The symbolic constraint for T-Joins. More...
#include <tjoin.h>


Public Member Functions | |
| TJOIN (Graph &G_, var_map< edge_descriptor > &VM_, std::map< vertex_descriptor, bool > &T_) | |
| void | init (subproblem &S) |
| status | standard_separation (subproblem &S) |
| status | feasible (solution &S) |
This symbolic constraint takes as arguments an undirected Graph G, a var_map<edge_descriptor> VM , which maps every edge of the graph to a binary variable, and a map<vertex_descriptor,bool> T. A vertex x is in T if and only if T[x]=true .
Definition at line 25 of file tjoin.h.
| SCIL::TJOIN< Graph >::TJOIN | ( | Graph & | G_, | |
| var_map< edge_descriptor > & | VM_, | |||
| std::map< vertex_descriptor, bool > & | T_ | |||
| ) |
Preconditions:
Returns feasible_solution if the induced Graph is a T-Join
Reimplemented from SCIL::sym_constraint.
Definition at line 55 of file tjoin.cc.
References SCIL::solution::value().
| void TJOIN::init | ( | subproblem & | ) | [inline, virtual] |
This function is called before the first LP at the root of the BCP-tree is solved.
Reimplemented from SCIL::sym_constraint.
Definition at line 48 of file tjoin.cc.
References SCIL::subproblem::configuration().
| TJOIN< Graph >::status TJOIN::standard_separation | ( | subproblem & | S | ) | [inline, virtual] |
Separates the T-Cut inequalities
Reimplemented from SCIL::sym_constraint.
Definition at line 71 of file tjoin.cc.
References SCIL::subproblem::add_basic_constraint(), and SCIL::subproblem::value().
1.6.3