The symbolic constraint for T-Joins. More...
#include <tjoin.h>
Public Member Functions | |
TJOIN (Graph &G_, var_map< edge_descriptor > &VM_, std::map< vertex_descriptor, bool > &T_) | |
void | init (subproblem &S) |
status | standard_separation (subproblem &S) |
status | feasible (solution &S) |
This symbolic constraint takes as arguments an undirected Graph G
, a var_map<edge_descriptor>
VM
, which maps every edge of the graph to a binary variable, and a map<vertex_descriptor,bool>
T
. A vertex x is in T
if and only if T
[x]=true .
Definition at line 25 of file tjoin.h.
SCIL::TJOIN< Graph >::TJOIN | ( | Graph & | G_, | |
var_map< edge_descriptor > & | VM_, | |||
std::map< vertex_descriptor, bool > & | T_ | |||
) |
Preconditions:
Returns feasible_solution if the induced Graph is a T-Join
Reimplemented from SCIL::sym_constraint.
Definition at line 55 of file tjoin.cc.
References SCIL::solution::value().
void TJOIN::init | ( | subproblem & | ) | [inline, virtual] |
This function is called before the first LP at the root of the BCP-tree is solved.
Reimplemented from SCIL::sym_constraint.
Definition at line 48 of file tjoin.cc.
References SCIL::subproblem::configuration().
TJOIN< Graph >::status TJOIN::standard_separation | ( | subproblem & | S | ) | [inline, virtual] |
Separates the T-Cut inequalities
Reimplemented from SCIL::sym_constraint.
Definition at line 71 of file tjoin.cc.
References SCIL::subproblem::add_basic_constraint(), and SCIL::subproblem::value().