,5
compiler,9, 18
Compiling,6
compress
ABA_CONVAR, 214
compressed formaBl
conClass_
ABA_CONSTRAINT, 227
ConEl i mAge, 82
conElimAge
ABA_ MASTER, 123
conElimAge_
ABA_MASTER, 149
ConEl i nEps, 81
conElimEps
ABA_MASTER, 123 124
conElimEps_
ABA_MASTER, 149
conEliminate
ABA_SUB, 179
CONELIMMODE
ABA_MASTER, 115
conElimMode
ABA MASTER, 124
CONELIMMODE_
ABA_MASTER, 149
conElimMode_
ABA_MASTER, 149
conPool
ABA_MASTER, 124
conPool_
ABA_MASTER, 149
conRealloc
ABA LPSUB,315
ABA_SUB, 180
conReserve
ABA_SUB, 206
constraint22, 29, 31, 46, 57, 58
active,28, 30
adding,27, 69
buffering,27
compressed formaBl, 57

540

dynamic,31

eliminating,68

elimination modeg81

elimination tolerance1

expanded formaBl, 57

globally valid,31

liftable, 31

locally valid, 30, 31

locked,30

maximal added79

maximal buffered79

non-liftable,28

removing,27

static,31
constraint

ABA_CONBRANCHRULE,342

ABA_INFEASCON, 404

ABA_ SUB, 180
constraint2row

ABA LPSUB, 315
constraint_

ABA_INFEASCON, 404
Constraint El i m nati onhMbde, 81
Constrai nt El i m nati onMbde, 68
constraintPoolSeparation

ABA_SUB, 180
contact,6
Continuous

ABA_VARTYPE, 254
contradiction

ABA FSVARSTAT, 259
conVar

ABA POOLSLOT,360

ABA POOLSLOTREF366
conVar_

ABA POOLSLOT,363
convertSenseToBound

ABA _OSIIF, 306
COPBRANCHRULE

ABA LPSUB, 321
copy

ABA_ARRAY, 440

ABA COLUMN, 374

ABA ROW, 370

ABA_SPARVEC,422
countLp

ABA MASTER, 124
CPLEX

ABA MASTER, 116
cpu time

maximal,75
csense20si

ABA_OSIIF, 306

cStat_

ABA_OSIIF, 309
currentSolverType

ABA_OSIIF, 306
currentSolverType_

ABA_OSIIF, 309
cutBuffer

ABA_SEPARATOR,242
cutFound

ABA_SEPARATOR,242
cutPool

ABA MASTER, 124
cutPool_

ABA_MASTER, 149
Cutting

ABA SUB, 168
cutting

ABA_MASTER, 125

ABA_SUB, 180
cutting plane algorithm

maximal iterations80
cutting_

ABA_MASTER, 149

dbThreshold
ABA_MASTER, 125
dbThreshold_
ABA_MASTER, 150
deactivate
ABA_CONVAR, 214
ABA_SUB, 181
Def aul t LpSol ver, 83
Def aul t LpSol ver, 18
defaultLpSolver
ABA_MASTER, 125
defaultLpSolver_
ABA_MASTER, 150
delayed branching;6
delayedBranching
ABA_MASTER, 126
Del ayedBr anchi ngThr eshol d, 76
deletable
ABA_CONVAR, 215
deleteAll
ABA_FIXCAND, 410
dellnd
ABA_ROW, 370
DepthFirst
ABA_MASTER, 116
depthFirstSearch
ABA_MASTER, 126
diff
ABA_TAILOFF, 414

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

INDEX

541

discrete
ABA VARIABLE, 230
ABA_VARTYPE, 254
disjoint set,42
distance
ABA_CONSTRAINT, 224
DiveAndBest
ABA MASTER, 116
diveAndBestFirstSearch
ABA MASTER, 126
documentation9
Done
ABA_ SUB, 168
Dormant
ABA SUB, 168
dormant rounds(7
doxygen9
Dual
ABA LP, 276
dual bound25
dualBound
ABA_MASTER, 126, 127
ABA_ OPENSUB,406
ABA SUB, 181
dualBound_
ABA HISTORY, 418
ABA MASTER, 150
ABA_OPENSUB,408
ABA_SUB, 206
dualRound
ABA SUB, 181
duplicate
ABA CONSTRAINT, 224
DyLP
ABA_MASTER, 116
dynamic
ABA CONVAR, 215
dynamic_
ABA CONVAR, 219

elem
ABA_DLISTITEM, 457
ABA_LISTITEM, 450
elem_
ABA_DLISTITEM, 457
ABA _LISTITEM, 451
eliminable
ABA LPSUB, 315
Eliminated
ABA_LPVARSTAT, 264
eliminated
ABA LPSUB,315
El i m nat eFi xedSet , 80

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

eliminateFixedSet

ABA_MASTER, 127
eliminateFixedSet_

ABA_MASTER, 150
elimval

ABA_LPSUB, 315 316
elpased time

maximal,75
empty

ABA_BHEAP, 473

ABA_BSTACK, 469

ABA_BUFFER,445

ABA_DLIST, 460

ABA_LIST, 453

ABA_OPENSUB,406

ABA_RING, 464
ending

ABA_STRING, 434
endl

ABA_OSTREAM, 510
enter

ABA_GLOBAL, 98
enumeration strategie80
enumeration strateg$8, 74
Enuner ati onStr at egy, 74
Enuner ati onSt r at egy, 60
enumerationStrategy

ABA_MASTER, 127,128
enumerationStrategy _

ABA_MASTER, 150
ENUMSTRAT

ABA_MASTER, 116
ENUMSTRAT_

ABA_MASTER, 150
environment variable$
eps

ABA_GLOBAL, 98,99
eps_

ABA_GLOBAL, 103
Equal

ABA_CSENSE 250
equal

ABA_CONVAR, 215

ABA_GLOBAL, 99
equalSubCompare

ABA_MASTER, 128
equations31
err

ABA_GLOBAL, 99
err_

ABA_GLOBAL, 103
Error

ABA_LP, 276

542

INDEX

ABA_MASTER, 118
Exact
ABA_OSIIF, 298
exceeds
ABA_TIMER, 496
exceptionBranch
ABA_SUB, 181
ExceptionFathom
ABA_MASTER, 118
exceptionFathom
ABA_SUB, 182
exit
ABA_ABACUSROOT,91
EXITCODES
ABA_ABACUSROOT,91
expand
ABA_CONVAR, 215
expanded
ABA_CONVAR, 215
expanded formaB1
expanded_
ABA_CONVAR, 219
extract
ABA_ BOUNDBRANCHRULE, 335
ABA_BRANCHRULE, 329
ABA_CONBRANCHRULE, 342, 343
ABA_CUTBUFFER,398
ABA_SETBRANCHRULE,332
ABA_VALBRANCHRULE, 339
extractHead
ABA DLIST, 460
ABA_LIST, 453
extractMin
ABA BHEAP, 473
ABA_BPRIOQUEUE 477

Fatal

ABA_ABACUSROOT,91
father

ABA_BHEAP, 474

ABA_SUB, 182
father

ABA_SUB, 206
fathom

ABA_SUB, 182
Fathomed

ABA_SUB, 168
Fathoming

ABA SUB, 168
fathoming

problem specificl7, 73
fathoming

ABA_SUB, 182

fathomTheSubTree

ABA SUB, 183
Feasible

ABA _INFEASCON,403

ABA LP, 276
feasible

ABA SUB, 183
feasibleFound

ABA MASTER, 128
File

ABA MASTER, 119
filled

ABA_RING, 464
filled_

ABA RING, 467
find

ABA HASH, 482

ABA SEPARATOR,242
findNonFixedSet

ABA SUB, 183 184
findParameter

ABA_GLOBAL, 99
findSet

ABA SET, 427
first

ABA_DLIST, 460

ABA LIST, 454
first_

ABA_DLIST, 462

ABA_LIST, 455
firstElem

ABA_DLIST, 460

ABA LIST, 454
firstSub

ABA MASTER, 128
fix

ABA SUB, 184
fixAndSet

ABA_SUB, 184
fixAndSetTime

ABA SUB, 185
fixByLoglmp

ABA SUB, 185
fixByRedCost

ABA_FIXCAND, 410

ABA SUB, 185
fixCand

ABA MASTER, 129
fixCand_

ABA MASTER, 150
Fixed

ABA_FSVARSTAT, 258
fixed

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

INDEX

543

ABA_FSVARSTAT, 259
fixedOrSet

ABA_FSVARSTAT, 260
FixedToLowerBound

ABA_FSVARSTAT, 258
FixedToUpperBound

ABA_FSVARSTAT, 258
fixing

by reduced cosf9
fixing

ABA_SUB, 185
fixing variables 40

by logical implications;71

elimination,80
Fi xSet ByRedCost , 79
fixSetByRedCost

ABA_MASTER, 129
fixSetByRedCost_

ABA_MASTER, 150
fixSetNewBound

ABA_SUB, 186
flush

ABA_OSTREAM,510
forceExactSolver

ABA_SUB, 186
forceExactSolver_

ABA_SUB, 206
FortMP

ABA_MASTER, 116
fracPart

ABA_ABACUSROOT,92
Free

ABA_FSVARSTAT, 258
freeChar

ABA_OSIIF, 307
freeDouble

ABA_OSIIF, 307
freelnt

ABA_OSIIF,307
freeSlots__

ABA_STANDARDPOOL,353
freeStatus

ABA_OSIIF, 307
fsVarStat

ABA SUB, 186

ABA_VARIABLE, 231
fsVarStat_

ABA_FIXCAND, 411

ABA_SUB, 206

ABA_VARIABLE, 234
Full

ABA_MASTER, 117
full

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

ABA_BSTACK, 469
ABA_BUFFER,446

g++,9
genColumn
ABA_VARIABLE, 231
generateBranchRules
ABA_SUB, 186
generatelLp
ABA_SUB, 187
generateSon
ABA_SUB, 187
genNonLiftCons_
ABA_SUB, 207
genRow
ABA_CONSTRAINT, 224
ABA_SROWCON,386
getBase
ABA_SUB, 187
getDefaultinterface
ABA_OSIIF, 307
getinfeas
ABA _LP, 286
ABA_LPSUB, 316
getMin
ABA BHEAP,474
ABA_BPRIOQUEUE 478
getMinKey
ABA_BHEAP, 474
ABA_BPRIOQUEUE 478
getParameter
ABA_GLOBAL, 100
getSimplexiterationLimit
ABA_LP, 286
getSlot
ABA_POOL, 346
ABA_STANDARDPOOL,350
getSol
ABA_OSIIF, 307
glob
ABA_DICTIONARY, 489
glob_
ABA_ARRAY, 443
ABA_BHEAP, 475
ABA_BPRIOQUEUE 479
ABA _BSTACK, 471
ABA_BUFFER,448
ABA_CSENSE 252
ABA_DICTIONARY, 489
ABA_DLIST, 462
ABA_FSVARSTAT, 261
ABA HASH, 485
ABA_LIST, 455

544

INDEX

ABA_LPVARSTAT, 266

ABA_RING, 467

ABA SET,428

ABA_SLACKSTAT, 269

ABA_SORTER,494

ABA_SPARVEC,425

ABA_STRING, 436

ABA_TIMER, 498
global

ABA_CONVAR, 216
GLPK

ABA MASTER, 116
goodCol

ABA_SUB, 187
goodVar

ABA_INFEASCON, 404
Greater

ABA_CSENSE 250
Guar ant ee, 74
guarantee74
guarantee

ABA_MASTER, 129

ABA_SUB, 188
Guaranteed

ABA_MASTER, 118
guaranteed

ABA_MASTER, 129

ABA SUB, 188

hardDelete
ABA POOLSLOT,360
hardDeleteConVar
ABA_NONDUPLPOOL,355
ABA POOL, 346
hash table41
hash_
ABA_DICTIONARY, 489
ABA _NONDUPLPOOL,357
ABA_SEPARATOR,244
hashKey
ABA CONVAR, 216
head
ABA_ RING, 467
heap41l
heap_
ABA_BHEAP, 476
ABA BPRIOQUEUE 479
heapify
ABA _BHEAP, 474
ABA SORTER,492
heapSort
ABA_SORTER,492
hf

ABA_HASH, 482
highestLevel

ABA_MASTER, 130
highestLevel _

ABA_MASTER, 151
history

ABA_MASTER, 130
history

ABA_MASTER, 151
hours

ABA_TIMER, 497

id

ABA SUB, 188
id_

ABA_SUB, 207
idLp

ABA_LPSOLUTION, 237
idLp_

ABA_LPSOLUTION, 239
idSub

ABA_LPSOLUTION, 237
idSub_

ABA_LPSOLUTION, 239
ignorelnTailing Off

ABA_SUB, 188
ignorelnTailingOff_

ABA_SUB, 207
improve

ABA SUB, 188
improveTime

ABA_MASTER, 130
improveTime_

ABA_MASTER, 151
include file path,10
increase

ABA_NONDUPLPOOL,356

ABA_STANDARDPOOL,350
incrementRedundantAge

ABA_ACTIVE, 393
INFEAS

ABA_INFEASCON,403
infeas

ABA_INFEASCON, 404
infeas_

ABA_INFEASCON,404
infeasCon

ABA_ LPSUB, 316
infeasCon_

ABA_SUB, 207
infeasCons_

ABA _LPSUB, 321
Infeasible

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

INDEX 545
ABA_LP, 276 ABA_POOL, 346
infeasible ABA_POOLSLOT,360
ABA_LP, 286 ABA_RING, 464
ABA_LPSUB, 316 ABA_SPARVEC,422
ABA_SUB, 189 ABA_STANDARDPOOL,351
infeasibleSub insertParameter
ABA_SUB, 189 ABA_GLOBAL, 101
infeasVar_ Integer
ABA SUB, 207 ABA_ VARTYPE, 254
infinity integer
ABA_GLOBAL, 101 ABA_VARIABLE, 231
infinity _ ABA_VARTYPE, 255

ABA_GLOBAL, 104
inheritance grap1
initialize

ABA_BRANCHRULE, 329

ABA_ CONBRANCHRULE, 343

ABA LP, 286, 287

ABA_LPSUB, 316, 317
initializeCons

ABA SUB, 189
initializelteration

ABA HASH, 483
initializeLp

ABA SUB, 189
initializeLpParameters

ABA LPMASTER, 325

ABA LPMASTEROSI,326
initializeOptimization

ABA_ MASTER, 130
initializeOptSense

ABA_MASTER, 130
initializeParameters

ABA MASTER, 130
initializePools

ABA MASTER, 131
initializeVars

ABA SUB, 189
initLP

ABA MASTER, 131
initMakeFeas

ABA _SUB, 189
initPostOpt

ABA LP, 287
insert

ABA_ ACTIVE, 393

ABA BHEAP, 474

ABA BPRIOQUEUE 478

ABA CUTBUFFER,399

ABA_DICTIONARY, 488

ABA HASH, 483

ABA_NONDUPLPOOL,356

ABA_ OPENSUB,407

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

integer objective function/2, 76
integerFeasible

ABA_SUB, 190
isInfinity

ABA_GLOBAL, 101
isInteger

ABA_GLOBAL, 101,102
isLogOn

ABA_OSTREAM, 506
isMinuslInfinity

ABA_GLOBAL, 102
isOn

ABA_OSTREAM, 506
itemSwap_

ABA_SORTER,494
iter_

ABA_HASH, 486

keeplnPool_
ABA_CUTBUFFER,401
keys
ABA_BHEAP, 476
keySwap_
ABA_SORTER,494
knownOptimum
ABA_MASTER, 132

last

ABA DLIST, 461

ABA LIST, 454
last_

ABA DLIST, 462

ABA_LIST, 455
lastiterConAdd _

ABA SUB, 207
lastlterVarAdd_

ABA_SUB, 207
lastLP_

ABA_SUB, 207
IBound

ABA BOUNDBRANCHRULE, 336

ABA COLUMN, 375

546

INDEX

ABA_LP, 287
ABA_LPSUB, 317
ABA_SUB, 190
ABA_VARIABLE, 231
IBound_
ABA_BOUNDBRANCHRULE, 337
ABA_COLUMN, 376
ABA_SUB, 208
ABA VARIABLE, 234
leftShift
ABA_ARRAY, 440
ABA_BUFFER,446
ABA_SPARVEC,422
leftSon
ABA_BHEAP, 474
Less
ABA_CSENSE,250
level
ABA_SUB, 191
level in enumeration tre@5
level
ABA_SUB, 208
lhs
ABA_FIXCAND, 412
liftable
ABA_CONSTRAINT, 225
liftable_
ABA_CONSTRAINT, 227
lifting, 28
linear program22, 28, 34
infeasible 59
method,67
output,79
relaxation,36
LinearProgram
ABA_MASTER, 117
linked list,41
Linking, 6
list_
ABA_OPENSUB,408
loadBasis
ABA LP, 288
ABA_LPSUB, 318
loadDummyRow
ABA_OSIIF,307
local
ABA_CONVAR, 216
local
ABA_CONVAR, 220
localTimer_
ABA_SUB, 208
lock
ABA_CONVAR, 216

locked

ABA_CONVAR, 216
log

ABA_OSTREAM, 506
log level, 77
log_

ABA_OSTREAM,510
LogLevel , 77
logLevel

ABA_MASTER, 132
logLevel

ABA_MASTER, 151
logOff

ABA_OSTREAM, 506
logOn

ABA_OSTREAM, 506
logOn_

ABA_OSTREAM,510
lookUp

ABA_DICTIONARY, 488
lowerBound

ABA MASTER, 132

ABA_SUB, 191
Ip

ABA_SUB, 191
LP-solver

internal datay3
LP-solver interface36
Ip2orig_

ABA_LPSUB, 321
Ip_

ABA_SUB, 208
IpHistory

ABA_TAILOFF, 415
IpMasterOsi

ABA_MASTER, 132
IpMasterOsi_

ABA_MASTER, 151

ABA_OSIIF, 309
IpMethod_

ABA_SUB, 208
IpRankBranchingRule

ABA_SUB, 191
IpSol_

ABA_SEPARATOR,244
IpSolution

ABA_SEPARATOR,242
IpSolverTime

ABA_LP, 288

ABA_MASTER, 132
IpSolverTime_

ABA_LP, 293

ABA_MASTER, 151

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

INDEX 547
IpTime ABA_SUB, 192
ABA_MASTER, 133 MaxConAdd, 79
IpTime_ MaxConAdd, 70
ABA_MASTER, 151 maxConAdd
IpVarStat ABA_MASTER, 133
ABA_LP, 288 maxConAdd_
ABA_LPSUB, 318 ABA_MASTER, 151
ABA_SUB, 191 MaxConBuf f er ed, 79
IpVarStat2osi MaxConBuf f er ed, 70
ABA_OSIIF, 307 maxConBuffered
IpVarStat_ ABA_MASTER, 133
ABA_SUB, 208 maxConBuffered_
ABA_MASTER, 151
machineEps MaxCowTime
ABA_GLOBAL, 102 ABA_MASTER, 118
machineEps_ Max CowTi e, 75
ABA_GLOBAL, 104 maxCowTime
mailing list, 7 ABA_MASTER, 133 134
makeFeasible maxCowTime_
ABA_SUB, 192 ABA_MASTER, 152
makeSet MaxCpuTime
ABA_SET,428 ABA_MASTER, 118
master22, 24, 47 MaxCpuTi ne, 75
master maxCpuTime
ABA_POOLSLOT,360 ABA_MASTER, 134
ABA_SUB, 192 maxCpuTime_
master_ ABA_MASTER, 152

ABA_ACTIVE, 396

ABA BRANCHRULE, 330

ABA CONVAR, 220

ABA_CUTBUFFER,401

ABA_FIXCAND, 412

ABA HISTORY, 418

ABA_INFEASCON, 404

ABA _LP, 293

ABA LPMASTER, 325

ABA_LPSOLUTION, 239

ABA_OPENSUB,408

ABA POOL, 347

ABA_POOLSLOT,363

ABA_ POOLSLOTREF367

ABA_SEPARATOR,244

ABA_SUB, 208

ABA_TAILOFF, 415
Max

ABA OPTSENSE247
max

ABA _ACTIVE, 394

ABA OPTSENSE247
maxCol

ABA_LP, 288

ABA LPSUB,318
maxCon

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

maxGen

ABA_ SEPARATOR,243
Maxl t erati ons, 80
maxlterations

ABA MASTER, 134

ABA_SUB, 192
maxlterations_

ABA_ MASTER, 152

ABA_SUB, 208
MaxLevel

ABA_ MASTER, 118
MaxLevel , 75
maxLevel

ABA_MASTER, 135
maxLevel

ABA_MASTER, 152
maxRow

ABA LP, 288
maxVvar

ABA_SUB, 192
MaxVar Add, 80
MaxVar Add, 70
maxVarAdd

ABA_MASTER, 135
maxVarAdd_

ABA_MASTER, 152

548

INDEX

Max Var Buf f er ed, 80
MaxVar Buf f er ed, 70
maxVarBuffered

ABA MASTER, 135
maxVarBuffered

ABA_MASTER, 152
memory management, 29, 68
METHOD

ABA_LP, 276
Min

ABA OPTSENSE247
min

ABA OPTSENSE247
minAbsViolation

ABA SEPARATOR,243
minAbsViolation_

ABA_ SEPARATOR,245
M nDor mant Rounds, 77
minDormantRounds

ABA MASTER, 136
minDormantRounds_

ABA_MASTER, 152
minutes

ABA TIMER, 497
Missing

ABA LP, 277
MOSEK

ABA_MASTER, 116

ABA_ACTIVE, 396
ABA_ARRAY, 443
ABA_BHEAP, 476
ABA_BUFFER,448
ABA_CUTBUFFER,401
ABA_HISTORY, 418
ABA_OPENSUB,408
nActive_
ABA_CONVAR, 220
nAddCons_
ABA_MASTER, 152
nAddVvars_
ABA_MASTER, 153
name
ABA_CONVAR, 217
naming style45
NBr anchi ngVar i abl eCandi dat es, 17
NBr anchi ngVari abl eCandi dat es, 83
NBr anchi ngVar i abl eCandi dat es, 18, 65
nBranchingVariableCandidates
ABA_MASTER, 136
nBranchingVariableCandidates_
ABA_MASTER, 153

nCol
ABA_LP, 288
ABA_LPSUB,318
nCollisions
ABA_HASH, 483
ABA_SEPARATOR,243
nCollisions_
ABA_HASH, 486
nCon
ABA_SUB, 193
nDormantRounds
ABA_SUB, 193
nDormantRounds_
ABA_SUB, 208
nDuplications
ABA_SEPARATOR,243
nDuplications_

ABA_NONDUPLPOOL,357

ABA_SEPARATOR,245
newCons_

ABA_SEPARATOR,245
newDormantRound

ABA_SUB, 193
newest

ABA_RING, 464
newestindex

ABA_RING, 465
newFixed

ABA_MASTER, 136
NewRoot ReQpt i m ze, 80
newRootReOptimize

ABA_MASTER, 136, 137
newRootReOptimize

ABA_MASTER, 153
newSub

ABA_MASTER, 137
next

ABA_HASH, 483
nFixed_

ABA_MASTER, 153
nGen

ABA_SEPARATOR,243
niter_

ABA_SUB, 209
nLocks_

ABA_CONVAR, 220
nLp

ABA_ MASTER, 137
nLp_

ABA_MASTER, 153
nNewRoot

ABA_MASTER, 137
nNewRoot_

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

INDEX

549

ABA MASTER, 153
nnz

ABA_LP, 288

ABA LPSUB, 318

ABA SPARVEC,423
nnz_

ABA SPARVEC,425
nnzReserve

ABA_SUB, 193
nnzReserve_

ABA_SUB, 209
NO_RANK

ABA POOL, 345
NoConElim

ABA MASTER, 116
NonBasicFree

ABA_LPVARSTAT, 264
NonBasicNonZero

ABA_SLACKSTAT, 268
NonBasicZero

ABA_SLACKSTAT, 268
NonBinding

ABA MASTER, 116
nonBindingConEliminate

ABA SUB, 193
NoPrimalBound

ABA MASTER, 117
nOpt

ABA LP, 288
nOpt_

ABA LP, 293

ABA_SUB, 209
nOrigVar_

ABA LPSUB, 321
norm

ABA SPARVEC,423
NoVarElim

ABA MASTER, 119
NoVbc

ABA MASTER, 119
nReferences

ABA_CONVAR, 217
nReferences_

ABA CONVAR, 220
nRemCons_

ABA MASTER, 153
nRemVars_

ABA MASTER, 153
nRow

ABA LP, 289
nSub

ABA_MASTER, 137
nSub_

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

ABA MASTER, 154
nSubSelected
ABA_MASTER, 137
nSubSelected
ABA MASTER, 154
number
ABA_ACTIVE, 394
ABA BHEAP, 474
ABA_BPRIOQUEUE 478
ABA BUFFER,446
ABA CUTBUFFER,399
ABA_NUMCON, 378
ABA NUMVAR, 384
ABA OPENSUB,407
ABA POOL, 346
ABA_RING, 465
number_
ABA NUMCON, 379
ABA_NUMVAR, 384
ABA POOL, 348

numcCols_
ABA_OSIIF, 309
numRows_
ABA_OSIIF, 309
nVar
ABA_SUB, 193
nVarCon
ABA_LPSOLUTION, 238
nVarCon_

ABA_LPSOLUTION, 239

obj
ABA_COLUMN, 375
ABA_LP, 289
ABA_LPSUB, 318
ABA_VARIABLE, 232
obj_
ABA_COLUMN, 376
ABA_VARIABLE, 234

objAllinteger
ABA_SUB, 193

objcoeff
ABA_OSIIF, 309

Obj I nt eger, 76
oj I nt eger, 72
objinteger

ABA_MASTER, 137, 138
objinteger_

ABA_MASTER, 154
off

ABA_OSTREAM, 506
Ok

ABA_ABACUSROOT,91

550

INDEX

oldest
ABA_RING, 465
oldestindex
ABA_RING, 465
oldLpBound_
ABA_SETBRANCHRULE,333
oldLpLBound_
ABA_BOUNDBRANCHRULE, 337
ABA VALBRANCHRULE, 340
oldLpUBound_
ABA_BOUNDBRANCHRULE, 337
ABA_VALBRANCHRULE, 340
on
ABA_OSTREAM, 507
on_
ABA_OSTREAM,510
onOff
ABA_ABACUSROOT,92
Open Solver Interface, 36
open subproblems7
openSub
ABA MASTER, 138
openSub_
ABA_MASTER, 154
operator!=
ABA_STRING, 435
operatox <
ABA_ACTIVE, 395
ABA_ARRAY, 443
ABA_BHEAP, 475
ABA_BOUNDBRANCHRULE, 336
ABA_BSTACK, 470
ABA_BUFFER,448
ABA_COLUMN, 376
ABA_ COLVAR, 390
ABA_CONBRANCHRULE, 343
ABA_CSENSE 252
ABA_DICTIONARY, 488
ABA_DLIST, 461
ABA_DLISTITEM, 457
ABA_FSVARSTAT, 261
ABA_GLOBAL, 103
ABA_HASH, 485
ABA_HISTORY, 417
ABA_LIST, 454
ABA_LISTITEM, 450
ABA_LP, 292
ABA_LPSOLUTION, 238
ABA_LPVARSTAT, 265
ABA_NUMCON, 379
ABA_ NUMVAR, 384
ABA_OPTSENSE248
ABA_OSTREAM, 507, 508

ABA_POOLSLOTREF367
ABA_RING, 466
ABA_ROW, 371
ABA_SETBRANCHRULE,333
ABA_SLACKSTAT, 269
ABA_SPARVEC,425
ABA_STANDARDPOOL,353
ABA_STRING, 435
ABA_TAILOFF, 415
ABA_TIMER, 498
ABA_VALBRANCHRULE, 340
ABA _VARTYPE, 255
operator=
ABA_ACTIVE, 394
ABA_ARRAY, 440 441
ABA_BUFFER,446
ABA_CONBRANCHRULE, 343
ABA_CONSTRAINT, 225
ABA_CSENSE 251
ABA_CUTBUFFER,400
ABA_DICTIONARY, 488
ABA_DLIST, 461
ABA_FIXCAND, 411
ABA_GLOBAL, 102
ABA_HASH, 484
ABA_LIST, 454
ABA_LP, 289
ABA_LPSOLUTION, 238
ABA_LPSUB, 318
ABA_LPSUBOSI,323
ABA_MASTER, 138
ABA_NONDUPLPOOL,356
ABA_OPENSUB,407
ABA_OSIIF, 308
ABA_POOLSLOT,360
ABA_POOLSLOTREF 366
ABA_SEPARATOR,244
ABA_SPARVEC,423
ABA_STANDARDPOOL,351
ABA_STRING, 434
ABA_SUB, 194
operator==
ABA_STRING, 436
operator[]
ABA_ACTIVE, 394
ABA_ARRAY, 441
ABA_BUFFER,446, 447
ABA_RING, 465
ABA_STRING, 434
Optimal
ABA_LP, 276
ABA_MASTER, 118
optimization,55

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

INDEX

551

optimize

ABA_LP, 289

ABA _LPSUB, 319

ABA_MASTER, 138

ABA_SUB, 194
Optimum

ABA_MASTER, 117
optimum solution values§1
Opt i nunFi | eNane, 81
optimumFileName

ABA_MASTER, 138
optimumFileName_

ABA_MASTER, 154
OptimumOne

ABA_ MASTER, 117
optSense

ABA_MASTER, 138
optSense_

ABA_MASTER, 154
OPTSTAT

ABA_LP, 276
optStat_

ABA_LP, 293
orig2lp_

ABA_LPSUB, 322
origCoeff

ABA_SPARVEC,423
Osi,9, 36

internal datay3
osi2csense

ABA_OSIIF, 308
osi2lpVarStat

ABA_OSIIF, 308
osi2slackStat

ABA_OSIIF, 308
osiLP

ABA_OSIIF, 308
osiLP_

ABA_OSIIF, 309
OSISOLVER

ABA_ MASTER, 116
OSISOLVER _

ABA_MASTER, 154
OSL

ABA_MASTER, 116
out

ABA_GLOBAL, 102
out_

ABA_GLOBAL, 104

ABA_OSTREAM,510
OUTLEVEL

ABA_MASTER, 116
outLevel

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

ABA_MASTER, 139
OUTLEVEL _

ABA MASTER, 154
outLevel

ABA_MASTER, 154
OutOfMemory

ABA_MASTER, 118
output,67
output

ABA_MASTER, 139
output level,77
output stream43
Qut put Level , 77
outputLpStatistics

ABA LPMASTER, 325

ABA LPMASTEROSI,326
overWrite

ABA_HASH, 484

parameter file@4
parameters5, 74
paramTable_
ABA_GLOBAL, 104
parent_
ABA_SET,428
partition
ABA_SORTER,492
pausing
ABA_SUB, 194
pbMode
ABA_MASTER, 139
pbMode
ABA_MASTER, 155
PHASE
ABA_SUB, 167
Pipe
ABA_MASTER, 119
pivotSlackVariableln
ABA_LP, 289
platforms,5
pool,23, 32, 48, 68
default,34
initial cutting planes49
no multiple storages7
pricing, 32
problem specific56
separation32, 56
standard34
without duplication17
pool slot,33
pool_
ABA_POOLSLOT,363
ABA_SEPARATOR,245

552

INDEX

ABA_STANDARDPOOL,353
poolSlotRef

ABA_ACTIVE, 394
poolSlotRef

ABA_CONBRANCHRULE, 344
pop

ABA_BSTACK, 469

ABA_BUFFER,447
pred

ABA_DLISTITEM, 457
pred_

ABA_DLISTITEM, 458
prepareBranching

ABA_SUB, 194
present

ABA_NONDUPLPOOL,356
previous

ABA_RING, 466
pricing, 53

frequency,78
pricing

ABA_MASTER, 139

ABA_SUB, 195
pricing_

ABA_MASTER, 155
pricingFreq

ABA_MASTER, 139, 140
pricingFreq_

ABA_MASTER, 155
Pri ci ngFrequency, 78
pricingTime

ABA_MASTER, 140
pricingTime_

ABA_MASTER, 155
Primal

ABA_LP, 276
primal bound 25

initialization, 78
primal heuristics54
primalBound

ABA_MASTER, 140
primalBound_

ABA_HISTORY, 418

ABA_MASTER, 155
Pri mal Boundl ni t Mode, 78
PRIMALBOUNDMODE

ABA_MASTER, 117
PRIMALBOUNDMODE_

ABA_MASTER, 155
primalSeparation

ABA_SUB, 195
primalViolated

ABA_MASTER, 140

print

ABA_COLVAR, 390

ABA_CONVAR, 217

ABA_NUMCON, 378

ABA_ROWCON, 382
printCol

ABA_VARIABLE, 232
printDifferentVersionError

ABA_POOLSLOTREF 366
printGuarantee

ABA_MASTER, 141
PrintLP, 79
printLP

ABA_MASTER, 141
printLP_

ABA_MASTER, 155
printLpParameters

ABA_LPMASTER, 325

ABA_LPMASTEROSI,326
printParameters

ABA_MASTER, 141
printRow

ABA_CONSTRAINT, 225
priority queue4l
problemName

ABA_MASTER, 141
problemName__

ABA_MASTER, 155
Processed

ABA SUB, 168
Processing

ABA_MASTER, 118
prune

ABA_OPENSUB 407
psRef_

ABA_CUTBUFFER,401
pure kernel classeg}, 22
push

ABA_BSTACK, 469

ABA_BUFFER,447
putSlot

ABA_POOL, 347

ABA_STANDARDPOOL,351

quickSort
ABA_SORTER,493

rangeCheck
ABA_ARRAY, 441
ABA SPARVEC,423
ABA_STRING, 435
RANK
ABA_POOL, 345
rank

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

INDEX

553

ABA_CONVAR, 218
rank_

ABA_CUTBUFFER,401

ABA_FASTSET,430
rankBranchingRule

ABA _SUB, 195
rankBranchingSample

ABA_SUB, 195
RANKING

ABA_POOL, 345
ranking_

ABA_CUTBUFFER,402
readParameters

ABA_GLOBAL, 103
readParamFromFile_

ABA_MASTER, 156
realloc

ABA_ACTIVE, 395

ABA_ARRAY, 441, 442

ABA_BHEAP, 475

ABA_BPRIOQUEUE478

ABA BSTACK, 469

ABA_BUFFER,447

ABA_HISTORY, 417

ABA_RING, 466

ABA_SPARVEC,424
reallocFac__

ABA_SPARVEC,425
reco

ABA_LP, 289

ABA_LPSUB, 319
reco_

ABA_OSIIF, 310
recoStatus

ABA_LP, 289
recoStatus_

ABA_LP, 294
recursive calls o ABACUS, 67
redCost

ABA_VARIABLE, 232
redCostVarEliminate

ABA _SUB, 196
ReducedCost

ABA_MASTER, 119
redundantAge

ABA_ACTIVE, 395
redundantAge_

ABA_ACTIVE, 396
reference to a pool sloB4
relativeReserve

ABA_SUB, 196
relativeReserve

ABA_SUB, 209

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

remCols

ABA LP, 290
remove

ABA_ACTIVE, 395

ABA CUTBUFFER,400

ABA DLIST, 461

ABA HASH, 484

ABA OPENSUB,407
removeCon

ABA SUB, 196
removeConBuffer_

ABA_SUB, 209
removeCons

ABA LPSUB,319

ABA MASTER, 141

ABA SUB, 196
removeConVar

ABA POOL, 347
removeConVarFromPool

ABA POOLSLOT,361
removeHead

ABA_DLIST, 461
removeNonActive

ABA STANDARDPOOL,351
removeNonLiftableCons

ABA SUB, 196
removeReference

ABA CONVAR, 218
removeVvar

ABA SUB, 197
removeVarBuffer_

ABA_ SUB, 209
removeVvars

ABA LPSUB,319

ABA MASTER, 141

ABA SUB, 197
remRows

ABA_LP, 290
rename

ABA SPARVEC,424
reoptimize

ABA SUB, 197
requiredGuarantee

ABA MASTER, 142
requiredGuarantee_

ABA MASTER, 156
reset

ABA_TAILOFF, 414

ABA_ TIMER, 497
resetRedundantAge

ABA_ACTIVE, 395
resize

ABA HASH, 485

554

INDEX

rhs

ABA_CONSTRAINT, 225

ABA LP, 290
ABA ROW, 371
rhs

 ABA_CONSTRAINT, 227

ABA_OSIIF, 310

ABA_ROW, 372
rightSon

ABA_BHEAP, 475
ring, 41
ring_

ABA_RING, 467
root

ABA MASTER, 142
root node

roptimization,80
root_

ABA_MASTER, 156
rootDualBound

ABA_MASTER, 142
rootDualBound_

ABA_MASTER, 156
row, 30
row

ABA_LP, 290

ABA_ROWCON, 382
row format,31
row_

ABA_ROWCON,382
rowactivity

ABA_OSIIF, 310
rowRangeCheck

ABA _LP, 290
rowRealloc

ABA_LP, 290

ABA_LPSUB, 319
rows2cols

ABA_LP, 290
rowsense_

ABA_OSIIF,310
rRoot

ABA_MASTER, 142
rRoot_

ABA_MASTER, 156
rStat_

ABA_OSIIF,310
running

ABA_TIMER, 497
running_

ABA_TIMER, 499

saveCandidates

ABA_FIXCAND, 411
seconds

ABA_TIMER, 497
select

ABA_MASTER, 143

ABA_OPENSUB 407
selectBestBranchingSample

ABA_SUB, 197
selectBranchingVariable

ABA_SUB, 198
selectBranchingVariableCandidates

ABA_SUB, 198
selectCons

ABA_SUB, 199
selectVars

ABA _SUB, 199
sendConstraints_

ABA_SEPARATOR,245
SENSE

ABA_CSENSE 250

ABA_OPTSENSE246
sense

ABA_CONSTRAINT, 225

ABA_CSENSE 251, 252

ABA_LP, 291

ABA_OPTSENSE247, 248

ABA_ROW, 371
sense of the optimizatio25
sense_

ABA_CONSTRAINT, 227

ABA_CSENSE 252

ABA_OPTSENSE248

ABA_ROW, 372
separate

ABA_POOL, 347

ABA_SEPARATOR,244

ABA_STANDARDPOOL,351

ABA_SUB, 199
separation52
separationTime

ABA_MASTER, 143
separationTime_

ABA_MASTER, 156
Set

ABA_FSVARSTAT, 258
set

ABA_ARRAY, 442

ABA_FSVARSTAT, 260

ABA_SUB, 199, 200
setByLogimp

ABA_SUB, 200
setByRedCost

ABA_SUB, 200

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

INDEX

555

setDefaultLpParameters
ABA_LPMASTER, 325
ABA_LPMASTEROSI,327
setFormatFlag
ABA_OSTREAM, 509
setSimplexlterationLimit
ABA_LP, 291
setSolverParameters
ABA MASTER, 143
setting
by reduced cos9
setting
ABA SUB, 201
setting variables
by logical implications,71
elimination,80
SetToLowerBound
ABA_FSVARSTAT, 258
SetToUpperBound
ABA_FSVARSTAT, 258
setToUpperBound
ABA SETBRANCHRULE,332
ShowAver ageCut Di st ance, 81
showAverageCutDistance
ABA_ MASTER, 143
showAverageCutDistance
ABA_MASTER, 156
Silent
ABA_MASTER, 117
size
ABA_ARRAY, 442
ABA_BHEAP, 475
ABA_BPRIOQUEUE 479
ABA_BSTACK, 470
ABA BUFFER,448
ABA_CUTBUFFER,400
ABA_DICTIONARY, 489
ABA_HASH, 485
ABA_HISTORY, 417
ABA_RING, 466
ABA_SPARVEC,424
ABA_STANDARDPOOL, 352
ABA_STRING, 435
size
ABA_BUFFER,448
ABA_HASH, 486
ABA_SPARVEC,426
SkipByLevel
ABA_MASTER, 118
SkipByNode
ABA MASTER, 118
Ski pFact or, 78
skipFactor

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

ABA_MASTER, 143 144
skipFactor_

ABA_MASTER, 156
skipping

mode,78
SKIPPINGMODE

ABA_MASTER, 117
Ski ppi nghbde, 78
skippingMode

ABA_MASTER, 144
SKIPPINGMODE _

ABA_MASTER, 157
skippingMode_

ABA_MASTER, 157
slack

ABA_CONSTRAINT, 225

ABA_LP, 291

ABA_SROWCON,387
slackStat

ABA_LP, 291

ABA_SUB, 201
slackStat2osi

ABA_OSIIF, 308
slackStat

ABA_SUB, 209
slackStatus

ABA_LP, 291
slackStatus

ABA_LP, 294
slot

ABA_CUTBUFFER,400

ABA_POOLSLOTREF 366

ABA_STANDARDPOOL, 352
slot_

ABA_ POOLSLOTREF367
softDelete

ABA_POOLSLOT,361
softDeleteConVar

ABA_NONDUPLPOOL,357

ABA_POOL, 347
SOLSTAT

ABA_LP, 276
solution history40
SolveApprox,84
Sol veAppr ox, 84
solveApprox

ABA_MASTER, 144
solveApprox_

ABA_MASTER, 157
solveApproxNow

ABA_SUB, 201
solveApproxNow() 84
solvelp

556

INDEX

ABA_SUB, 201
solver,5
solver parameter84
SOLVERTYPE
ABA_OSIIF, 298
sons_
ABA_SUB, 209
SoPlex
ABA MASTER, 116
Soplex,16
SoPl exRepresent ati on, 18
sort
ABA_CUTBUFFER,400
sorting,44
space
ABA_CUTBUFFER,400
sparse vecto#2
stack,41
stack
ABA_BSTACK, 471
start
ABA TIMER, 497
startTime_
ABA_TIMER, 499
Statistics
ABA_MASTER, 117
statistics
ABA_NONDUPLPOOL,357
STATUS
ABA_FSVARSTAT, 257
ABA_LPVARSTAT, 263
ABA_MASTER, 118
ABA_SLACKSTAT, 267
ABA_SUB, 168
status
ABA_FSVARSTAT, 260, 261
ABA_LPVARSTAT, 265
ABA_MASTER, 144
ABA_SLACKSTAT, 268 269
ABA_SUB, 202
STATUS _
ABA_MASTER, 157
status_
ABA_FSVARSTAT, 262
ABA_LPVARSTAT, 266
ABA_MASTER, 157
ABA_SETBRANCHRULE,333
ABA_SLACKSTAT, 269
ABA_SUB, 210
stop
ABA_TIMER, 498
String,42
string

ABA_STRING, 435
string_
ABA_STRING, 436
strong branchingl7, 18, 64
comparing branching samplesh
default,65
other branching rule€6
ranking branching rule§5
selecting branching samplesg
variable selectiong5
sub
ABA CONVAR, 218
ABA_LPSUB, 319
sub_
ABA_CONVAR, 220
ABA_LPSUB, 322
Subproblem
ABA_MASTER, 117
subproblem22, 26
activating,70
deactivatey0
subtour elimination constrairdQ, 31, 57
succ
ABA_DLISTITEM, 457
ABA_LISTITEM, 450
succ_
ABA_DLISTITEM, 458
ABA_LISTITEM, 451
support
ABA_SPARVEC,424
support_
ABA_SPARVEC,426
switchinterfaces
ABA_OSIIF, 308
SYMPHONY
ABA_MASTER, 116

tab_

ABA_GLOBAL, 104
table_

ABA HASH, 486
tailing off, 17, 40

advanced controlf4

minimal change76

number of LPs76
tailingOff

ABA _SUB, 202
tailOff

ABA_TAILOFF, 414
tailOoff_

ABA SUB, 210
tailOffNLp

ABA_ MASTER, 144, 145

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

INDEX 557
tailOffNLp_ trueNCol

ABA_MASTER, 157 ABA_LPSUB, 319
Tai | O f NLps, 76 trueNnz
Tai | O f Percent, 76 ABA LPSUB, 320
tailOffPercent TYPE

ABA_MASTER, 145 ABA_VARTYPE, 254
tailOffPercent type

ABA_MASTER, 157 ABA_VARTYPE, 255
templates13, 87 type_

terminateOptimization

ABA MASTER, 145
terminateSeparation

ABA_SEPARATOR,244
theFuture

ABA MASTER, 145
theTime

ABA_ COWTIMER, 503

ABA CPUTIMER, 501

ABA_TIMER, 498
time_

ABA HISTORY, 418
timer, 44
ToolLarge

ABA_ INFEASCON,403
TooSmall

ABA_INFEASCON,403
top

ABA BSTACK, 470
tos

ABA BSTACK, 470
tos_

ABA_BSTACK, 471
totalCowTime

ABA MASTER, 145
totalCowTime_

ABA MASTER, 157
totalTime

ABA MASTER, 145
totalTime__

ABA MASTER, 157

ABA TIMER, 499
treelnterfaceLowerBound

ABA MASTER, 146
treelnterfaceNewNode

ABA_MASTER, 146
treelnterfaceNodeBounds

ABA MASTER, 146
treelnterfacePaintNode

ABA MASTER, 146
treelnterfaceUpperBound

ABA MASTER, 146
treeStream_

ABA MASTER, 158

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

ABA_VARIABLE, 234
ABA_VARTYPE, 256

uBound
ABA_BOUNDBRANCHRULE, 336
ABA_COLUMN, 375
ABA_LP, 291
ABA_LPSUB, 320
ABA_SUB, 202
ABA_VARIABLE, 232
uBound_
ABA_BOUNDBRANCHRULE, 337
ABA_COLUMN, 376
ABA_SUB, 210
ABA_VARIABLE, 234
Unbounded
ABA LP, 276
unExtract
ABA_BOUNDBRANCHRULE, 336
ABA BRANCHRULE, 329
ABA_CONBRANCHRULE, 343
ABA_SETBRANCHRULE,333
ABA_VALBRANCHRULE, 339
unionSets
ABA_FASTSET,430
ABA_SET,428
Unknown
ABA_LPVARSTAT, 264
ABA_OPTSENSE247
ABA_SLACKSTAT, 268
unknown
ABA_OPTSENSE248
unlock
ABA_CONVAR, 218
Unoptimized
ABA LP, 276
Unprocessed
ABA_MASTER, 118
ABA SUB, 168
upd-i ncl udes-2.0, 16
upd- nanmes- 2. 0, 16
update
ABA_HISTORY, 417
ABA_TAILOFF, 414

558

INDEX

updateBoundinLp
ABA_SUB, 203
updateDualBound
ABA_OPENSUB,408
upperBound
ABA_MASTER, 146
ABA_SUB, 203
useful
ABA_VARIABLE, 233

valid

ABA_CONSTRAINT, 226

ABA_VARIABLE, 233
value

ABA_FSVARSTAT, 261

ABA_LP, 292

ABA_LPSUB, 320

ABA_VALBRANCHRULE, 339
value_

ABA_FSVARSTAT, 262

ABA_OSIIF, 310

ABA_VALBRANCHRULE, 340
valueAdd

ABA_LPSUB, 322
Var El i mAge, 82
varElimAge

ABA_MASTER, 146
varElimAge_

ABA MASTER, 158
Var El i nEps, 82
varElimEps

ABA_MASTER, 147
varElimEps_

ABA_MASTER, 158
varEliminate

ABA_SUB, 203
VARELIMMODE

ABA_MASTER, 118
varElimMode

ABA_MASTER, 147
VARELIMMODE_

ABA MASTER, 158
varElimMode_

ABA_MASTER, 158
variablae

buffering,27
variable,22, 29, 32, 46, 57, 58

active,28, 30

adding,27, 69

binary,32

compressed formaBl, 57

continuous32

dynamic,31

eliminating,69
elimination mode82
elimination tolerance2
expanded formaBl, 57
integer,32
locally valid, 30, 32
locked,30
maximal added30
maximal buffered80
removing,27
static,31
variable
ABA_BOUNDBRANCHRULE, 336
ABA_SETBRANCHRULE,333
ABA_SUB, 203
ABA_VALBRANCHRULE, 340
variable_
ABA_BOUNDBRANCHRULE, 337
ABA_SETBRANCHRULE,333
ABA_VALBRANCHRULE, 340
Vari abl eEl i m nati onMode, 82
variablePoolSeparation
ABA_SUB, 203
varPool
ABA_MASTER, 147
varPool_
ABA_MASTER, 158
varRealloc
ABA_LPSUB, 320
ABA_SUB, 204
varReserve_
ABA_SUB, 210
varType
ABA_VARIABLE, 233
VBC-tool, 83
VbclLog, 83
vbcLog
ABA_MASTER, 147, 148
VbclLog
ABA_MASTER, 158
VBCMODE
ABA_MASTER, 119
VBCMODE_
ABA_MASTER, 158
version
ABA_POOLSLOT,361
ABA_POOLSLOTREF367
version_
ABA_POOLSLOT,363
ABA_POOLSLOTREF367
violated
ABA_CONSTRAINT, 226
ABA_VARIABLE, 233 234

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

INDEX 559

virtual dummy function21
Visual C++, 17
voidLhsViolated

ABA CONSTRAINT, 227
\ol

ABA_MASTER, 116
Volume Algorithm,10, 84

watchNonDuplPool

ABA_ SEPARATOR,244
writeBasisMatrix

ABA_LP, 292
writeTreelnterface

ABA MASTER, 148
WS_

ABA_OSIIF, 310

XPRESS_MP

ABA MASTER, 116
xVal

ABA_LP, 292

ABA_LPSUB, 320

ABA SUB, 204
xVal_

ABA _OSIIF, 310

ABA SUB, 210
xValStatus

ABA LP, 292
xValStatus_

ABA LP, 294

yVal
ABA_LP, 292
ABA_SUB, 204
yVal_
ABA_OSIIF,310
ABA_SUB, 210
yValStatus
ABA_LP, 292
yValStatus_
ABA LP, 294

zVal

ABA_LPSOLUTION, 238
zVal_

ABA_LPSOLUTION, 239

Generated on Tue Aug 14 18:07:25 2007 for ABACUS by Doxygen

	Preface
	Installation
	Obtaining ABACUS
	Platforms
	Building ABACUS
	Compiling and Linking
	Environment Variables
	Contact
	Mailing List

	New Features
	New Features of ABACUS 3.0
	Open Solver Interface
	Compilers
	Library creation by the user
	Documentation System
	Approximate solver
	Memory management
	Preprocessor Flags and Include Paths

	New Features of ABACUS 2.3
	Version macro
	New classes for separation
	Rank for constraints/variables

	New Features of ABACUS 2.2
	Lp-Solver Xpress
	Lp-Solver Cplex
	Lp-Methods
	New Compilers
	Library Architectures
	Library Creation by the User
	New or Changed Preprocessor Flags
	Templates
	New LP Master Classes
	HTML Documentation
	Parameter Handling
	Name changings

	New Features of ABACUS 2.1
	Elimination of Constraints and Variables
	Cplex 5.0
	Templates
	Bug Fixes

	New Features of ABACUS 2.0
	LP-Solver Soplex
	Naming Conventions
	Include File Path
	Advanced Control of the Tailing Off Effect
	Problem Specific Fathoming
	Problem Specific Branching
	Generalized Strong Branching
	Pool without Constraint Duplication
	Visual C++ Compiler
	Compiler Preprocessor Flag
	LP-Solver Preprocessor Flag
	Parameters of Configuration File
	New Functions
	Miscellaneous

	Design
	Basics
	Application Base Classes
	Pure Kernel Classes
	Auxiliaries

	Details
	The Root of the Class-Tree
	The Master
	The Subproblem
	Constraints and Variables
	Constraint and Variable Pools
	Linear Programs
	Auxiliary Classes for Branch-and-Bound
	Basic Generic Data Structures
	Other Basic Data Structures
	Tools

	Using ABACUS
	Basics
	Constraints and Variables
	The Master
	The Subproblem
	Starting the Optimization

	Advanced Features
	Using other Pools
	Pool without Multiple Storage of Items
	Constraints and Variables
	Infeasible Linear Programs
	Other Enumeration Strategies
	Selection of the Branching Variable
	Using other Branching Strategies
	Strong Branching
	Activating and Deactivating a Subproblem
	Calling ABACUS Recursively
	Selecting the LP-Method
	Generating Output
	Memory Management
	Eliminating Constraints
	Eliminating Variables
	Adding Constraints/Variables in General
	Fixing and Setting Variables by Logical Implications
	Loading an Initial Basis
	Integer Objective Functions
	An Entry Point at the End of the Optimization
	Output of Statistics
	Accessing Internal Data of the LP-Solver
	Problem Specific Fathoming Criteria
	Enforcing a Branching Step
	Advanced Tailing Off Control
	System Parameters
	Solver Parameters
	Parameter Handling

	Using the ABACUS Templates

	Reference Manual
	Application Base Classes
	ABA_ABACUSROOT Class Reference
	Detailed Description
	Member Enumeration Documentation
	Constructor & Destructor Documentation
	Member Function Documentation

	ABA_GLOBAL Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_MASTER Class Reference
	Detailed Description
	Member Enumeration Documentation
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_SUB Class Reference
	Detailed Description
	Member Enumeration Documentation
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_CONVAR Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_CONSTRAINT Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_VARIABLE Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Member Data Documentation

	ABA_LPSOLUTION< BaseType, CoType > Class Template Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_SEPARATOR< BaseType, CoType > Class Template Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Member Data Documentation

	System Classes
	ABA_OPTSENSE Class Reference
	Detailed Description
	Member Enumeration Documentation
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_CSENSE Class Reference
	Detailed Description
	Member Enumeration Documentation
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_VARTYPE Class Reference
	Detailed Description
	Member Enumeration Documentation
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_FSVARSTAT Class Reference
	Detailed Description
	Member Enumeration Documentation
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_LPVARSTAT Class Reference
	Detailed Description
	Member Enumeration Documentation
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_SLACKSTAT Class Reference
	Detailed Description
	Member Enumeration Documentation
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_LP Class Reference
	Detailed Description
	Member Enumeration Documentation
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_OSIIF Class Reference
	Member Enumeration Documentation
	Constructor & Destructor Documentation
	Member Function Documentation
	Member Data Documentation

	ABA_LPSUB Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_LPSUBOSI Class Reference
	Constructor & Destructor Documentation
	Member Function Documentation

	ABA_LPMASTER Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Member Data Documentation

	ABA_LPMASTEROSI Class Reference
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation

	ABA_BRANCHRULE Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Member Data Documentation

	ABA_SETBRANCHRULE Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_BOUNDBRANCHRULE Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_VALBRANCHRULE Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_CONBRANCHRULE Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_POOL< BaseType, CoType > Class Template Reference
	Detailed Description
	Member Enumeration Documentation
	Constructor & Destructor Documentation
	Member Function Documentation
	Member Data Documentation

	ABA_STANDARDPOOL< BaseType, CoType > Class Template Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_NONDUPLPOOL< BaseType, CoType > Class Template Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Member Data Documentation

	ABA_POOLSLOT< BaseType, CoType > Class Template Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_POOLSLOTREF< BaseType, CoType > Class Template Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_ROW Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_COLUMN Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_NUMCON Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_ROWCON Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Member Data Documentation

	ABA_NUMVAR Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_SROWCON Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation

	ABA_COLVAR Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_ACTIVE< BaseType, CoType > Class Template Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_CUTBUFFER< BaseType, CoType > Class Template Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_INFEASCON Class Reference
	Detailed Description
	Member Enumeration Documentation
	Constructor & Destructor Documentation
	Member Function Documentation
	Member Data Documentation

	ABA_OPENSUB Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_FIXCAND Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_TAILOFF Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_HISTORY Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	Basic Data Structures
	ABA_SPARVEC Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_SET Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Member Data Documentation

	ABA_FASTSET Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Member Data Documentation

	ABA_STRING Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	Templates
	ABA_ARRAY< Type > Class Template Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_BUFFER< Type > Class Template Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_LISTITEM< Type > Class Template Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_LIST< Type > Class Template Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_DLISTITEM< Type > Class Template Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_DLIST< Type > Class Template Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_RING< Type > Class Template Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_BSTACK< Type > Class Template Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_BHEAP< Type, Key > Class Template Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_BPRIOQUEUE< Type, Key > Class Template Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Member Data Documentation

	ABA_HASH< KeyType, ItemType > Class Template Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_DICTIONARY< KeyType, ItemType > Class Template Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	Tools
	ABA_SORTER< ItemType, KeyType > Class Template Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Member Data Documentation

	ABA_TIMER Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	ABA_CPUTIMER Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Member Data Documentation

	ABA_COWTIMER Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Member Data Documentation

	ABA_OSTREAM Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	Preprocessor Flags

	Warranty and Copyright
	Warranty
	Copyright

